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Parity effect of bipolar quantum 
Hall edge transport around 
graphene antidots
Sadashige Matsuo1,2, Shu Nakaharai3, Katsuyoshi Komatsu3, Kazuhito Tsukagoshi3, 
Takahiro Moriyama1, Teruo Ono1 & Kensuke Kobayashi2

Parity effect, which means that even-odd property of an integer physical parameter results in 
an essential difference, ubiquitously appears and enables us to grasp its physical essence as the 
microscopic mechanism is less significant in coarse graining. Here we report a new parity effect of 
quantum Hall edge transport in graphene antidot devices with pn junctions (PNJs). We found and 
experimentally verified that the bipolar quantum Hall edge transport is drastically affected by the 
parity of the number of PNJs. This parity effect is universal in bipolar quantum Hall edge transport of 
not only graphene but also massless Dirac electron systems. These results offer a promising way to 
design electron interferometers in graphene.

Various parity effects, which mean that even-odd property of an integer physical parameter results in 
an essential difference, has been discovered in many physical systems, especially in mesoscopic phys-
ics. For example, the significance of the parity effect regarding the number of electrons is seen in the 
micron-sized superconducting island1, in the quantum dot in the Kondo regime2,3, and so on4–6. In case 
of quantum Hall (QH) edge transport, the electron spins are polarized in the edge state for odd filling 
factors, while they are unpolarized with even filling factors. This parity effect leads to polarizing nuclear 
spins7,8 and reading spin state in quantum dot9,10. In this way, the parity effects have played important 
roles on developing the research area.

Since graphene, which is monolayer film of graphite, was first isolated11,12, this wonder material 
has been studied extensively13. Especially, as electrons in graphene follow massless Dirac equation, the 
graphene is a nice platform to address universal features of the massless Dirac electron system, as is 
the case in the surface state of topological insulators14,15. In such systems, we can study the QH edge 
transport in bipolar regime, where the PNJs are formed as reported previously16,17. The QH edge states 
co-propagate along the PNJ and are uniformly mixed, reflected by a massless Dirac electron nature that 
a Landau level is formed at charge neutrality point. This bipolar QH edge transport is not realized on 
conventional two-dimensional electron gas in GaAs/AlGaAs heterostructure and there are only several 
experimental reports about the bipolar QH edge transport in graphene17–23 despite great interest.

Here we report a new parity effect of QH edge transport in graphene antidot devices with several pn 
junctions (PNJs). We study a graphene device with two types of regions in which the carrier types are n 
(electrons) and p (holes) which are arranged in series. The number of such regions is M +  1; therefore, 
the device has M PNJs. Furthermore, we place N antidots on all of the PNJs. The (M, N) =  (2, 1) (even 
case) and (3, 1) (odd case) are schematically illustrated in Fig. 1(a,b), respectively. We calculated the con-
ductance of graphene devices with such structures and discovered a significant parity effect of the resist-
ance as a function of N, depending on parity of M. We implemented the proof-of-concept experiments 
and established the parity effect using a graphene device, whose optical picture is shown in Fig. 1(c). Our 
finding is a universal feature of bipolar QH edge transport in massless Dirac electron systems.
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We first present parity effect found in the calculated results of the two-terminal resistance. We define νtg 
and νbg as the Landau level filling factors of the two types of regions tuned by both the top- and back-gate 
voltages and by only the back-gate voltage, respectively. When we calculate the resistance, we obtain the 
two-terminal conductance using the Landauer-Büttiker formula24 and then obtain the resistance as the 
inverse of the conductance. In this paper, we only consider the bipolar regime, sgn(νtg) ≠ sgn(νbg), which 
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Figure 1. (a) Schematic picture of the chirality of the QH edge states around a single antidot with two PNJs, 
(M, N) =  (2, 1) case. The chiralities of the edge states at left and right sides are the same in the even case. (b) 
Schematic picture of the chirality for the (M, N) =  (3, 1) case. The chiralities of the edge states at left and 
right sides are different. (c) Optical image taken after fabrication of the top gate electrodes. Inset: Optical 
image taken before forming the insulating layer for the top gate structure. This device has a single open 
window (an antidot) as seen in the inset. We tuned the top gate voltages of these two top gate electrodes, 
marked as α and β in order to experimentally address the pn, pnp and pnpn junctions of graphene antidot. 
(d) Image plot of the resistance as a function of Vtg and Vbg for the (M, N) =  (1, 1) case. The surrouded 
regions by the green lines are the bipolar regime (marked as “pn” and “np”). (e) The crosssection of the (d) 
at Vbg =  15, 6, − 4, and − 13 V. There are several plateaus, where the resistance is constant. (f) The calculated 
resistance for the (M, N) =  (1, 1) case when the νtg and νbg are ± 2, ± 6, … in unit of h/e2.
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is unique to graphene (see the Supplemental Material for the unipolar regime). Our calculation treated 
here does not include possible interference effects.

We discuss the conductance in the even M case. We consider the filling factor in the regions con-
nected to the source and drain electrodes, denoted by νtg. We calculate the two-terminal conductance G 
as a function of M, N and when the filling factors νtg and νbg are ± 2, ± 6, … . The result is
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The resistance is obtained as R =  G−1. As observed from this formula, the conductance increases as 
N increases. Interestingly, when N increases to infinity, the conductance becomes νtge2/h, namely, the 
conductance with no PNJs. Note that this representation is not symmetric with regard to the exchange 
of νbg and νtg. Consequently, this means that the chirality of the QH edge states at the left and right sides 
are the same (see Fig. 1(a) for the case (M, N) =  (2, 1).).

Next, we discuss the odd M case. In this case, we obtain the conductance as
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The resistance is obtained as R =  G−1. The conductance increases as N increases, as found in the even 
M case. However, the conductance is quantitatively different from that in the even M case (Eq. (1)) in 
several aspects. First, the conductance dependence on N in the odd M case in Eq. (2) is expressed as a 
power of N, which is very different from the even M case in Eq. (1). In addition, we can obtain a pecu-
liar result from Eq. (2), νbgνtg/(νbg +  νtg) · e2/h, as N approaches infinity. This conductance is the same as 
that observed in graphene with (M, N) =  (1, 0). Furthermore, Eq. (2) is symmetric with regard to the 
exchange of νbg and νtg. The physical laws possess charge, parity and time (CPT) reversal symmetry. 
From parity (mirror) symmetry, the conductance in odd M case is demanded to be symmetric about the 
exchange of νbg and νtg, different from even M case. These unique properties in the bipolar regime orig-
inate from the difference in the chirality at the left and right (see the case (M, N) =  (3, 1) in Fig. 1(b)). 
In particular, we note that Eq. (2) has a power-law dependence on the number of antidots N, which is 
only realised in bipolar QH edge transport.

These calculated results mean that the resistance formulas as a function of the number of antidots 
is strongly dependent on the parity of M, the number of PNJs. Such fundamental difference, the parity 
effect, should be useful for not only graphene but also QH devices of massless Dirac electron systems, 
such as the surface state of topological insulators14,15 and Dirac electrons in HgTe/CdTe heterostructure25. 
This parity effect is because of the chirality difference of the QH edge states around the antidots, which 
will be discussed later using an analogy to optical interferometers.

We implemented the following proof-of-concept experiments. While there are several reports regard-
ing the transport in graphene PNJs in the QH regime18–23,26,27, there are no reports on devices with anti-
dots and PNJs in the QH regime. We fabricated two types of graphene devices; one has an antidot, and 
the other has no antidot. In this article, we mainly discuss the results of the device with the antidot. We 
indicate the results of the device with no antidots in Supplemental Material. These devices were cleaved 
from a highly ordered pyrolytic graphite crystal via Scotch tape and transferred onto a Si substrate 
covered with 285-nm-thick SiO2. We estimated the thickness of graphene from an analysis of contrast 
in the optical pictures. Then, we etched the graphene samples using an oxygen plasma and created an 
antidot in graphene, as observed in the inset of Fig. 1(a). Subsequently, we pattered the electrodes using 
electron-beam lithography (EBL). Then, we deposited 5 nm of palladium and 30 nm of gold as the source 
and drain electrodes. Cross-linked PMMA was patterned by EBL on graphene as the insulating layer 
following the same method reported previously28,29. Finally, we placed two top-gate electrodes (3 nm of 
chromium and 30 nm of gold) on the insulating layer. We measured the two-terminal resistance of this 
graphene device at 2 K and 7 T. The graphene device, whose optical picture is shown in Fig. 1(c), has an 
antidot and two top-gate electrodes marked α and β in the inset of Fig. 1(c). We discuss the device for 
(M, N) =  (1, 1),(2, 1), and (3, 1) by controlling the number of PNJs.

We begin with the (M, N) =  (1, 1) case. We applied a top-gate voltage to only the electrode marked as 
α in Fig. 1(c) and measured the two-terminal resistance. Changing the top- and back-gate voltages cor-
responds to tuning νbg and νtg. Figure  1(d) shows the device resistance as a function of the top-gate 
voltage Vtg and back-gate voltage Vbg at 2 K and 7 T. Cross sections of the image plot at Vbg =  15, 6, − 4, 
and − 13 V are shown in Fig. 1(e). The bipolar regime corresponds to the area in Fig. 1(d) surrounded 
by the green line marked as ‘pn’ and ‘np’. Several plateaus at which the resistance is almost constant exist 
in Fig. 1(d,e). We can decide the filling factors, νtg and νbg, in bipolar regime from the resistance in uni-
polar regime. As shown in Fig. 1(d,e), for example, the device exhibits a resistance plateau of h/e2 in (νtg, 
νbg) =  (± 2, 2), which is consistent with the calculated resistance from Eq. (2) with (M, N) =  (1, 1) 
shown in Fig. 1(f). The resistances on the other plateaus of (νtg, νbg) are also consistent with our calculated 
results. This calculated result for (M, N) =  (1, 1) is consistent with the resistance for the (M, N) =  (1, 0) 
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case as reported before17. The QH edge transport is not affected by the existence of the antidot in M =  1 
case, so that we increase the PNJs to confirm the validity of Eq. (2).

We now discuss the device for the (M, N) =  (2, 1) case (even case), where pnp and npn systems are 
realised for the condition of sgn(νtg) ≠ sgn(νbg). Experimentally, we applied the top-gate voltage β in 
Fig. 1(c). In Fig. 2(a), we plotted the resistance as a function of Vtg and Vbg in units of h/e2. The image 
plot is not symmetric with regard to the exchange of the vertical and horizontal axes. This property 
means that the conductance should be non-symmetric about the exchange of νtg and νbg. Furthermore, 
we present the cross sections at Vbg =  15, 6, − 4, and − 13 V of Fig.  2(a) in Fig.  2(b). The resistance is 
different from the results for graphene pnp junctions without the antidot18,19,26 (see the Supplemental 
Material). For example, the largest resistance in our device is close to h/e2 in (νtg, νbg) =  (± 2, 2) case, 
which is different from the predicted value of 3h/2e2 for graphene without the antidot. The calculated 
results for (M, N) =  (2, 1) case in Fig. 2(c) not only in (νtg, νbg) =  (± 2, 2) case but also the other plateaus 
are in good agreement with these experimental results in Fig. 2(a). This agreement means that Eq. (1) 
can well explain the QH edge transport with even M case on graphene antidots. Additionally, these 
experimental results in the unipolar regime are also consistent with the calculated results shown in the 
Supplemental Material.

Finally, we show the resistance for the (M, N) =  (3, 1) case (odd case). We applied the same top-gate 
voltage to the two top-gate electrodes, α and β, in Fig. 1(a). Figure 3(a) shows the observed resistance 
dependence on Vbg and Vtg. The image plot is symmetric with regard to the exchange of the vertical and 
horizontal axes; therefore, the conductance should be symmetric with regard to the exchange of νtg and 
νbg. Figure  3(b) shows the cross sections at Vtg =  15, 6, − 4, and − 13 V of Fig.  3(a). These results also 
indicate a different resistance compared to the results of the device without an antidot (see Supplemental 
Material). For example, the resistance in (νtg, νbg) =  (± 2, 2) case is equal to 4h/3e2, which is different 
from the expected resistance, 2h/e2 without the antidot. Our calculated results in Fig. 3(c) demonstrate 
good consistency and provide an explanation of the experimental results. This experimental consistency 
validates the formula derived in Eq. (2) which explains the edge transport of graphene with an antidot 
and the three PNJs. Herein, our experimental study reveals the existence of the parity effect in the QH 
edge transport in graphene antidot devices in bipolar regime.
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Figure 2. (a) Image plot of the resistance as a function of Vtg and Vbg for the (M, N) =  (2, 1). This image is 
not symmetric with regard to the exchange of the vertical and longitudinal axises. (b) Crosssection of the (a) 
at Vbg =  15, 6, − 4, and − 13 V. (c) Calculated resistance when the νtg and νbg are ± 2, ± 6 in unit of h/e2. The 
experimental results of the plateaus are consistent with the calculated results shown in (c).
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The confirmed parity effect in graphene antidot devices has a good analogy to optical systems, 
although the interference effect is not explicitly taken into account here. The conductance in the even 
case can be readily understood by comparing the Fabry-Perot interferometers (FPIs), which are con-
structed with two parallel beam splitters with reflectivity r >  0. The conductance dependence on N is 
consistent with the reflectivity, (N +  1)/((N +  1) +  (1–r)/r), of FPIs arranged in series (not including the 
interference effect), which are constructed with N +  1 parallel beam splitters arranged in series (see 
the Supplemental Material). A schematic picture for the N =  1 case is shown in Fig. 4(b). Utilizing this 
analogy, we can regard PNJs between antidots as a beam splitter with r =  |νbg|/((M/2 +  1)|νbg| +  M/2|νtg|)  
=  G(M, 0)h/|νtg|e2 and able to calculate the conductance representation without explicitly using the 
Landauer–Büttiker formula. In the graphene device, the edge states at the left (or right) side marked as 
‘Input’, ‘Output1’, and ‘Output2’ in Fig. 4(a) correspond to the passing (or reflected) beam between the 
beam splitters marked as ‘Input’, ‘Output1’, and ‘Output2’ in Fig. 4(b).

In the odd case, we adopted Mach-Zender interferometers (MZIs) arranged in series, where two 
beams passing through a beam splitter of the MZI enter into the next beam splitter from different sides. 
This dependence with the condition of |νtg| =  |νbg| can be viewed as the probability obtained at one port, 
(1–(1–2t)N + 1)/2, of N (see the Supplemental Material). N +  1 and t indicate the number of the beam 
splitters in the MZIs and the transmittance of the beam splitter, respectively. In condition with νtg =  νbg, 
t =  1/(M +  1) in (1–(1–2t)N + 1)/2 gives G(M, N)h/|νtg|e2. A schematic picture of the N =  1 case is shown in 
Fig. 4(d). In this case, we can regard the edge states at the left and right, ‘Input’, ‘Output1’, and ‘Output2’ 
in Fig. 4(c) as the beams passing through the beam splitter, ‘Input’, ‘Output1’, and ‘Output2’ in Fig. 4(d).

As we discuss above, there are strong analogy between bipolar QH edge transport in graphene antidot 
device and optical interferometer. Thus, we believe that this system has a possibility to be a device for 
investigating interference effect of QH edge state in graphene. We ignored the interference effect between 
the edge states in our calculation and did not detect any interference pattern experimentally. This is 
because our device has not enough mobility so that the coherence length in the QH edge state is short. 
The higher quality graphene devices, such as graphene on h-BN substrate or suspended graphene will 
enable to measure the interference pattern.
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Figure 3. (a) Image plot of the resistance as a function of Vtg and Vbg for the (M, N) =  (3, 1). This image is 
symmetric about the exchange of the vertical and longitudinal axises. (b) The crosssection of the (a) at 
Vbg =  15, 6, −4, and − 3 V. (c) The calculated resistance when the νtg and νbg are ± 2, ± 6, … in unit of h/e2. 
The calculated results explain our experimental results well.
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In conclusion, we have studied the bipolar QH edge transport phenomena around graphene antidots 
with several number of PNJs. We derived the formulas to calculate the conductance of graphene with 
the antidots and PNJs in the QH regime. We experimentally confirmed these formulas with devices hav-
ing one, two, and three PNJs. Consequently, we have established the parity effect that the conductance 
dependence on the number of antidots relies on the even--odd parity of the number of the PNJs. In 
particular, the odd M case is a unique transport regime realised on graphene antidot devices or other QH 
devices of massless Dirac electron systems. Furthermore, we suggest that this difference characterised by 
the parity can be understood by considering the analogy between the QH edge transport and the optical 
interferometers. Our results may be available to construct electron interferometer in graphene.

References
1. Lafarge, P., Joyez, P., Esteve, D., Urbina, C. & Devoret, M. H. Nature 365, 422 (1993).
2. Goldhaber-Gordon, D. et al. Nature 391, 156 (1998).
3. Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. Science 281, 540 (1998).
4. Van Dam, J. A., Nazarov, Y. V., Bakkers, E. P. A. M., De Franceschi, S. & Kouwen- hoven, L. P. Nature 442, 667 (2006).
5. Matveev, K. A. & Larkin, A. I. Phys. Rev. Lett. 78, 3749 (1997).
6. Guo, Y. et al. Science 306, 1915 (2004).
7. Wald, K. R., Kouwenhoven, L. P., McEuen, P. L., van der Vaart, N. C. & Foxon, C. T. Phys. Rev. Lett. 73, 1011 (1994).
8. Kawamura, M. et al. Appl. Phys. Lett. 90, 022102 (2007).
9. Kiyama, H., Fujita, T., Teraoka, S., Oiwa, A. & Tarucha, S. Appl. Phys. Lett. 104, 263101 (2014).

10. Otsuka, T., Abe, E., Iye, Y. & Katsumoto, S. Phys. Rev. B 79, 195313 (2009).
11. Novoselov, K. S. et al. Nature 438, 197 (2005).
12. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Nature 438, 201 (2005).
13. Geim, A. K. & Novoselov, K. S. Nat. Mater. 6, 183 (2007).

Figure 4. (a) Schematic picture of the QH edge transport in the (M, N) =  (2, 1) case. Electrical current is 
injected from ‘Input’ and flow into ‘Output1’ and ‘Output2’. (b) Schematic picture of the FPI (for the N =  1 
case). This system has the analogy to the even M case with N =  1 shown in (a). (c) Schematic picture of 
the QH edge transport in the (M, N) =  (3, 1) case. (d) Schematic picture of the MZI (for the N =  1 case). 
This system has the analogy to the odd M case with N =  1 shown in (c). The different parity of M serves an 
different analogy of optical interferometers.



www.nature.com/scientificreports/

7Scientific RepoRts | 5:11723 | DOi: 10.1038/srep11723

14. Fu, L., Kane, C. L. & Mele, E. J. Phys. Rev. Lett. 98, 106803 (2007).
15. Hasan, M. Z. & Kane, C. L. Rev. Mod. Phys. 82, 3045 (2010).
16. Abanin, D. A. & Levitov, L. S. Science 317, 641 (2007).
17. Williams, J. R., DiCarlo, L. & Marcus, C. M. Science 317, 638 (2007).
18. Özyilmaz, B. et al. Phys. Rev. Lett. 99, 166804 (2007).
19. Velasco Jr, J., Liu, G., Bao, W. & Lau, C. N. New J. Phys. 11, 095008 (2009).
20. Woszczyna, M., Friedemann, M., Dziomba, T., Weimann T. & Ahlers, F. J. Appl. Phys. Lett. 99, 022112 (2011).
21. Ki, D.-K., Nam, S.-G., Lee, H.-J. & Özyilmaz, B. Phys. Rev. B 81, 033301 (2010).
22. Schmidt, H., Rode, J. C., Belke, C., Smirnov, D. & Haug, R. J. Phys. Rev. B 88, 075418 (2013).
23. Nakaharai, S., Williams, J. R. & Marcus, C. M. Phys. Rev. Lett. 107, 036602 (2011).
24. Beenakker, C. & van Houten, H. Solid State Physics 44, 1 (1991).
25. Buttner, B. et al. Nat. Phys. 7, 418 (2011).
26. Velasco Jr, J. et al. Solid State Commun. 152, 1301 (2012).
27. Ki, D.-K. & Lee, H.-J., Phys. Rev. B 79, 195327 (2009).
28. Stander, N., Huard, B. & Goldhaber-Gordon, D. Phys. Rev. Lett. 102, 026807 (2009).
29. Choi, J.-H. et al. Nat. Commun. 4, 2525 (2013).

Acknowledgments
This work is partially supported by Grant-in-Aid for Scientific Research (S) (No. 26220711) from JSPS, 
and Grant-in-Aid for Scientific Research on Innovative Areas “Science of Atomic Layers” (No. 25107004) 
from MEXT.

Author Contributions
S.M. planned this research, performed the calculation and the experiments, analysed the data and wrote 
the manuscript. K.Kobayashi. supervised the research. S.N., K.Komatsu, and K.T. supported to fabricate 
devices. T.M. and T.O. supported to fabricate and measure devices. All authors discussed the results and 
commented on the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Matsuo, S. et al. Parity effect of bipolar quantum Hall edge transport around 
graphene antidots. Sci. Rep. 5, 11723; doi: 10.1038/srep11723 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Parity effect of bipolar quantum Hall edge transport around graphene antidots
	Acknowledgments
	Author Contributions
	Figure 1.  (a) Schematic picture of the chirality of the QH edge states around a single antidot with two PNJs, (M, N) = (2, 1) case.
	Figure 2.  (a) Image plot of the resistance as a function of Vtg and Vbg for the (M, N) = (2, 1).
	Figure 3.  (a) Image plot of the resistance as a function of Vtg and Vbg for the (M, N) = (3, 1).
	Figure 4.  (a) Schematic picture of the QH edge transport in the (M, N) = (2, 1) case.



 
    
       
          application/pdf
          
             
                Parity effect of bipolar quantum Hall edge transport around graphene antidots
            
         
          
             
                srep ,  (2015). doi:10.1038/srep11723
            
         
          
             
                Sadashige Matsuo
                Shu Nakaharai
                Katsuyoshi Komatsu
                Kazuhito Tsukagoshi
                Takahiro Moriyama
                Teruo Ono
                Kensuke Kobayashi
            
         
          doi:10.1038/srep11723
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep11723
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep11723
            
         
      
       
          
          
          
             
                doi:10.1038/srep11723
            
         
          
             
                srep ,  (2015). doi:10.1038/srep11723
            
         
          
          
      
       
       
          True
      
   




