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The basis of easy controllability in Boolean
networks

Enrico Borriello® "™ & Bryan C. Daniels® '™

Effective control of biological systems can often be achieved through the control of a sur-
prisingly small number of distinct variables. We bring clarity to such results using the
formalism of Boolean dynamical networks, analyzing the effectiveness of external control in
selecting a desired final state when that state is among the original attractors of the
dynamics. Analyzing 49 existing biological network models, we find strong numerical evi-
dence that the average number of nodes that must be forced scales logarithmically with the
number of original attractors. This suggests that biological networks may be typically easy to
control even when the number of interacting components is large. We provide a theoretical
explanation of the scaling by separating controlling nodes into three types: those that act as
inputs, those that distinguish among attractors, and any remaining nodes. We further identify
characteristics of dynamics that can invalidate this scaling, and speculate about how this
relates more broadly to non-biological systems.
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he development of a comprehensive theory for control of

complex biological systems is a major goal of systems

biology!»2. While many results are available in control
theory, its common assumptions have needed to be updated for
application in biology: biological processes are typically intrinsi-
cally nonlinear’ and we often care only about coarse-grained
output states* as opposed to the ability to force a system into any
possible state’.

In the context of Boolean models of gene regulatory networks,
a particularly useful concept in the static control of regulatory
logic is the control kernel (CK). Introduced in®, the CK is defined
as a minimal set of genes such that external control of their
expression is sufficient to steer the network dynamics toward a
desired steady gene activation pattern (attractor).

Existing literature on Boolean networks contains a number of
related definitions of minimal control sets and efficient approa-
ches to finding them. First, stable motif analysis similarly defines
control sets by identifying positive circuits in the network that
can self-sustain an associated state (namely, trap spaces in the
dynamics)”. Individual cyclic attractors are not determined by the
method, but grouped into “quasi” attractors that share the same
stationary parts. Otherwise, sets of control nodes are defined for
quasi-attractors in the same way as CKs. Alternatively, a control
set can be defined as a single set of nodes that can force the
system to any of the original steady states. Feedback vertex sets,
namely minimal sets of nodes whose removal deprives the net-
work of all its directed cycles, efficiently produce an upper bound
on minimal control set size that does not require knowing the
specific dynamics governing each node>®?. Finally, the method of
differentially expressed positive circuits begins with minimal
information about the network structure to efficiently find sets of
nodes that, when forced, move the system from one of the net-
work’s attractors to another of its attractors!?.

Here, we focus on the CK definition of control, such that a CK
particular to one of the original steady states produces that state
regardless of the initial condition. Using this definition, and
focusing on the particular steady state most often reached when
starting from random initial conditions, Kim et al. found
empirically in eight representative models that the size of the CK
is both uncorrelated with the network size and small®. This is in
agreement with both the aforementioned existing theoretical
approaches and an increasing wealth of empirical findings in
cellular reprogramming experiments!!~17, where overexpression
of fewer than a dozen transcription factors is capable of selecting
a desired phenotypic behavior in systems with tens of thousands
of genes. If controlling a network is not an increasingly difficult
task as the size of the network increases, then the question arises
of why some networks are more amenable than others to external
control.

Naively, one might guess that the size of CKs would be close to
the logarithm of the number of original attractors in a system. If
the possible states of individual nodes are roughly equally likely
given the states of other nodes, then forcing one node into a
particular state will typically cut the number of attainable states in
half. Then by controlling ¢ nodes we expect to be able to narrow
2¢ possible states down to 1 possible state. Yet the problem of
finding the minimal set of controlling nodes is nontrivial, proven
to be NP-hard by Akutsu et al.!8, so that no algorithm is expected
to run faster in the worst case than checking every possible subset
of increasing size. It is worth noting a difference between the
approach adopted by Akutsu et al.!8 and Kim et al.%. In the first
study, new control nodes are added to the original internal nodes
of the network. Kim et al. instead actively turn a subset of internal
nodes into control nodes. This difference does not alter the
computational complexity of the problem.

Here, across 49 example biological networks, we compute CKs
for all attractors. We first corroborate earlier results that CKs
remain relatively small, finding typical CK sizes smaller than
about a dozen nodes even in large networks with up to 72
interacting components.

More importantly, we illuminate the origins of this easy con-
trollability by showing that the average CK sizes do in fact scale
logarithmically with the number of attractors. For a number of
reasons, this close correlation with the number of attractors has
not been highlighted in prior studies. In particular, the scaling is
not as clearly evident when looking only at the attractor most
often reached from random starting points®, nor when bounding
the control set using the feedback vertex set, which does not
require solving for individual attractors®.

The theoretical justification for the observed scaling is subtle,
and we progress here by breaking down the CK problem into
three subproblems, one being the witness set problem from dis-
crete mathematics. The lower bound realized by the witness set
typically provides a good first approximation to the full size of the
CK, which connects the observed logarithmic scaling to known
results in computational learning theory.

Results

Boolean networks and attractor dynamics. This section defines
common terms and concepts from the study of Boolean dyna-
mical systems. Readers familiar with Boolean network dynamics
can proceed to the next section.

Given their abstract nature, the applicability of Boolean
networks extends far beyond the mathematical description of
biological regulatory networks (cfr.!%22, to cite just a few
examples of a large literature). In the context of theoretical
biology, their relevance was first highlighted by Kauffman?3, who
identified cell types with the attractors of network dynamics,
allowing for their mathematical study. The success of Boolean
networks in theoretical biology can be attributed to their
simplicity, forming the most parsimonious mathematical repre-
sentation displaying systemic properties of real biological
networks?425,

The state of a Boolean network at time ¢ is defined by the state
of its n nodes, x;(t), with i =1, ..., n. The Boolean nature of the
model means that there are only two possible states for node i:
ON, which corresponds to x;(t) = 1, or OFF, with x;(f) = 0. When
the network describes cell regulation, its nodes are often
representative of interacting genes, and x;(f) is the Boolean
approximation of the expression level of gene i, with the gene
being expressed when x;(f) = 1, and inactive otherwise.

The dynamics of a deterministic Boolean network is defined by
n Boolean functions fi, ...,f, whose input is the x;(t), ..., x,(t)
array, and whose output is the configuration of the network at
time ¢+ 1:

x(t+1) f10x (D), ..., x, (1)

M

x,t+1) = f,(x0),...,x,(0).

The form of these Boolean functions can be determined by
experiments?®27. This parameterization corresponds to a syn-
chronous update of every node in the network. Asynchronous
dynamics are more realistic but less mathematically tractable?
(see Supplementary Material for a discussion of our approach to
asynchronous updating). With # nodes, there are 2" possible
network configurations (i.e., gene expression patterns in the case
of a genetic network). We will refer to these configurations as
states of the network, and to the space of all possible network
states as the configuration space. The dynamics of the network is
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Fig. 1 Average control kernel size versus the number of attractors in a network. A The average control kernel size is close to the base-2 logarithm of the
total number of attractors. The average is taken over attractors for which a static control kernel exists. Data are presented as mean values + one standard
deviation over attractors (where the number of control kernels contributing is equal to the total number of statically controllable attractors in each case).
B Some cycles are not statically controllable. € Networks analyzed using the sampling method.

represented by a time series of states. Though large, the size of the
configuration space is finite. Therefore, whenever the functions f;
are deterministic, these dynamical paths will eventually converge
to either a fixed state or a cycle of states. These special sets of
states are the attractors of the Boolean network. The set of initial
states that converge to a given attractor is known as its basin of
attraction. In the case of gene regulatory networks, the core
assumption of Kauffman’s proposal is the identification between
attractors and cell types. Boolean networks can have many
distinct attractors, making them ideal for describing how the gene
interactions encoded within a single fertilized egg can give rise to
a large number of stable cell types?®. Regardless of their specific
interpretation, the attractors of a Boolean network are typically
among its most important features, as they correspond to the only
possible steady-state dynamics once any transient behavior
has ended.

The remainder of this manuscript is devoted to the study of
how steady-state dynamics are altered when external control is
exerted over the network.

Logarithmic scaling of control kernel size. We will assume here
that external control is exerted over the network by setting the
state of one or more of its nodes to constant values (also referred
to as “node state override”). This is done regardless of the
updating rules associated to those nodes and the inputs provided
by the remaining nodes. This pinning of p nodes is formally a
map between dynamical systems, turning a network with # nodes
into a “controlled” network with n-p nodes. We define a CK as
the minimal amount of pinning necessary to force the system into
a desired attractor:

Definition 1 (CK): For a given attractor A, a CK is defined as a
set of nodes of minimal order whose pinning reshapes the
dynamics such that the basin of attraction of A becomes the
entire configuration space.

By this definition, for a given A multiple CKs of the same size
may exist, or there may be no existing CK. The most naive
approach to finding a CK for a desired attractor A is simple but

time-consuming: pin every possible subset of nodes of increasing
size to their values in A and test the network’s dynamics to
determine whether all initial states of the network converge to A.
In the case of networks with highly modular organization, it is
possible to be much more efficient by computing CKs for each
module separately (see “Methods”).

For every fixed-point attractor, at least one CK is guaranteed to
exist: at worst, we can succeed in control by pinning all nodes to
their values in the desired attractor. Cyclic attractors do not
necessarily have a CK. We know we cannot pin any nodes that do
not have a constant value in the attractor, as this will not be
consistent with the original attractor. This limitation comes from
our assumption of static pinning in Definition 1. Generalizations
that use dynamic pinning are also possible, which we do not
explore in any detail here. Such forms of dynamic control seem
less relevant from a biological perspective and are more difficult
to enforce experimentally.

To determine the typical sizes of CKs in biological examples,
we analyzed models in the Cell Collective database3?. They span,
but they are not limited to, biological cellular processes including
cycles, differentiation, plasticity, migration, and apoptosis. They
exemplify biological processes in humans and other animals, as
well as plants, bacteria, and viruses. For 44 networks, using a
reasonable amount of computing time (roughly 1 processor
running for 1 day for each network), our algorithm was able to
find CKs for all attractors for which a CK exists. For an additional
five networks for which we were unable to exhaustively find all
attractors, we computed CKs for a set of attractors reached from
104 to 10° random initial conditions (see “Methods™). The
networks we analyzed range in size from 5 to 73 nodes (see
“Methods”). In computing CKs for all known attractors of each
network, we depart from the approach adopted in®, which studies
only the CK for the attractor with the largest basin.

We find empirically that the average CK size (|CK]|) in each
network is close to the base-2 logarithm of the total number of
attractors r (Fig. 1). The reasons for this scaling are subtle, and in
the next section we propose a theoretical interpretation and
speculate about whether this scaling persists at larger n.

| (2021)12:5227 | https://doi.org/10.1038/s41467-021-25533-3 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

A
(0]
N
(7]
2 20
) o °
X
°
€ 10 °
§ )
c > ]
®
(0]
=0 . .
100 102 104
Number of attractors
C (0]
N )
(7]
“E’ 201
2 L 3 .
°
€ 101 ° °
8 . §
2 °
kel
5 o
10° 102 10*

Number of attractors

os}

N
o
L

Mean control set size
o
(J

40
(=]
©

102 104
Number of quasi-attractors

W)

Feedback vertex set size

N
o
L

—_
o
L

\

a0
o
=)

102 104
Number of attractors

Fig. 2 Comparing our control kernel results with those obtained using two alternative methods for computing controlling nodes. A For comparison, we
replot mean control kernel size versus number of attractors, as in Fig. TA. B Mean control set sizes computed for 36 networks using the stable motif
algorithm, which groups some cyclic attractors into quasi-attractors. Logarithmic scaling of the control set sizes with respect to the number of quasi-
attractors is clearly visible. C For comparison to the feedback vertex set, which places an upper bound on the minimal control set required to reach all
attractors, we compute the size of the union of control kernel nodes of each network across all its attractors. D The size of feedback vertex sets is

comparable to union control kernel sizes in C.

The observed trend is a potential explanation for why models
of biological networks have small CKs. Biological CKs may
remain small regardless of the size of the network because the
necessary control depends mainly on the logarithm of the
number of possible outcomes, which may be fundamentally
limited in functional networks.

Comparing our results with those obtained using alternative
methods. In Fig. 2, we compare our CK size results to two other
methods: stable motifs” and feedback vertex sets>%2.

First, the method of stable motifs groups cyclic attractors with
identical stationary parts into quasi-attractors (see “Introduction”
and’), meaning that controlling for individual cycles is not
necessarily possible in all cases. Still, we see in Fig. 2B very similar
scaling results for stable motif control set sizes as a function of the
number of quasi-attractors. Note that, using a similar amount of
computing time as for our CKs and without further optimization,
we were able to compute stable motif control sets for only 36
biological networks.

Second, we expect feedback vertex sets to provide an upper
bound on the size of the single set of control nodes needed to
reach all attractors®. A set achieving an analogous goal, but still
defined in terms of attractor-specific CKs, is a “union” CK,
namely a set of nodes that includes a CK for each attractor. Note
that we do not attempt to find the union CK of minimal size,
which could be smaller in cases in which multiple possible CKs
exist for individual attractors. Plotting the sizes of the union of
CKs across attractors for each network, we see similar results to
the sizes of feedback vertex sets (Fig. 2C, D). Note, too, that
logarithmic scaling of the feedback vertex set size is much less
pronounced than in the case of attractor-specific CKs in Fig. 2A.

Additionally, we analyze the overlap between the specific nodes
in our CKs and the controlling nodes identified by the other two
methods. Note that the existence of multiple possible minimal

control sets and the NP-complete nature of the problem limits us
to compare representative sets of minimal size. Comparing CKs
to stable motif control sets (for fixed points only), the average
overlap across all 4262 attractors is 94%. When comparing union
CKs to feedback vertex sets, the average proportion of CK nodes
that are part of one particular feedback vertex set is 88%. (For
more details, see Fig. S5 in the Supplementary material.)

Road map of the theoretical interpretation. In the remainder of
the Results, we investigate the conceptual reasons for the scaling
behavior in Fig. 1, connecting it to an unsolved problem in
computational learning theory. What follows is a schematic
guideline of the steps that lead us to the result:

e We start by identifying three contributions to the CK, with
different properties: input nodes, distinguishing nodes, and
additional nodes. We then propose a method for bounding
the CK size that naturally provides the controlling nodes in
this order.

e To find CKs for a network, the global dynamics must
generally be re-solved for multiple combinations of pinned
nodes of increasing size. We show that the additional nodes
are the only nodes whose identification requires this
repeated solving. Identifying input nodes is trivial, and
distinguishing nodes require knowing only the network’s
original attractors and solving a problem equivalent to
finding minimal order witness sets.

e We then show that the additional nodes provide a
subdominant contribution to the size of the CK for the
networks we study. By neglecting the additional nodes,
we exhibit a “first-order approximation” of the CK that we
compare to the full calculation in Fig. 1. We show that the
approximation scales logarithmically with the number of
attractors r, thus explaining our main result.
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e We also discuss cases that may significantly deviate from
this scaling behavior. We identify two possible scenarios:
(1) Cases where the contribution of the additional nodes is
dominant; (2) cases where the average size of the minimal
witness sets exceeds log,7.

Input nodes. Let us start by considering a special class of nodes
that are easy to analyze separately: those that have a constant
value in time. In biological models, there are often examples of
nodes whose dynamics is described by the identity function
xp(t + 1) = x,(), as it offers a simple implementation of external
inputs acting on the network. Input nodes appear often in bio-
logical networks as either signals from other subsystems or as
external variables controlled in experiments (e.g.3!). With this in
mind, we will assume the following definition:

Definition 2 (Input node): A node is an input node if its
updating rule is the identity function.

Having input nodes increases the number of attractors in a
network, as each setting of the inputs corresponds to at least one
distinct attractor.

In steering the dynamics toward a given attractor, we are
forced to pin the input nodes to the values they take in the
attractor. Otherwise, both values for each input would remain
viable, and we cannot select between them by controlling the
other nodes. As this step is unavoidable we can easily conclude
the following:

Proposition 1: A CK must include all the input nodes of the
network.

Therefore, we pin all input nodes as the initial step of our
analysis. When present, input nodes act as control nodes as
defined in'8, and in agreement with the findings of that study.
Note that it is possible for nodes that were not input nodes in the
initial network to become effective input nodes after this pinning
procedure. A simple example is a node whose state depends only
on input nodes. We do not distinguish this situation in our study.
Therefore, these nodes are counted among the distinguishing
nodes as defined in the next subsection.

Distinguishing nodes. Let us now examine the effect of the
pinning procedure on the state transitions. It is easier to analyze
the changes in terms of the transition matrix, the table of cor-
respondences between the state at time £, x = (x;, ..., x,,) (the left
side of the table) and the subsequent state at time t+ 1, x' =
fx) = (x1, ... ,x,) (the right side):

state at time ¢ state at time at time ¢+ 1
X Xp_1 X, X x

n—1 n
0 0 1
0 1
1 1 1

Plnmng node j to 0 (or 1) corresponds to deleting column x;
and x] and deleting the 2"~ rows with the opposite value x; =1
(or 0). Note that a fixed-point attractor corresponds to a row in
the transition matrix with the left side equal to the right side (i.e.,
x, = x;, for all k in that row). Pinning a node will remove a
preexisting attractor if, and only if, it appears on the left side of a
row we are eliminating. When pinning to control the network
into a desired attractor, we must at least eliminate all other initial
attractors:

Definition 3 (Distinguishing nodes): A subset of nodes for
which a pinning exists that is both compatible with attractor A

and incompatible with the other initial attractors of the network
is a set of distinguishing nodes of A.

In order to remove all attractors other than attractor A, we
need to pin a set of its distinguishing nodes, which leads us to the
following:

Proposition 2: A CK of attractor A must include a set of
distinguishing nodes for attractor A with respect to the network’s
original attractors.

Therefore, a more efficient and still exact method for finding
CKs is to check not every possible subset of nodes, but to check
only distinguishing node sets (since we know that the CK must
include at least one of them). This is the method we use to obtain
our results in Fig. 1.

We now have a lower bound on the size of the CK. To state this
precisely, let us consider a network with n nodes, r attractors, and
m input nodes. Let us then select an attractor A and pin all input
nodes to values compatible with A. The new network (with initial
input nodes pinned) will possess a certain number 7’ of attractors:
A plus other attractors By, ... ,B,_,. Let us now call w(l) any
minimal order set of nodes distinguishing A from B, ... ,B,
Then the size of the CK is bounded below by m + |w(15|
(Propositions 1 and 2).

Additional control nodes. The reason that input and distin-
guishing nodes provide only a lower bound to CK size is that the
pinning intervention can also create new attractors. For instance,
we get a new fixed-point attractor whenever the left and right
sides of a row in the transition matrix are equal over the n —1
remaining columns, with differing values only in the column that
we are eliminating. Note that pinning an input node cannot
create new attractors. (In the row we are eliminating, input nodes
by definition have equal values on the left and rlght sides.)

Pinning the nodes in w(!) will remove B, ... ,B,_,, but this
may now create new attractors. We can also get an upper bound
by iteratively pinning subsequent minimal distinguishing node
sets that are needed to remove these additional attractors:

m+ W] < ICK < m+ W] + 5w, @)
i>2

where w() with i>2 are the sets of additional nodes we need to
pin after we have already removed B, ... ,B,_,. This iterative
procedure produces only a bound instead of the exact CK size
because iterative pinning can in some cases mislead us toward a
pinning that works but is not minimal. To mitigate this aspect, in
performing the iterative procedure, we choose among different
minimal sets of distinguishing nodes by picking the one that
creates the fewest new attractors. We find numerically that the
bound computed in this way is often tight (see Fig. S7 in the
Supplementary material).

Also notice that finding the distinguishing nodes w(!) only
requires knowledge of the initial attractors. On the contrary, to
find the additional control nodes we need to distinguish the
selected attractors from new attractors created during each round
of pinning. This requires solving the global dynamics of the
network for each combination of pinning nodes.

Relative contributions of the successive rounds of pinning. In
the following, we will refer to the pinning of the input nodes as
round zero in this iterative procedure. Pinning w(l) is what we
will call the first round of pinning, while any additional control
nodes will be pinned during additional rounds of pinning. We
summarize this procedure in Fig. 3, where we show the process
determining the CK of the attractor with smallest basin size in a
gene regulatory network underlying early cardiac development32.

Despite the iterative nature of our pinning procedure, these
three steps possess very different characteristics. Round zero is
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Fig. 3 Schematic of our iterative pinning procedure. This example demonstrates selecting a particular attractor in the network describing the core gene
regulatory network for early cardiac development32. (Note that we use the iterative procedure only to put bounds on the control kernel size as in Eq. (2),
while the true minimal control kernel can be computed by an exhaustive procedure as explained in the Methods. In this particular case, the two methods
produce identical results.).

A Require further B Mean proportion of non-input control nodes that are: C Mean number of
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c
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3
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Fig. 4 Relative contributions of the successive rounds of pinning. After accounting for input nodes, minimal distinguishing node sets w( account for
much of the size of control kernels in the 49 biological networks. A Some networks are fully controlled after pinning only input nodes, but most require
further pinning. B Vertical bars indicate the mean proportion of non-input control nodes that correspond to minimal distinguishing nodes (blue) and those
that must be set by additional pinning (orange). Network IDs correspond to those listed in Table 1. Some cases remain “undetermined” as identifying the
minimal size of distinguishing node sets can be computationally infeasible (see “Methods"). € In most networks, the mean number of additional nodes
needed beyond the minimal distinguishing nodes remains small.

trivial, and it does not introduce new attractors. The first and the ~will call the input and distinguishing nodes a first-order
subsequent rounds of pinning represent NP-hard problems, and  approximation of the CK, neglecting any additional control
they can introduce new attractors. nodes. To understand why we expect this approximation to be

Remarkably, in our data set the first round typically identifies reasonable, let us examine the likelihood of introducing new
most of the necessary control nodes (Fig. 4). For this reason, we  attractors through pinning.
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Fig. 5 The number of attractors remaining after each iterative pinning is
typically small. Here we use the iterative pinning procedure to find upper
bounds on control kernel sizes for 40 networks that we can analyze using
the sampling method. This results in a total of 4484 iterative rounds.
Having 1 attractor remaining after pinning indicates success in finding a
controlling set.

Fixed-point attractors. With certain assumptions about network
properties, it can be possible to estimate the expected number of
fixed-point attractors. This is the case, for example, in a well-
studied class of dynamical systems known as random Boolean
networks (RBNs)23. RBNs are defined in terms of a generative
mechanism for both their topology and dynamical rules, and this
can be used to prove that, on average, a given RBN possesses just
one fixed-point attractor33,

The networks in our database are not random networks. They
were instead inferred from data by a number of research groups.
Interestingly, after the input and distinguishing nodes have been
pinned the number of additional attractors is also typically small
(Fig. 5). A heuristic argument that we detail below reveals general
conditions under which we expect this to be true.

The argument is very simple: Whatever states appear on the
right side of the transition matrix, we have an even distribution of
0s and 1s on the left side. Without knowledge of the specific
mapping of initial states to next states, our best assumption is that
they appear in random order on the right side, leaving unspecified
which initial state corresponds to each next state. For each row,
the probability of having the right side matching the left side
entry by entry is 1/2", where #’ is the current number of nodes
we have not pinned. We have 2" rows. Therefore, the expected
number of fixed-point attractors would be 1. Given the heuristic
nature of this argument, we cannot assume this to be more
accurate than just an order of magnitude estimate. One reason
why this number could be significantly greater than 1 would be
the presence of many input nodes (which would guarantee the
existence of at least 2" attractors), but we have already removed
all the initial input nodes in round zero. In this way, we have
reduced the study of the controllability of each of our networks to
the study of a set of networks without input nodes. Notice that
RBNs do not have input nodes, unless that happens by accident.
Pinning the input nodes makes our networks acquire one of the
main topological features of RBNs.

Cyclic attractors. We have neglected cycles in our previous
argument. A cycle over states i and j would require the simulta-
neous conditions (1) left side of row i = right side of row j and (2)
left side of row j=right side of row i. Proportionally longer
chains of conditions would be required for longer cycles. In the
case of RBNs, the intuitive idea that longer cycles become less
likely due to the multiple conditions they require holds only for
relatively small networks, e.g., networks with fewer than about 20
nodes (cfr. Fig. 1 of33). This intuition inevitably breaks down as
the network size increases, due to the combinatorial growth in the

number of ways a cycle of states can be closed. Eventually, cycles
become dominant for RBNs with more than about 300 nodes.

A proliferation of cycles created during the intermediate
rounds of pinning could potentially prevent our iterative
procedure from converging quickly. Nonetheless, this is not
something we observe in the biological networks we analyzed.
Figure 5 shows that the number of attractors remaining after each
iterative pinning, including cycles, is typically small. Interestingly,
our networks fall within the size range for which RBNs would
present a number of cycles comparable to the number of fixed
points. Whether biological networks much larger than the sizes
we analyzed display a proliferation of cycles similar to RBNs is
something we cannot currently test. Indeed, it is an open question
whether networks displaying large numbers of cycles are relevant
to biology>* and complexity science more generally. It is also
worth noting that many cycles in large networks become unstable
when the network state is updated in a nondeterministic
asynchronous way>> (see Supplementary material).

Our brief discussions about fixed-point and cyclic attractors
reveal that—once the input nodes are pinned, and in the absence
of additional structure in the dynamics that significantly under-
mine the approximate randomness of the transition matrix (for
an example of this see the section on Random Networks)—we can
expect our iterative pinning procedure to converge quickly. With
a small number of attractors remaining after each round of
pinning, there is a fairly high probability of having, at some step,
only one attractor, at which point a CK has been found and
iteration stops. This probability, which we empirically observe to
be 58% across the networks we study (Fig. 5), confirms our simple
interpretation.

We have anticipated that our first-order approximation of the
|CK] consists of neglecting the additional nodes (the lower bound
in Eq. (2)). A fast convergence of the pinning procedure
guarantees a small number of rounds of pinning (the number
of nonzero terms |w(| with i =2 in Eq. (2)), but it says nothing
about the size of those terms, and therefore does not guarantee
that additional nodes cannot dominate |CK]|. Therefore, to rule
out this possibility, we need to better understand the expected size
of minimal distinguishing node sets.

Witness sets. What we call a set of distinguishing nodes of an
attractor is closely related to a known concept in discrete
mathematics, the witness set3. Witness sets are a recurring topic
in computational learning theory” and are referred to by mul-
tiple names, including discriminants3® and specifying sets®.
Another related quantity is the teaching dimension of set A%:
While we are interested in the average size of the smallest witness
sets w, the teaching dimension of A is the size of its largest
minimal w;.

Given a list of binary vectors, a witness set for one of the
vectors consists of bits that, when revealed, distinguish it from all
other vectors in the list. Formally:

Definition 4 (Witness set): Let A C {0,1}" be a family of r
distinct binary n-tuples of length n. A set W;C{1,2,...,n} of
coordinates is a witness set for the n-tuple A; € A if for every
other A]- € A there exists a coordinate xU/l in W; such that xU! in
A; differs from xU] in A;.

When all attractors are fixed points, we define A as the set of
the r attractors A;. The witness set of minimal size, w;, for a given
attractor is then equivalent to the minimal set of distinguishing
nodes w(l) defined above.

Cyclic attractors add two complications to this correspondence
between witness sets and distinguishing nodes, but the basic idea
remains the same. First, when distinguishing an attractor A; from
a cycle, we treat nodes whose values change within the cycle as
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Fig. 6 Average (|w|) values for increasing length n of random n-tuples.
Each point is averaged over random realizations of A. The shaded region
around each curve marks the minimum and the maximum averages we find.
log ,r looks like an effective upper bound for not just the average (|wl), but
also the individual values of (|w|) for all choices of n, r, and the number of
simulations we consider. Remarkably, (|w|) never departs from log,r by
more than a few units.

always being distinguished from a fixed value in A;. This can be
accomplished, for instance, by treating each non-constant node in
the cycle as if it had the opposite value of the one in A;. Second,
when distinguishing a cycle from other attractors, we first restrict
the “columns” of A to include only those nodes that have
constant values in the cycle, as we assume that distinguishing
nodes must be pinned to static values. We have already seen (cfr.
the comments following our Definition 1) that a witness set might
not exist in this case.

The key question then becomes: What sets the typical size of
minimal witness sets w;? Simple examples show that |w;| can
easily be as large as » for an individual i—for instance, if n other
A; are chosen that differ from A; by one bit flip for each of the n
nodes. However, creating an example with large |w;| for all i
requires larger r. The more relevant question then becomes: what
sets the average witness set size over attractors {|w|) as a function
of the number of attractors r?

Naively, one might expect that (|w|) scales as log,r: On
average, revealing a given bit will distinguish the desired attractor
from about half of the remaining attractors, so one would expect
to be able to distinguish any given attractor using about
log,r bits.

Known topological features exist that naturally produce a
logarithmic scaling of the number of distinguishing nodes. For
example, we have already seen that a large number of input nodes
in the network would induce logarithmic scaling. This also holds
when the network possesses disconnected components, though
this is not the most relevant case in biology. (Non-interacting
modules have a multiplicative number of attractors and an
additive number of minimal distinguishing nodes, which leads to
logarithmic scaling.) To a lesser extent a hierarchical structure of
interacting modules would favor the same scaling. Input nodes
and modularity are important features of our database, but
further analysis indicates they are not solely responsible for the
log,r scaling (see “Methods”).

Even in the absence of such topological features, numerical
experiments show that log, is often an apparent upper bound on
(Iw|), and this was long conjectured to be an exact result3®. Yet
definite exceptions to this apparent bound are now known to
exist, and one such exception will be detailed in one of the next
sections (see “Finite projective plane”). We first discuss a numeric
experiment demonstrating that logarithmic scaling is indeed a
typical scenario.

We start by randomly selecting r Boolean vectors and assuming
that they constitute the set of attractors A. This way we leave the
topology of the hypothetical network generating them unspeci-
fied. The result is shown in Fig. 6, where average (|w|) values are

Bound on minimal size
Sampled minimal size
Minimal size

S o © 6
00
e

Mean remaining
distinguishing node size

N

@
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10° 10' 102 10°
Number of remaining attractors after round 0

Fig. 7 Distinguishing node set sizes versus number of remaining
attractors. Mean minimal distinguishing node set sizes (\ij|) are
empirically less than or equal to log,r; in all biological cases we analyze.

This consists of 43,289 cases (with 12 sampled cases).

plotted for increasing values of n, each point averaged over
realizations of \A. The maximum values found for (|w|) always
remain below the log,r reference line. The average (|w|) points
fall along seemingly convex curves—anchored to the log,r line at
r=2 and r = 2", as expected—and depart from the log,r line by
just a few units. The NP-hard nature of finding w limits our
ability to simultaneously increase # and r in this analysis. (We can
analyze larger networks exactly in Fig. 1 because of their modular
nature. We are now intentionally forcing ourselves to deal with
the opposite scenario.)

Given this numerical evidence, we have reason to expect that
witness set sizes, and therefore distinguishing node sets, are
typically no larger than the logarithm of the number of attractors
they distinguish. In each round of pinning after the first, the
expectation that we have only a few remaining attractors then
translates into small numbers of additional nodes added in each
round (small terms |w(| in Eq. (2) when i>2). This, combined
with the expectation that only a few rounds contribute, leads us to
consider an approximation in which we neglect the
additional nodes.

First-order approximation. Neglecting the additional nodes
provides a “first-order” approximation of the CK:

ICK| ~ |CKV| = m + (|wV]). 3)

We find empirically that the minimal number of distinguishing
nodes is always less than the logarithm of the number of
attractors being distinguished (Fig. 7). That is, for the cases we
test:

(w"]) <log,r;, )

where r; is the number of attractors sharing the jth input con-
figuration (j=1,...,2"). When (4) holds, we can additionally
bound the average minimal distinguishing node size (|w(!)|) over
all r= er attractors of a given network (see “Methods”):
(IwV]) <log ,r. Combined with the fact that m <log,r, we obtain

the following bound on the average first-order approximation:
(ICKW|) < 2log , 7. ()

We validate this for our cases in Fig. 8, finding in fact that
(JICKM]) is bounded more strongly by log,r (see “Methods” for
further discussion). The bound (5) relies on the empirically
validated inequality (4), the more general validity of which we
explore in the next section.

We can now summarize to draw our main conclusion. Our
iterative pinning procedure adds only a small number of
additional nodes after the first round, with the combination of
input nodes and minimal distinguishing nodes w(!) representing
the most sizable contribution to the CK (Fig. 4). Within the set of
biological networks we analyze, this first-order approximation
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Fig. 8 First-order approximation of control kernel sizes. The first-order
approximation of control kernel size given by Eq. (3) is empirically less than
or equal to log,r in all biological cases we analyze.

(Eq. (3), displayed in Fig. 8) accounts for the logarithmic scaling
that we observe in Fig. 1. Furthermore, an apparent bound (5) on
this approximation suggests that the logarithmic scaling of
control may occur more generally.

Exceptions. The logic leading to the logarithmic scaling of (|CK])
could be invalid in two general cases:

e Minimal distinguishing node sets may not be bound by the
logarithm of the number of attractors they distinguish
(inequality (4) may not hold).

e Additional nodes may make a non-negligible contribution
to the CK (approximate equality (3) may not hold).

Though we do not find either of these exceptions among the
biological cases we analyzed, we explore a larger set of cases in
these final sections to better understand the degree to which
exceptions might be expected to arise in other real-world
situations.

First, we describe a known construction that produces an
exception to inequality (4). We then run our CK analysis on three
ensembles of random networks to search for exceptions to
logarithmic scaling.

Finite projective plane. If universal, the trend shown in Fig. 6
would explain the logarithmic scaling of (|CK(]). But at least
one exception exists. We owe its ingenious proof to Kushilevitz
et al.3%, and it involves the geometry of a finite projective plane.

A finite projective plane3” of order p (p being a prime number)
is a set of g=p?+p+ 1 points and g lines with the following
properties:

(1) Any two points determine a line.
(2) Any two lines determine a point.
(3) Every point has p + 1 lines on it.
(4) Every line contains p + 1 points.

Kushilevitz et al.3¢ used this construction to exhibit a set of
vectors with (|w|) exceeding log,r for large enough r. These
vectors are chosen to be the rows of the incidence matrix of such
a plane (line vectors, or just lines in what follows) plus the rows of
the identity matrix of order q (point vectors, or just points).
Therefore, r =24 in this example.

The proof proceeds as follows: to distinguish a point from the
other points we just need to pin its only nonzero coordinate to 1.
To distinguish it from the lines we first notice that this point is on
p + 1 lines. Each line contains p more points. Therefore, for each
line, we choose a point in it (different from the one we want to
select), and pin its coordinate to 0. This way we pin p + 1 more
coordinates. Therefore, to distinguish a point from the remaining
vectors, we need to pin p + 2 coordinates.

Distinguishing a line is easier. We just pin the coordinates of 2
of its points to 1. In fact, no point has 2 nonzero coordinates, and
no other line contains both those points.

We can now easily calculate (|w|) for this set of vectors:

_2+qp+2) _p+4

(Iwl) 2 >

(6)

where p = (+/2r — 3 — 1)/2. As p ~ /7, this construction gives
rise to a polynomial scaling of witness set sizes with respect to 7,
and consequently to values of (|w|) far exceeding log,r when r is
sufficiently large. The first prime number for which this happens
is p =17, corresponding to r = 614 attractors and a network with
n =307 nodes. (More precisely, (|w|) can be greater than log,r
for r<6 and r>369. But the smallest order, p=2, already
corresponds to r = 14. Therefore, we are only interested in the
large r limit.)

As relevant as the existence of this example is the likelihood of
analogous cases. One simple test to perform is to check whether
flipping a single entry in one of the vectors is enough to bring
(Iwl) below log,r. We have explicitly checked this, but in the
worst case a bit flip perturbation instead adds to (|w|)
(see Supplementary material for a more thorough analysis).

It is important to stress that—when interpreted as the
attractors of a network—these projective plane exceptions
correspond to extremely biased scenarios, where each variable
has a total ratio of 1s to Os over the total number of attractor
states equal to (p + 2)/2q ~ 1//, L.e., already as low as 3% when
r = 614. They constitute an infinitesimal part of the configuration
space of all possible sets of r vectors. The likelihood of sets with
(|wl) >log,r within this space (see3® for some discussion of this
problem), as well as the relevance in natural sciences of networks
generating them as steady-states, remain open questions.

Random networks. To briefly explore to extent to which we
expect exceptions to scaling in more general contexts, we apply
our methods to three ensembles of randomly generated networks.
First, we use the well-studied ensemble of p-K random
networks#l. In this ensemble, each node receives input from
exactly K = 2 nodes, and Boolean logic functions are chosen such
that the probability of the ON or 1 state appearing on the right-
hand side of a given row of the truth table is p, a parameter that
we vary. Second, we use another ensemble common in the lit-
erature that assigns each node a threshold to activation and a set
of input nodes whose states are summed and compared to the
threshold, with some input nodes acting to excite and some to
inhibit®42. Following ref. 6, we set thresholds to zero and vary
both the density of interactions as well as the relative proportion
of inhibitory edges. In cases with little inhibition, networks are
biased toward activation. To explore the effects of this bias, we
also include an ensemble of “balanced” threshold networks, in
which the thresholds of individual nodes are set not to zero but to
the average of incoming edges, such that the distribution of
summed inputs is always centered at the threshold.

The results of the CK analysis for networks sampled from these
random ensembles are shown in Figs. 9 and 10. Similar
logarithmic scaling as in the biological networks is demonstrated
by most of the random networks, with a few exceptions of large
CK in the case of zero threshold networks (azure triangles in
Fig. 9A). These exceptions can be understood by considering the
effect of a strong bias toward activation on the set of fixed-point
attractors: those fixed points with few or no activated nodes are
expected to have small basins because most perturbations will
lead toward states with more excited nodes. In particular, the state
with all inactivated nodes, which is a fixed point for all zero
threshold networks, often has a basin size of one in strongly
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biased networks. We might call such a fixed point an unstable
“repellor” in the sense that all perturbations lead away from the
state. Such a fixed point typically has a CK consisting of all or
most nodes of the network, even when there are few overall
attractors. All circled points in Fig. 9A have such a repellor fixed
point (see “Outlier random networks” in Supplementary mate-
rial). These repellor cases are a concrete example of how biases in
the dynamics can lead to additional nodes making a non-
negligible contribution to the CK. When the bias toward
activation is removed in the “balanced” networks, these
exceptions disappear and CK sizes are again characterized by

Fig. 9 Control kernels in random networks show similar characteristics to
those seen in the biological cases. Here we choose networks of size 10, 15,
and 20 from three ensembles: Erdés-Rényi networks with zero thresholds
(azure triangles), Erdés-Rényi networks with balanced threshold inputs
(dark purple circles), and p-K networks with random truth tables (pink
diamonds). A Mean control kernel sizes are typically near the base-2
logarithm of the number of attractors. Compare to Fig. 1. Outliers,
highlighted with a black circle, share a bias toward excitation that creates
repellor fixed points. B The first-order approximation to control kernel size
is typically below log,r and always below 2log ,r. Compare to Fig. 8. C After
fixing input nodes in round zero, distinguishing node sizes are empirically
bound by log,r. Compare to Fig. 7.

logarithmic scaling with respect to the number of attractors (dark
purple circles in Fig. 9A).

We see in Fig. 9B, C that patterns in the size of the first-order
approximation to the CK are similar to the biological networks:
the number of input plus distinguishing nodes is typically near or
below the base-2 logarithm of the number of attractors (and
always below 2log,7; Eq. (5)), and the number of distinguishing
nodes is always below the logarithm of the number of attractors
they distinguish (Eq. (4)).

Discussion

We analyzed control properties of a sizable fraction of the largest
database of biologically inspired, Boolean networks currently
available30. Following®, we quantified the amount of external
control necessary to drive a network to one of its original steady
states in terms of the number of nodes whose states must be
pinned. We found that the average amount of control necessary
scales as the logarithm of the number of steady states of the
unconstrained dynamics. At least within the range of network
sizes we explored, this scaling is largely unaffected by the
network size.

We show that the scaling is explained by the first two con-
tributors to the CK: the number of input nodes plus the number
of nodes whose value must be specified to distinguish the desired
state from the other possible steady states. On average, these two
contributions account for most of the CK in the biological cases
we analyze (Fig. 4). We explored the limits of this result and
exhibited two scenarios that can invalidate it. First, the projective
plane provides a highly contrived example that violates the
logarithmic scaling of distinguishing nodes. Second, there are
examples for which convergence of the iterative procedure is not
fast, including biased dynamics that create fixed points with
extremely small basins. We leave as open questions whether the
absence of these exceptions within the biological models might be
due to their biological nature, to their tendency for having near-
critical sensitivity*3, or to the fact that these networks are
designed to be easily interpretable.

CKs are fundamentally related to closed circuits in the reg-
ulatory networks, as suggested by the close relation to the
methods of stable motifs and feedback vertex sets that rely on
identifying these closed circuits. In particular, we expect that each
non-input CK node is part of a directed closed circuit in the
regulatory networks (as paths in the network not involved in
cycles correspond to deterministic cascades that cannot support
multiple possible states).

We expect our results to have important biological implica-
tions. First note that, differently from®, we did not restrict our
analysis to selecting one particular steady state (the “main
attractor” with largest basin). On the contrary, we considered all
possible fates of the dynamics. In this expanded analysis, we
showed that the size of CKs corresponding to different fates
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Fig. 10 Contributions to control kernel size for random networks. Compare to Fig. 4. For descriptions of random ensembles, see “Methods". A-C Control
kernel contributions for random threshold networks (including biased and balanced cases). These networks often require additional control nodes, but the
relative number of additional nodes is still often smaller or comparable to the first-order approximation given by the minimal distinguishing nodes. D-F
Control kernel contributions for random truth table networks. These networks are typically easier to control. In D, we also see some networks for which all

attractors are cycles and none are controllable using static pinning.

exhibit a remarkably small variance (error bars in Fig. 1). A small
variance in CK size would suggest that converting among alter-
native cell types may be easy for any cell type, whereas large
variance could be caused by, for example, adult cell types that are
relatively easy to control for (small CK) but are prohibitively
difficult to reprogram back to their progenitors (large CK).

Our result may also be relevant to the interpretation of the
large amount of data attained through the recent advancements
in single-cell RNA-seq techniques*%. Unsupervised clustering
based on transcriptome profiles has already helped identifying
otherwise elusive cell types (e.g.,4>49). At the same time, cell types
obtained through unsupervised clustering are sometimes difficult
to relate to classification schemes based on morphology and
function?’. We have seen that the number of cell types (attrac-
tors) can be greatly affected by the presence of extracellular
control, suggesting the possibility that single-cell sequencing
experiments might also be exhibiting what the cell types would be
in isolation, without external control factors. On the contrary,
morphology and function might be identifying the smaller
number of cell types determined by cell-to-cell signaling within a
tissue.

The observed logarithmic scaling implies that biological net-
works may in fact be as easily controlled on average as would be
expected if each pinning simply removed half of the remaining
possible behaviors. A regulatory network with tens of thousands
of genes could easily admit ~100 attractors and appear extremely

difficult to control. But logarithmic scaling of control implies that
forcing the expression of few accurately selected genes might be
enough to reduce hundreds of cell types to just one type with
recognizable morphology or function.

The two cases that break logarithmic scaling highlight possible
strategies for designing systems that are more difficult to control.
First, the projective plane example implies average CK sizes that
grow as the square root of r, though this would require much
larger networks with many more attractors than are typically
analyzed, and it is likely to require highly constructed, non-
random structure. Significant differences show up only in parti-
cularly large examples: for instance, selecting one out of a million
states could require controlling roughly 1000 nodes in a projec-
tive plane example instead of 20 assuming logarithmic scaling. On
the other hand, biasing dynamics to create very small basin sizes
could be a more natural way to force CKs to be large, as in the
biased threshold networks. Biological selection for systems that
are difficult to control is an intriguing possibility.

More generally, in cases in which our assumptions hold, the
rule of thumb that pinning a binary variable reduces the number
of outcomes by a factor of two becomes more than just a vague
intuition. In these cases, we are justified in focusing on distin-
guishing nodes as a first approximation of necessary control
nodes. This greatly simplifies the search because distinguishing
nodes depend only on the alternative long-term dynamics of the
system, and not specifics about how the system gets there.

NATURE COMMUNICATIONS | (2021)12:5227 | https://doi.org/10.1038/s41467-021-25533-3 | www.nature.com/naturecommunications 1


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Methods

Upper bound on the first-order approximation of CK size. Given a network with
r attractors and m input nodes, we can split the attractors into 2 disjoint sets, one
for each configuration of the inputs. If r; is the number of attractors sharing the jth

m

input configuration, Z?Zl r; = r. Therefore,

1 12 (17
(W) =2 W) =S| =X )
T i=1 T j=1 Tjk=1

We know the inequality %Z,z’:] \wil)l <log,r; is not exact, as the projective plane
construction represents a known exception. Nonetheless, it is exact within the
networks we analyze (see Fig. 7). We want to show that assuming its validity leads
to an upper bound on (W)

<|W(1>‘><l§,vlo r:gﬁlo b 4 log,r @)
_szlj gZ] A ng 82T -

Let us call d=2" and x = (ry, ..., r)/r. The first term in (7), f(x) = x - log,x is

a convex function, and we can find its extreme values as usual. We first extend it to
real values, then find its minimum value outside the probability simplex A4~1, ie.,
the domain with x-1=1 and x; > 0,V j. As Vf(x) = (Inx +1)/In2, fhas a
minimum point at X = 1/e. The line identified by X is already orthogonal to the
simplex. Therefore, its projection onto A%~! is simply 1/d. By virtue of the
convexity of £, its actual minimum will be reached by the integers r; that best match
an even distribution of the attractors among the 2" sets. (This is expected, as f is
just a negative Shannon entropy.) When this happens,

U

}g ;. log, ;. >—m.
The maximum of fis reached near to each vertex of the simplex, when one 7; is at
its maximum (i.e., 1/r), while all others are at their minimum (i.e.,, 1 — (2™ — 1)/r).
This gives the following upper bound on (|w(!)]):

2m—1 2" —1 2m—1
(|w(”|)s<1— " >10g2<1— . >+(1— ; >log2r. 8)

For m = 0, we regain our hypothesis applied to the entire set of attractors,
(IwV]) <log,r. For m = log,r, {(IwD]) =0.

Further, by noting that both m and (|w(!)]) are bounded by log ,~ when
inequality (4) holds, we can place a simple, conservative upper bound on the “first-
order approximation” of |CK]| that depends only on r:

(ICKDy = m + ((w]) < 2log 7.

We find empirically that the actual (|CK(D]) values lie significantly below this
conservative bound. For example, in the biological cases we test, {|CK())|) never
exceeds log,r (see Fig. 8). The reason for this can be understood by analyzing Eq.
(7) more closely. Equation (7) originates from the assumption that

%Z,:}: 1 \wf{l)l <log,r;, Vj. Smaller values of \wﬁ{”l for individual attractors can cause
)

(IwD]) to lie below the maximum given by Eq. (7). But this maximum itself varies
depending on the distribution of the number of attractors across input states j,
captured by the first term in Eq. (7), f{x). We have seen that this term is a negative
entropy, and that it approaches -m when the r attractors are (approximately)
evenly distributed among the 2™ input configurations, that is to say when r; > /2.
By defining the input entropy u = — f(x), we can express the upper bound on
(ICKM]) as:

(ICKV)) <log,r + (m — ). ©)

For evenly distributed attractors, y ~m, and (|CK“)|>SIOg2r. At the opposite
extreme, if attractors are maximally unevenly distributed, ¢ can approach zero.
In the biological networks we test, we empirically find that m — y is always too

small to force ((CK(|) above log ,r (that is, m — u<log ,r — eriz,:’:l |w;(1)\).

Figure S6 in the Supplementary material shows that y is always close to m in
these cases.

With the larger statistics provided by the ensembles of random networks, we
find a few cases in which (|CK(|) is slightly greater than log,r (four cases in the
zero threshold ensemble and four more cases in the balanced threshold ensemble;
see Fig. 7B), but still never greater than 2log,r, as expected.

Modular approach to finding attractors. Biological regulatory network models
are in many cases highly modular (having subsets of nodes that interact much
more with one another than with other subsets) and hierarchical (having upstream
modules that do not depend on the behavior of downstream modules). As
recognized before in the literature?3, the attractors of a Boolean network can be
computed much more efficiently in modular hierarchical networks by analyzing
modules separately. The basic idea is to find all attractors of upstream modules
first, then use each upstream attractor to find corresponding attractors of down-
stream modules. As we detail in the following paragraphs, some subtleties make
this process complicated, but it is still straightforward to accomplish
computationally.

We begin with a decomposition of a given Boolean dynamical system into
hierarchical modules, which we define here as strongly connected components of
the system’s causal network (with individual Boolean variables represented as
nodes and dependencies between variables represented as directed edges). This
produces a directed acyclic graph describing the dependencies among modules.
First, for upstream modules that do not depend on any other modules, we find
attractors using a brute-force approach that iterates over all possible states of the
module. Then, for each downstream module D, we iterate over all possible
combinations of attractors U of upstream modules on which D depends. For a
given attractor U € U, the states of nodes in the upstream modules are fixed to the
values (perhaps dynamically varying, in the case of a cyclic attractor) that they have
in U. Corresponding attractors for D are then found through a brute-force
approach iterating over all possible dynamics of D given the input provided by U.

Two subtleties arise when computing the set of all possible attractors U for the
nodes upstream of D. In the easiest case, D depends on a number of separate
modules U/,,U,, ...,U, that do not share ancestor modules further upstream, and
all corresponding sets of upstream attractors Uy, U,, ..., U, consist only of fixed
points. In this case, U consists of [;|U;| attractors, all combinations in which one
attractor is chosen from each set of upstream attractors U;. The first subtlety arises
when upstream modules share ancestor modules further upstream (for instance, if
U, and U, both depend on U,,). In this case, some combinations of attractors will
be inconsistent in that they do not have the same values on overlapping nodes in
ancestor modules; these inconsistent combinations should be simply removed to
not appear in U. The second subtlety occurs with cyclic attractors, those with
length £> 1. When combining two cyclic attractors U; and U, of upstream
modules, with corresponding lengths ¢; and ¢,, we must account for all possible
phase shifts between the two attractors. This leads to p distinct possible attractors,
each of length £, where p is the greatest common divisor of £; and ¢,, and €, is their
least common multiple.

Computing control kernels. Given our definition of CKs, a brute-force method for
computing them is straightforward. For each attractor, we loop over sets of dis-
tinguishing nodes of increasing size. Pinning the distinguishing nodes to their
values in the attractor, a CK is found when no other attractors exist in the pinned
dynamics. Cyclic attractors that are not controllable are easily identified by pinning
all constant nodes: if more than one attractor remains in this case, the cycle does
not have a CK.

The modular approach to analyzing Boolean dynamical systems can also make
the computation of CKs much more efficient. Note that, within a given module, CK
nodes can be determined without analyzing downstream modules because any
control exerted downstream of the module will not affect it. For this reason, in the
modular approach we compute CK nodes at the same time we compute attractors
for each module. That is, given each attractor state U of upstream modules and for
each attractor of the current module D, we compute CK nodes within D by looping
over distinguishing node sets of increasing size (restricted to nodes within D) and
pinning them until the dynamics produce a single attractor.

In some cases it is possible to compute CKs using the modular approach but
computationally infeasible to compute minimal distinguishing node sets (because
this requires checking every possible set smaller than the minimal size). In these
cases we compute an upper bound on the size of the minimal distinguishing node
sets (shown as triangles in Figs. 7 and 8), equal to at worst the size of the CK, and in
some cases set by checking a limited subset of smaller distinguishing node sets that
have been identified for other attractors in that network.

Sampling analysis. Some networks in the database contain modules that are too
large to be analyzed exactly using the above approach. In particular, when a module
has more than about 30 nodes, our code is unable to run the analysis using a
reasonable amount of time or memory. In these cases, we also attempt a sampling
analysis in which we find attractors by initializing the system at Ng= 10% to 10°
random states. We then use the brute-force method for finding CKs described
above, where a CK is defined as producing the single desired attractor when
initializing the system using the same Ng random states. We first restrict sampling
analysis to networks for which we find fewer than 103 attractors.

This sampling analysis initially allowed us to find CK and distinguishing node
data for seven additional networks. We then tested the dependence of our results
on Ng for these seven networks. For three of the networks, we confirmed the
previous result when Ns was increased by a factor of 10 to 10°. We achieved
convergence for two of the remaining networks using a further factor of 10, finding
the same attractors using N5 = 10°. The remaining two networks continued to
show non-negligible increase in the number of attractors, particularly for cyclic
attractors with small basins. Most of these cycles were not controllable using a
static intervention. We removed these two networks from our analysis, which did
not significantly alter our results.

The five networks analyzed using only the sampling method are represented as
black-bordered circles in Fig. 1 and unfilled circles in Fig. 7.

In Table 1, we list the names of the 49 networks we analyze, those for which we
are able to find CKs for all attractors. Those names marked with an asterisk were
analyzed using the sampling approach.
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Table 1 The 49 analyzed biological regulatory networks.
Network name Size
1 Cortical Area Development 5
2 Cell Cycle Transcription By Coupled CDK And Network 9
Oscillators
3 Mammalian Cell Cycle 2006 10
4 Toll Pathway Of Drosophila Signaling Pathway n
5  Metabolic Interactions In The Gut Microbiome 12
6  Regulation Of The L-arabinose Operon Of Escherichia Coli 13
7 Lac Operon 13
8  Arabidopsis Thaliana Cell Cycle 14
9  Cardiac Development 15
10  Predicting Variabilities In Cardiac Gene 15
11 Fanconi Anemia And Checkpoint Recovery 15
12 HCC1954 Breast Cell Line Short-term ErbB Network 16
13 Neurotransmitter Signaling Pathway 16
14 SKBR3 Breast Cell Line Short-term ErbB Network 16
15 BT474 Breast Cell Line Short-term ErbB Network 16
16  Body Segmentation In Drosophila 2013 17
17  Budding Yeast Cell Cycle 2009 18
18  T-LGL Survival Network 2011 Reduced Network 18
19  Vegf Pathway Of Drosophila Signaling Pathway 18
20 CD4+ T-Cell Differentiation And Plasticity 18
21 Oxidative Stress Pathway 19
22 Human Gonadal Sex Determination 19
23 Budding Yeast Cell Cycle 20
24 Mammalian Cell Cycle 20
25 Iron Acquisition And Oxidative Stress Response In 22
Aspergillus Fumigatus.
26 B Cell Differentiation 22
27 T-Cell Differentiation 23
28 FGF Pathway Of Drosophila Signaling Pathways 23
29 HH Pathway Of Drosophila Signaling Pathways 24
30 Processing Of Spz Network From The Drosophila Signaling 24
Pathway
31 TOL Regulatory Network 24
32 SKBR3 Breast Cell Line Long-term ErbB Network 25
33 HCC1954 Breast Cell Line Long-term ErbB Network 25
34 BT474 Breast Cell Line Long-term ErbB Network 25
35  Trichostrongylus Retortaeformis 26
36 Pro-inflammatory Tumor Microenvironment In Acute 26
Lymphoblastic Leukemia
37 Wog Pathway Of Drosophila Signaling Pathways 26
38 Death Receptor Signaling 28
39 FA BRCA Pathway* 28
40 Septation Initiation Network 31
41 Tumor Cell Invasion And Migration 32
42 Bordetella Bronchiseptica* 33
43 Lymphoid And Myeloid Cell Specification And 33
Transdifferentiation*
44 Cholesterol Regulatory Pathway* 34
45  T-Cell Signaling 2006 40
46 Treatment Of Castration-Resistant Prostate Cancer 42
47  Guard Cell Abscisic Acid Signaling 44
48 Pcl12 Cell Differentiation* 62
49 Yeast Apoptosis 73

probability p of activating the node. We sampled 225 networks from this ensemble,
with 75 each having p =0.25, 0.5, and 0.75, and 25 each within these sets having
number of nodes n = 10, 15, and 20. We were successful in finding CKs for all
controllable attractors for all of these sampled networks.

To create random threshold networks, we follow ref. ©. The network’s
dependency structure A is first chosen as an Erdos-Rényi graph with average
degree d, and each edge in this graph is assigned with probability p; a value of —1
(representing an inhibitory interaction), or otherwise +1 (representing an
excitatory interaction). Each node’s state is determined by comparing the sum of
the incoming signed inputs s; = >3;A;x;(t) to its threshold 7;:

0,if s; <
x;(t),if s; = 1;
1,if 5; > 1;.

x(t+1)= (10)

We consider two choices for the thresholds 7. In the first case, all thresholds are set
to 7=0; in the second “balanced” case, thresholds are set to half of the sum of
incoming edges: 7; = %Zinj. We sampled 75 networks from this ensemble using
each type of threshold, with each combination of d ={1,2, 3,4, 5},
pr=10.1,0.3,0.5,0.7,0.9}, and n = {10, 15, 20}, for a total of 150 networks. Of
these, for 146 we were successful in finding CKs for all controllable attractors.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The control kernel size data generated in this study have been deposited in as a Zenodo
repository under the accession code https://doi.org/10.5281/zenodo.5172898. The
biological network models analyzed in this study are available on the Cell Collective
website (https://cellcollective.org/).

Code availability

The python code used to calculate control kernels is available as a Zenodo repository
under the accession code https://doi.org/10.5281/zenodo.5172898. This code depends on
a number of open-source software packages: neet, datadex, numpy, and networkx.
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