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ABSTRACT: We present a kinetic-energy density-functional
theory and the corresponding kinetic-energy Kohn−Sham
(keKS) scheme on a lattice and show that, by including more
observables explicitly in a density-functional approach, already
simple approximation strategies lead to very accurate results.
Here, we promote the kinetic-energy density to a fundamental
variable alongside the density and show for specific cases
(analytically and numerically) that there is a one-to-one
correspondence between the external pair of on-site potential
and site-dependent hopping and the internal pair of density
and kinetic-energy density. On the basis of this mapping, we
establish two unknown effective fields, the mean-field
exchange-correlation potential and the mean-field exchange-
correlation hopping, which force the keKS system to generate the same kinetic-energy density and density as the fully
interacting one. We show, by a decomposition based on the equations of motions for the density and the kinetic-energy density,
that we can construct simple orbital-dependent functionals that outperform the corresponding exact-exchange Kohn−Sham
(KS) approximation of standard density-functional theory. We do so by considering the exact KS and keKS systems and
comparing the unknown correlation contributions as well as by comparing self-consistent calculations based on the mean-field
exchange (for the effective potential) and a uniform (for the effective hopping) approximation for the keKS and the exact-
exchange approximation for the KS system, respectively.

1. INTRODUCTION

Density-functional theory (DFT) has become over the past
decades a standard approach to the quantum many-body
problem. Its success comes from the fact that it combines low
computational cost with a reasonable accuracy, which helps to
understand and predict experimental results for systems not
accessible with wave function-based methods. DFT avoids the
exponential numerical costs of wave function-based methods
by reformulating quantum mechanics in terms of the density.
The major drawback of DFT is that the exact energy
expression of the quantum system in terms of the density is
not available, and in practice approximations need to be
employed. Already before the rigorous formulation of DFT,1 a
heuristic method based on the density instead of the wave
function existed, which was called the Thomas−Fermi
theory.2,3 While this theory proved to be very important for
the derivation of fundamental results, for example, the stability
of quantum matter,4 in practice it is not very accurate (only in
the limit of atoms with arbitrarily high atomic number or for
homogeneous systems) and does not provide basic properties
such as the shell structure of atoms or the binding of
molecules. As it was quickly realized, it is the approximation to
the kinetic-energy expression that prevents Thomas−Fermi
density-functional approximations from leading to accurate
results. What has made DFT popular for determining
properties of complex many-body systems is the Kohn−

Sham (KS) construction,5 where instead of modeling the
kinetic energy directly in terms of the density an auxiliary
noninteracting quantum system is used that has the same
density. The kinetic energy of this computationally cheap
auxiliary system is then corrected by so-called Hartree-
exchange-correlation (Hxc) contributions that incorporate
the missing interaction and kinetic-energy contributions.
Already simple approximations to this unknown expression
give reasonably accurate answers. However, it is hard to
systematically increase the accuracy of approximations while
still keeping the favorable numerical costs.6 Moreover, it has
been shown recently that numerous functionals, although
accurate when it comes to total energies, fail to reproduce the
true density.7 The difficulty in functional construction can be
attributed to the fact that it is not easy to find the appropriate
expression of Hxc contributions in terms of the auxiliary KS
wave function or the density.
There are several other approaches for dealing with the

quantum many-body problem that also avoid the many-body
wave function, while the basic variable used makes it easier to
model the desired physical quantities. Green’s function
techniques can be systematically improved in accuracy by
including higher-order Feynmann diagrams, but are computa-
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tionally much more expensive.8,9 Reduced density-matrix
(RDM) functional theories10,11 provide a compromise between
accuracy and computational cost. In one-body RDM (1RDM)
functional theory,11 the kinetic energy is an explicit functional
of the 1RDM, thus only part of the interaction energy needs to
be approximated, while in the two-body case10 even the
interaction is given by an explicit functional. Although the
explicit use of wave functions can be avoided in these cases, it
is still necessary for the RDM to be representable by a wave
function. However, the so-called N-representability conditions
that guarantee an underlying wave function associated with an
RDM are anything but trivial.12−15 Moreover, it is not possible
to associate to every RDM an auxiliary system of non-
interacting particles that would allow one to replace the N-
representability conditions by a numerically simpler auxiliary
wave function, like in the DFT case. The Bogoliubov−Born−
Green−Kirkwood−Yvon hierarchy, where the time propaga-
tion of an RDM of certain order is related to the RDM of the
next order, suffers from similar N-representability issues.16

There are now several possible ways to remedy the above-
mentioned deficiencies. For 1RDM theory, it is helpful to
consider the many-body problem at finite temperature and
indefinite numbers of particles.17−19 In this case, the
representability conditions in terms of an ensemble of wave
functions are known and easy to implement, and one can even
find a noninteracting auxiliary system that generates the same
1RDM. Another possibility is to construct approximate natural
orbitals, which are eigenfunctions of single-particle Hamil-
tonians with a local effective-potential.20,21 On the DFT side,
besides changing the auxiliary system for the KS construc-
tion,22−24 a possible way out is to include the kinetic-energy
density as a basic functional variable along with the density,
simplifying the modeling of the exchange-correlation potentials
because they will not include any more kinetic-energy
contributions. This however implies that an additional auxiliary
potential, which couples to the kinetic-energy density, has to
be introduced. A similar approach has recently appeared in a
different context, that is, in thermal DFT,25,26 where the
additional auxiliary potential corresponds to a proxy for local
temperature variations and couples to the entire energy
density, including kinetic and interaction contributions. The
concept of local temperature was also introduced in the local
thermodynamic ansatz of DFT.27−29 Furthermore, it is
important to note that the kinetic-energy density is already
used extensively in DFT, for instance, as an integral part of the
so-called meta-GGAs. When treated within the generalized KS
framework,30 meta-GGAs lead to a local potential coupling to
the kinetic-energy density, which can be interpreted as a
position-dependent mass.31

In this Article, we investigate the possibility to include the
kinetic-energy density as a basic functional variable in DFT
alongside the density. The idea is that by doing so one can
increase the accuracy of density-functional approximations. We
investigate this by constructing the exact density functionals of
standard DFT and comparing them to the combined kinetic-
energy density and density functionals of this extended
approach we call kinetic-energy density-functional theory
(keDFT). In this way, we want to assess possible advantages
of such an approach when considering strongly correlated
systems. The so-called kinetic contribution32 to the exchange
correlation potential is important for the description of such
systems. It has been shown that standard DFT functionals fail
to describe the effects of this kinetic contribution such as the

band narrowing due to interactions.33 By including the kinetic-
energy density as a fundamental variable, this contribution is
taken into account explicitly.
Further, we want to consider the quality of possible

approximation schemes to keDFT based on a kinetic-energy
KS (keKS) construction and test them in practice. As is clear
from the extent of the proposed program, this is not possible
for real systems. Similar to investigations of the exact
functionals in DFT34−36 and other extensions of DFT,37 we
restrict our study to a finite lattice approximation for the
Hamiltonian, where the particles are only in specific states/
positions. We therefore consider lattice keDFT. In this way, we
not only avoid the prohibitively expensive calculation of
reference data for realistic interacting many-body systems but
also avoid mathematical issues connected to the continuum
case, like the nonexistence of ground states and non-
differentiability of the involved functionals38,39 or having to
deal with the kinetic-energy operator, which is unbounded.40

All of the operators that appear on the lattice are Hermitian
matrices, which yield lowest energy eigenstates, and exact
solutions can be easily calculated contrary to the continuum
where one always has to resort to basis set approximations. We
also highlight how simple approximations carry over from our
model systems to more complex lattice systems and even to
the full continuum limit. The results hint at the possibility to
treat weakly and strongly correlated systems with the same
simple approximation to keDFT.
This Article is structured as follows: In section 2 we

introduce our lattice model, define the density and kinetic-
energy density on the lattice, and highlight for a simple two-
site case that the kinetic-energy density is a natural quantity to
be reproduced by an extended KS construction. We then
introduce the resulting keKS construction assuming the
existence of the underlying maps between densities and fields.
In section 3 we discuss these mappings and show how by
allowing a spatially dependent mass/hopping a large gauge
freedom is introduced. Still we can provide a bijective mapping
between densities and fields for specific cases. In section 4 we
then show how we numerically construct the mappings beyond
these specific cases and hence find that keDFT on a lattice can
be defined also for more general situations. In section 5 we
then use the constructed mappings to determine the exact
correlation expressions for the KS and the keKS construction,
respectively. In section 6 we then compare the results of self-
consistent calculations for similar approximations for the KS
and the keKS systems, respectively. Finally, we conclude in
section 7.

2. FORMULATION OF THE LATTICE PROBLEM

In the following, we consider quantum systems consisting of N
Fermions (electrons) on a one-dimensional lattice of M
discrete sites. We assume that these particles can move from
site to site only via nearest-neighbor hopping (corresponding
to a second-order finite-differencing approximation to the
Laplacian) and employ zero boundary conditions for
definiteness (the extension to periodic boundary conditions
is straightforward). This leads to a Hamiltonian of the
following type:

∑ ∑ ∑̂ = − ̂ ̂ + + ̂ + ̂ ̂
σ

σ σ

= =↑ ↓

−
†

+
= =

↑ ↓H t c c vn U n n( h.c.)
i
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The nonlocal first term corresponds to the kinetic energy.
Without loss of generality, we can assume that the hopping
amplitude obeys ti > 0. Let us point out that usually the
hopping amplitude is site-independent. We employ this more
general form (corresponding to a site-dependent mass) to
establish the necessary mappings (see eq 10). However, when
we numerically consider interacting systems, we always employ
a site-independent hopping, which corresponds to the standard
Hubbard Hamiltonian. The second term corresponds to a local
scalar electrostatic potential vi acting on the charged particles
at site i. U ≥ 0 is the on-site Hubbard interaction between the
Fermions, which is reminiscent of the Coulomb interaction.
Further, the Fermionic creation and annihilation operators
obey the anticommutation relations {cî

σ†,cĵ
σ′} = δijδσσ′, where σ

corresponds to the spin degrees of freedom of the particles, n̂i
σ

= cî
σ†cî

σ is the spin-density operator, and n̂i = n̂i
↑ + n̂i

↓ is the
density operator that couples to the electrostatic potential.
Because we fix the number of particles, the potential vi is
physically equivalent to a potential that differs by only a global
constant. In the following, this arbitrary constant is fixed by
requiring

∑ =
=

v 0
i

M

i
1 (2)

Now, if Ψ is the ground-state wave function of Hamiltonian 1,
we can associate to every point in space a ground-state density
ni = ⟨Ψ|n̂i|Ψ⟩. From the lattice-version of DFT,41 we know that
for every fixed set of parameters (t,U), there is a bijective
mapping between the set of all possible potentials (in the
above gauge) to all possible densities for a fixed number of
particles. To ease notation, we introduce a vector for the
density n ≡ (n1,...,nM) and accordingly for the potential v ≡
(v1,...,vM), which allows us to write the underlying mapping as

⎯→⎯n v
1:1

. Accordingly, for the potential of an interacting system
(U > 0) as a functional of the density, we write vi[n]. We
further note that because the total number of particles is fixed
to N, the density is constrained by ∑i = 1

M ni = N. This means
that instead of the density at every point one can equivalently
use the density differences between sites Δni = ⟨Ψ|n̂i − n̂i+1|Ψ⟩
to establish the above mapping at a fixed number of particles.
Similarly, knowing the local potential vi at every site together
with the gauge condition 2 is equivalent to knowing Δvi = vi −
vi+1. In certain situations, for example, for figures, it is more
convenient to use the density and potential differences instead
of the density and potential.
Clearly a similar mapping between density and potential also

holds for a noninteracting Hamiltonian, that is, U = 0. Because
it is bijective, we can invert the mapping and find a potential vs

(where we follow the usual convention and denote the
potential of a noninteracting system with an s) for a given
density n. The noninteracting mapping allows one to define
vi
s[n], which in turn leads to

∑ ∑̂ [ ] = − ̂ ̂ + + [ ] ̂
σ

σ σ

= =↑ ↓

−
†

+
=

H t c c v nn n( h.c.)
i
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1

1
1

s

(3)

The noninteracting Hamiltonian reproduces the prescribed
density n as its ground state by construction. This is not yet
the KS construction, because we need to know the target
density in advance. Only upon connecting the interacting with
the noninteracting system by introducing the Hxc potential:

[ ] = [ ] − [ ]v v vn n ni i i
Hxc s

(4)

which can also be defined as a derivative of the corresponding
Hxc energy functional with respect to n, we find the nonlinear
KS equation for a given and fixed external potential v of the
interacting system:

∑ ∑̂ = − ̂ ̂ + + + [ ] ̂
σ

σ σ

= =↑ ↓

−
†

+
=

H t c c v v nn( h.c.) ( )
i

M

i i i
i

M

i i i
KS

1, ,

1

1
1

Hxc

(5)

This problem has as the unique solution the noninteracting
wave function that generates the density of the interacting
problem without knowing it in advance.42 It is imperative at
this point to understand the (often overlooked) difference
between Ĥs[n] together with the density functional vi

s[n] and
HKS together with the KS-potential functional vi

KS[v;n] = vi +
vi
Hxc[n]. Only the latter provides an iterative scheme to predict
the density of an interacting references system. Also, only at
the unique fixed point of the KS iteration procedure, where vi =
vi[n], do both Hamiltonians give rise to the same non-
interacting wave function. When we later present results for the
exact KS construction in section 5, we refer always to the
results at the unique fixed point of the KS construction. In
practice, however, we do not have the exact vi

KS[v;n] available,
and hence we need to devise approximations to the unknown
Hxc functional. The simplest such approximation would be a
mean-field ansatz of the form vi

Hxc[n] ≈ Uni. To comply with
the chosen gauge of eq 2, we could use vi

Hxc[n] ≈ U(ni − N/
M).
As we will see in section 5, the major problem in these

approximations is that the kinetic-energy density of the KS and
the interacting system become dramatically different with an
increasing U. Here, the kinetic-energy density Ti at site i is
defined nonlocally (because it involves the hopping) with the
help of the first off-diagonal of the (spin-summed) 1RDM in
site basis representation:

γ γ= − ++ +T t ( )i i i i i i, 1 1, (6)

where γi,i+1 is given by

∑γ γ γ γ γ= ⟨Ψ| ̂ |Ψ⟩ ̂ = ̂ ̂ = ̂ ̂
σ

σ σ σ σ
+ +

†c cwith andi i i i i j i j i j i j, 1 , 1 , , ,
(7)

By analogy to the continuum case, one can also define the
charge current Ji as

γ γ= − −+ +J it ( )i i i i i i, 1 1, (8)

With no external magnetic field present, that is, no complex
phase of the hopping amplitude, the ground-state wave
functions are real valued, which implies γi,i+1 = γi+1,i, leading
to zero current. We note that the current obeys the lattice
version of the continuity equation:

̇ = − −n Ji i (9)

in a time-dependent situation, where = −− −J J Ji i i 1 is the
backward derivative of Ji. Equation 9 is an equation of motion
(EOM) (see also Appendix B for further EOMs) that physical
wave functions need to adhere to. It is important to note that it
is not only the variational (minimum-energy) principle that
ground states have to fulfill, but there are many more exact
relations. While for the case of the ground state the EOM of eq
9 is trivial because both sides are individually zero, there are
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many other nontrivial exact relations that can be based on
EOMs and that provide us with exact relations between the
densities, the fields, and other physical quantities. For instance,
the second-time derivative of the density provides us with the
local force balance of the equilibrium quantum system,43 which
we will use in section 4. Also, while the most common way to
find approximations for the Hxc potentials is by obtaining
approximate Hxc energy expressions and then taking a
functional derivative, the EOMs provide an alternative way
to construct approximate Hxc potentials without the need to
perform functional variations.44,45 In section 5 we will show
how one can obtain such approximations, for instance, the
exact-exchange approximation of standard DFT.
Clearly, if we could enforce that an auxiliary noninteracting

system has the same 1RDM as the interacting one, then also
the kinetic-energy densities T of the two systems would
coincide. This suggests that one can establish a mapping
between the interacting 1RDM and a nonlocal potential, that
is, a vi,j that connects any two sites of the lattice and thus
couples directly to the full 1RDM. However, in general this is
not possible as has been realized early on in 1RDM functional
theory.46 A concrete example is the two-site homogeneous
Hubbard problem at half filling forming a singlet. In this case,
we have i = 1,2 and vi = 0. So we have a homogeneous density
ni = 1, and we can analytically determine all eigenfunctions of
the interacting and noninteracting system. Further, in the case
of only two sites, the full spin-summed 1RDM is a 2 × 2
matrix, where the diagonals are merely γi,i = ni = 1 and the off-
diagonals are given explicitly by γ γ= =

+

t

t U1,2 2,1
4

(4 )2 2
.

Because the density fixes the potential of the interacting and
KS system to be exactly zero, our only freedom is to adopt the
nonlocal potential, which is equivalent to just adopting the
hopping of the KS system (in this case, the nonlocal potential
v1,2 ≡ t). Yet because the off-diagonals for the KS system are
γ1,2
s = γ2,1

s ≡ 1 irrespective of the hopping amplitude, no
nonlocal KS potential exists that reproduces the interacting
1RDM. This is also true in more general lattice situations as
has been shown in, for example, ref 47. For the 1RDM, two
solutions to this problem are known. One is to include
temperature and possibly an indefinite number of particles,
which introduces off-diagonals that depend on the temperature
and the hopping, that is, the nonlocal potential.19 We note that
for the homogeneous two-site case, this can still be solved
analytically and verified explicitly. The other possibility is to
make the system degenerate such that we can reproduce any
density matrix.19

Here, we apply a different strategy. While we cannot force
the density matrices to coincide, it is possible to require the
kinetic-energy densities to be the same. The crucial difference
is that we include the coupling in the Hamiltonian in the
definition of the quantity to be reproduced by the KS system.
For example, in the two-site case, we merely need to use an

interaction-dependent hopping =
+

t t

t U

ke 4

(4 )

2

2 2
. Thus, the

auxiliary noninteracting system reproduces now the pair
(n,T) of the interacting system. Before we move on, let us
note that similarly to the continuum case, one could use
1RDM functional theory at zero temperature also on the lattice
if one avoids the use of a noninteracting auxiliary system and
merely uses functionals based directly on the interacting
1RDM.48,49 Note that N-representability conditions would still
need to be enforced in such a scheme.

Let us now assume that similar to DFT we can establish a
bijective mapping:

⎯→⎯v t n T( , ) ( , )
1:1

(10)

which would allow us to define hopping parameters and
potentials that generate a given kinetic-energy density and
density, that is, (ti[n,T], vi[n,T]). Specifically we can then
consider a noninteracting auxiliary problem that generates a
prescribed pair (n,T):

∑ ∑γ̂ [ ] = − [ ] ̂ + + [ ] ̂
=

−

+
=

H t v nn T n T n T, , ( h.c.) ,
i

M

i i i
i

M

i i
s

1

1
s

, 1
1

s

(11)

by its ground state. Whether we can construct such an auxiliary
system that reproduces the density and kinetic-energy density
of an interacting system is something we do not know a priori.
In this Article, we provide numerical evidence as well as proofs
for specific situations that suggest that such a construction is
possible (see section 3). If we introduce then the
corresponding mapping differences similar to eq 4 and denote
them by mean-field exchange-correlation (Mxc):

[ ] = [ ] − [ ]v v vn T n T n T, , ,i i i
Mxc s

(12)

[ ] = [ ] − [ ]t t tn T n T n T, , ,i i i
Mxc s

(13)

we find the corresponding keKS system:

∑

∑

γ̂ = − + [ ] ̂ +

+ + [ ] ̂

σ= =↑ ↓

−

+

=

H t t

v v n

n T

n T

( , )( h.c.)

( , )

i

M

i i i i

i

M

i i i

ke

1, ,

1
Mxc

, 1

1

Mxc

(14)

such that

γ

γ

= − ⟨Ψ| ̂ |Ψ⟩ +

= − [ ]⟨Φ | ̂ |Φ ⟩ +
+

+

T t

t n T

c.c.

, c.c.

i i i i

i i i

, 1

s ke
, 1

ke
(15)

and

= ⟨Ψ| ̂ |Ψ⟩ = ⟨Φ | ̂ |Φ ⟩n n ni i i
ke ke

(16)

where Φke is the corresponding ground state. This construction
gives rise to the keKS hopping ti

ke[t;n,T] and the keKS
potential vi

ke[v;n,T]. Similarly to standard DFT, it is important
to realize the difference between Ĥs[n,T] together with
(ti

s[n,T],vi
s[n,T]) and the keKS Hamiltonian Ĥke together

with the keKS functionals (ti
ke[t;n,T],vi

ke[v;n,T]). Only the
latter provides an iterative scheme to predict the physical pair
(n,T) of the interacting reference system. At the unique fixed
point of the keKS iteration procedure, where vi = vi[n,T] and ti
= ti[n,T], both Hamiltonians coincide and give rise to the same
noninteracting wave function. When we in the following
present results for the exact keKS construction, we refer always
to the results at the unique fixed point of the keKS
construction. This also allows us in the following to only use
ti
ke and vi

ke to highlight the difference between the usual KS and
the keKS construction. To make the scheme practical, we now
need two approximations: one for the Mxc potential and one
for the Mxc hopping. Possible routes on how to construct
approximations and how this could help to more accurately
capture strongly correlated systems we consider in section 5.
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At this point, we want to make a first connection to the
continuum by considering the appropriate choice of the
kinetic-energy density for that case. There are different
possible definitions for a local kinetic-energy density, which
will give rise to the same total kinetic energy.50 For instance,
we can choose the gauge-independent definition51

∫= | − ∇ Ψ |T ir r r r r r( ) d ..d ( ) ( , , .., )
m r N r N

1
2 ( ) 2 2

2, where Ψ cor-

responds to the interacting wave function, such that the
kinetic-energy density is positive at every point in space. Here,
we have defined a spatially dependent mass m(r) > 0 that takes
the role of the site-dependent hopping in the lattice case. For
the noninteracting system, the corresponding kinetic-energy
density (provided we assume a Slater determinant) reads

ϕ= ∑ ∇=T r r( ) ( )
m i

N
ir

s 1
2 ( ) 1

2

s
, where ms(r) > 0 is the spatially

dependent noninteracting mass and ϕi the single particle
orbitals. The single-particle kinetic-energy operator then

becomes accordingly
Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ− ∇· ∇

m r
1
2

1
( )

, where m(r) should be

substituted with ms(r) in the noninteracting case.

3. GENERALIZED MAPPINGS FROM DENSITIES TO
POTENTIALS

Similarly to fixing the constant of the local potential, one needs
to fix the gauge of the hopping parameter ti

(ke) (where the
superscript ke in parentheses is used to denote that we refer
both to interacting and to noninteracting keKS systems). One
of the first things to note is that by letting ti

(ke) change from site
to site, we encounter a large equivalence class for the site-
dependent hopping parameters. Indeed, we can arbitrarily
change the signs of the hopping from ti

(ke) → −ti(ke) without
changing the density and the kinetic-energy density. However,
the wave function and also, for example, the 1RDM change.
For instance, for the noninteracting single particle Hamil-
tonian, we see that changing the sign locally, say at site i, will
transform the single-particle wave function at this site ϕi to −ϕi
(see Figure 1 for an example and Appendix D for further
details). This leaves the density unchanged, as it is just a sum
of the squared absolute values of the single-particle wave

functions. Also, the kinetic-energy densities stay the same,
because the 1RDM switches signs at the same place as the
hopping amplitude. As it follows from the discussion above,
the sign of ti

(ke) is just a gauge choice, and we need to fix the
gauge to establish the sought-after mapping. In the following,
we choose ti

(ke) > 0.
A further complication that one encounters in establishing

the necessary mappings is that the usual Hohenberg−Kohn
approach does not work in our case. The reason is that the
control fields t now become explicitly part of the control object
T. A similar problem is encountered in current-density-
functional theory, when trying to establish a mapping in
terms of the gauge-independent physical charge current.52−56

While in the time-dependent case having the field as part of the
control objective is actually an advantage and a general proof
has been established,55 these complications unfortunately
prohibit a simple general proof of the existence of the mapping
(n,T) → (v,t) for the time-independent case. However, for
specific situations, we are able to show that the discussed
mapping is possible. The most important one in our context is
the case of the two-site Hubbard model (see Appendix A for
details). In this case, we only have a single potential difference
Δv and density difference Δn. So we can simply rescale the
auxiliary Hamiltonian and thus prove the existence of the
mapping in the noninteracting case by employing the
Hohenberg−Kohn results. A further simple case is two
noninteracting particles, forming a singlet, in a general M-site
lattice. Here, the density fixes the single-particle orbital
(doubly occupied) up to a sign, and thus for a given Ti only
a unique site-dependent hopping ti is possible. Finally, in the
homogeneous case, where the local potential vi = 0 and
periodic boundary conditions are employed, the density

=ni
N
M

and the kinetic-energy density of the interacting

system will be constant at every site i, Ti = T. The matrix
elements γi,i+1 will also be constant from site to site, γi,i+1 = γ. In
this case, the mapping is invertible and a unique (up to a sign
choice) = −

γ
ti

T
2

is associated from site to site. Note that in

this case the KS system and the keKS system yield the same

wave function and =t
t

T
T

ke

KS . This last example, although it

only shows the invertibility of the mapping (v,t) → (n,T) at
the specific points ti = t > 0 and vi = 0, has very important
consequences. It allows us in a simple yet exact way to connect
the auxiliary keKS system to the interacting system. We will
use this later to construct a first approximation to ti

Mxc.
To show that the keDFT mapping can also be defined for

other, more general cases, we construct in the following the
mappings numerically. Afterward, we make use of the
constructed mappings to investigate the properties of the
Mxc potentials and the basic functionals, which for the
continuum case would be numerically prohibitively expensive.

4. INVERSION OF (n,T)
Because, as discussed above, it is not straightforward to show
that the mapping 10 is 1:1 in general, we investigate this
question numerically. Therefore, we construct sets of densities
and kinetic-energy densities (n,T) by solving the interacting
problem specified by the Hamiltonian given in eq 2 (with a
site-independent hopping, which corresponds to the usual
Hubbard Hamiltonian), and for every set we determine the
potentials (v,t) of the noninteracting Hamiltonian specified in
eq 14, which yields the target densities (n,T). To determine

Figure 1. Doubly occupied orbital ϕ that corresponds to a two-
electron singlet-state of a single particle Hamiltonian with all hopping
parameters ti

ke = t positive and the corresponding one ϕt→−t with
alternating hopping parameters ±t from site 17 to 29. Every time we
alternate t to − t at site i, the orbital ϕ changes sign from that site on.
Because we replace t to −t from site to site, the orbital will recover its
original sign after two sites. As one can readily see, the density stays
the same in both cases, as a consequence of the sign of t being only a
gauge choice.
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these potentials, we set up an inversion scheme by using the
EOM for the density and the kinetic-energy density,
respectively. These provide not only physical relations that
connect the quantities (v,t) with (n,T), but they are also
suitable to define correlation potentials, as we will explain in
the following.
Note that in principle the inversion can be done with other

techniques, which are used to find the exact local KS potential
for a given interacting target density.57−60 However, it is not
straightforward how to transfer these techniques to the current
situation. For instance, in ref 57, an iteration scheme is
introduced that adopts the potential based on the intuition that
where the density is too low the potential is made more
attractive and where the density is too high it is made less
attractive. It is not so clear how to transfer this intuitive
procedure to the kinetic-energy density Ti, which is nonlocal,
and the control field is part of the observable itself. In the
continuum, one could perform an inversion and define the
corresponding auxiliary potentials again by EOMs.42,61

Another possibility would be to exploit techniques where the
kinetic-energy density of the KS and the interacting system are
used to model the exchange-correlation potential.60

Because the first-order EOM for the density, that is, the
continuity eq 9, is trivially satisfied as the current is just zero in
the ground state, we consider the second time derivative of the
density n̈i. Because the first time derivative of the kinetic-
energy density vanishes for ground-state wave functions, we
use again the second-order EOM T̈i.
As examples, we give here the EOMs for n̈1 and T̈1 for two

sites in the noninteracting case that we use in our numerical
inversion scheme:

̈ = Δ − Δn t n v T2( )ke 2 ke (17)

̈ = −Δ Δ − Δ = −Δ ̈T v t n v T v n(2( ) )ke ke 2 ke ke (18)

In Appendix B, the general expressions for any number of sites
can be found. Here, we have dropped the site index because
everything corresponds to site 1, Δn = (n1 − n2) is the density
difference between the two sites, Δvke = (v1

ke − v2
ke) is the local

potential difference, and T = −2tkeγ1,2ke . As one can readily see
for the two-site case, there is no additional information in the
equation for T̈, as once n̈ is 0 T̈ is also 0. Nevertheless, once we
go to more sites, T̈i will also give us new equations. For a
detailed discussion of this issue, see Appendix B.
The inversion scheme we employ is an iterative procedure

based on the above introduced EOMs (see eqs 44 and 48 in
Appendix B for the general expressions), which provide us with
relations between (Δvke,tke) and the target quantities (n,T).
We obtain the target quantities (n,T) by finding the ground
state of the corresponding interacting Hamiltonian of eq 1,
with a position-indepent hopping ti = t. We then choose as an
initial guess for the auxiliary keKS system the values of the
interacting system vi

ke,0 = vi and ti
ke,0 = t.

(a) We solve the auxiliary noninteracting Schrödinger eq 11
with the values vi

ke,0 and ti
ke,0:

i

k
jjjjjj

y

{
zzzzzz∑ ∑γ ε− ̂ + + ̂ |Φ ⟩ = |Φ ⟩

=

−

+
=

t v n( h.c.)
i

M

i i i
i

M

i i
1

1
ke,0

, 1
1

ke,0 ke,0 ke,0

(19)

(b) We next calculate the density and kinetic-energy density
that correspond to the state |Φke,0⟩, that is, ni

0 = ⟨Φke,0|n̂i|Φke,0⟩

and Ti
0 = −2tike,0⟨Φke,0|γ̂i,i+1|Φke,0⟩ as well as the matrix elements

γi,j
0 that enter the EOMs 44 and 48.
(c) In a last step, we then calculate the variables of the next

iteration vi
ke,1 and ti

ke,1. The EOM for n̈i = 0 of eq 44 provides us
with analytic expressions of vi

ke,1 in terms of the target densities,
the hopping amplitudes ti

ke,0, and the reduced density matrix
elements γi,j

0 of the previous iteration. For calculating the ti
ke,1,

we use a numerical solver on all of the available EOMs for n̈i =
0 (eq 44) and T̈i = 0 (eq 48), with the target kinetic-energy
densities, but updated densities ni

0 and γi,j
0 from the last

iteration and the renewed local potentials vke,1. We repeat steps
(a)−(c) until convergence of the calculated fields.
As an example in the two-site case, one can update in every

iteration the local potential:

Δ = Δ−

−v
t n

T
2( )i

i

i
ke,

ke, 1 2

1 (20)

and the hopping parameter:

i
k
jjjjj

y
{
zzzzz= Δ

Δ

−

−t
T v

n2
i

i

i
ke,

ke, 1

1

1/2

(21)

where Δn is the target density difference between the two sites
and T is the target kinetic-energy density.
We want to point out that the procedure to update vke,i and

tke,i is not the only one possible. For example, one could have
used instead of the EOMs that we get for n̈i = 0 the ones for Jï
= 0. Further note that there are always M − 1 independent
equations from n̈i = 0 because of particle number conservation,
thus as many as the independent vi

ke that we have (although it
is not clear that we need all of them as we do not have a linear
system of equations). The number of EOMs that we get for the
kinetic-energy density T̈i is M − 2, as we explain in Appendix
B. The interacting ground state was obtained using the single-
site DMRG62 routine, implemented in the SyTen toolkit.63

We successfully performed inversions for systems of up to
four sites with different total number of electrons for different
on-site interaction strengths U and local potentials v. Some
representative results for half-filling are shown in the next
section, where we use the constructed mappings to consider
the exact keKS system. Note that we also successfully
performed inversions beyond half-filling. We also performed
successful inversions for the same systems for the interacting
problem; that is, we chose random values (n,T) and
reproduced them with a nonzero Hubbard interaction. This
makes the equations involved slightly more complex (and we
refrained from showing them here explicitly), but the inversion
procedure stays the same. The fact that we could indeed
construct a keKS auxiliary system for these cases as well as
perform inversions for the interacting problems provides us
with indications for the existence of a keKS system for an
arbitrary number of electrons/sites.

5. COMPARING THE EXACT KS AND keKS
CONSTRUCTION

Next, we assess the practical implications of using the kinetic-
energy density as basic functional variable along with the
density. First, we use the construction of the exact keKS system
and the corresponding KS system to compare the Hxc energy
EHxc
KS of the KS system with the corresponding quantity EMxc

ke of
the keKS system. This gives us a first indication of whether a
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keKS approach might help to capture also strong correlation
effects more easily. For the KS system, the Hxc energy is

∑ ∑= − −
= =

−

E E vn T
i

M

i i
i

M

iHxc
KS

gs
1 1

1
KS

(22)

where Ti
KS = −2t⟨ΦKS|γ̂i,i+1|ΦKS⟩ is the kinetic-energy density of

the KS system and |ΦKS⟩ its ground-state wave function. By Egs,
we denote the total ground-state energy of the interacting
system and vi is its external potential. The corresponding
energy contribution of the keKS system reads

∑ ∑= − −
= =

−

E E vn T
i

M

i i
i

M

iMxc
ke

gs
1 1

1
ke

(23)

where Ti
ke = −2tike⟨Φke|γ̂i,i+1|Φke⟩. Because the kinetic energy of

the keKS system is identical to the interacting one by
construction, the EMxc

ke ≡ Eint = U∑i = 1
M ⟨Ψ|n̂i↑n̂i↓|Ψ⟩ is equal

only to the interaction energy in this case. The corresponding
term of the KS system includes kinetic-energy contributions as
well. In Figure 2, we plot EMxc

ke and EHxc
KS for a Hubbard dimer at

half-filling with local potential Δv/t = 1 as a function of the
interaction strength U/t. Note that the data from the numerical
inversion are used. Thus, both energy quantities are exact, and
there is no approximation involved.
In Figure 3, we show the corresponding plot for a four-site

Hubbard system at half-filling with Δv1/t = −Δv3/t = 0.625
and Δv2/t = 0.375. These two systems for two-site and four-
site will serve as our test systems, and in the following we will
refer to them as the two-site case and four-site case,
respectively.
As one can readily see in Figures 2 and 3, for every

interaction strength U > 0 it holds that EMxc
ke < EHxc

KS . In the
strong correlation limit, the kinetic-energy of the KS system is
far from the interacting one. Having in mind the following
relation:

− = − ≤E E T T 0Mxc
ke

Hxc
KS KS ke

(24)

it becomes apparent why EMxc
ke and EHxc

KS are so different for
strong interactions. As a consequence, the exchange-
correlation potential derived from EHxc

KS will need to take into
account this difference in the strong interaction regime. In the
keKS system, on the other hand, one needs to introduce a
second field tMxc, which is responsible for reproducing the

kinetic-energy density along with the potential vMxc that
ensures the density is reproduced. Furthermore, due to the fact
that EMxc

ke does not contain kinetic contributions, it offers a
simple scaling relation in contrast to EHxc

KS .64

While the energy functionals are an interesting first
indication that the keKS approach can be useful to treat also
strongly correlated systems, the real quantities of interest are
the effective fields that the KS and keKS constructions employ,
especially those parts of the Hxc potential and of the Mxc
hopping and potential that are not accessible by simple
approximation strategies. Those parts, which one usually
assumes to be small in practice, we will denote as correlation
terms. Let us in the following, based on the EOMs we used to
derive the iteration scheme, define parts of the effective fields
that we can express explicitly in terms of the KS and keKS
wave functions. Similar constructions based on the EOM of the
density have been employed in DFT and TDDFT.44,45 For
simplicity, we present the expressions only for the two-site
case. The expressions for four-sites are given in Appendix C.
The Hxc potential is defined as ΔvHxc[n] = Δvs[n] − Δv[n]
(eq 4), where n is the target density of the interacting system,
Δvs[n] is the local potential difference of the KS system, and
Δv[n] is just the external potential of the interacting system.
The EOMs for the noninteracting/interacting density, eq 17/
53, provide expressions for the local potential Δvs[n] and
Δv[n] of the noninteracting/interacting system. Thus, the Hxc
potential in the two-site case reads

∑ γ

Δ [ ] = Δ − Δ

− ⟨Ψ| ̂ ̂ − ̂ |Ψ⟩
σ σ

σ σ σ

≠ ′

′ ′

v
t n
T

t n
T

Ut
T

n n

n
2 2

2
( )

Hxc
2

KS

2

1,2 2 1
(25)

We can decompose ΔvHxc in a Hartree-exchange part
ΔvHx[n,ΦKS]:

∑ γΔ [ Φ ] = − ⟨Φ | ̂ ̂ − ̂ |Φ ⟩
σ σ

σ σ σ

≠ ′

′ ′v
Ut

T
n nn,

2
( )Hx KS

KS
KS

1,2 2 1
KS

(26)

which corresponds to the usual Hartree plus exchange
approximation in standard DFT, and a remaining correlation
part:

Figure 2. Hxc energy EHxc
KS (dashed line) and the corresponding

energy term of the keKS system EMxc
ke (continuous line) for a Hubbard

dimer at half-filling with local potential Δv/t = 1 as a function of U/t.
We see that for U > 0 it holds that EMxc

ke < EHxc
KS .

Figure 3. Hxc energy EHxc
KS (dashed line) and EMxc

ke (continuous line)
for a four-site Hubbard model at half-filling with local potential Δv1/t
= −Δv3/t = 0.625 and Δv2/t = 0.375 as a function of U/t. We again
find that for U > 0 it holds that EMxc

ke < EHxc
KS .
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∑

∑
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(27)

Here, we include the KS wave function in the functional
dependencies to highlight that it is an orbital functional; that is,
it depends on the KS wave function. We note, however, that in
the exact case the KS wave function is uniquely determined by
the density. The above decomposition is similar to that of the
continuum case introduced in ref 44 and later used in, for
example, refs 45 and 65. In eq 12, we have defined the Mxc
potential vMxc for the keKS system, which in the two-site case
(by using the same EOMs as before) reads

∑ γ

Δ [ ] = Δ − Δ

− ⟨Ψ| ̂ ̂ − ̂ |Ψ⟩
σ σ

σ σ σ

≠ ′

′ ′

v T
t n

T
t n
T

Ut
T

n n

n,
2 2

2
( )

Mxc
ke2 2

1,2 2 1
(28)

We see that the first two terms are completely determined by
the keKS system, contrary to ΔvHxc of the KS system, where
the second term cannot be given in terms of Δn or Φ explicitly.
The first term, however, depends explicitly on the hopping in
the keKS system, which has to be approximated in practice.
Keeping this in mind, one can identify a mean-field exchange
potential, similarly to the Hartree-exchange potential of the KS
system:

∑ γ

Δ [ Φ ] = Δ − Δ

− ⟨Φ | ̂ ̂ − ̂ |Φ ⟩
σ σ

σ σ σ

≠ ′

′ ′

v T
t n

T
t n
T

Ut
T

n n
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2 2

2
( )

Mx ke
ke2 2

ke
1,2 2 1

ke

(29)

which depends explicitly on the density, the kinetic-energy
density, and the ground state of the keKS system. Let us at this
point remark that if there is no approximation for the hopping
parameter involved, that is, when tke = t, the expression of vMx

in eq 29 is identical to the expression for vHx in eq 26. In the
mean-field approximation, γi,i+1 ≈ γi,i+1

ke , it follows immediately
that ti

ke = t, because we require the kinetic-energy densities to
be the same, that is, ti

keγi,i+1
ke = tγi,i+1. We note that for the exact

case we consider here, that is, at the solution point of the exact
keKS nonlinear equation (see also discussion about the keKS
construction below eq 16), tke can be explicitly given in terms
of t and the exact Φke. In practice, however, we do not know
tke[t,n,T] = t + tMxc[n,T] a priori, and we need to include
further an extra approximation for tMxc[n,T]. Which approx-
imations are possible (and how accurate they are) will be
discussed next, and in the following section we will see how the
practical form of vMx[n,T,Φke], that is, including an
approximate tMxc[n,T], performs. The remaining local potential
correlation term contains now only contributions from the
difference in interaction:
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(30)

We stress that the definition of the correlation contribution to
the local potential 30 only contains part of what is usually
referred to as correlations in the context of KS DFT. The so-
called kinetic correlation is taken care of in the hopping
amplitudes tke and via definition 29 in vMx. In Figure 4 we plot

for the two-site case the correlation KS and keKS potentials,
which are given by eqs 27 and 30, respectively. In Figure 5 we

plot the correlation potentials for the four-site case, which are
given for the KS system by eqs 63−65 and for the keKS by eqs
72−74. As one can readily see for the two sites, the correlation
potential is smaller in absolute value for the keKS system than
in the KS one for all interaction strengths tested, apart from a
small region at vanishing interaction. This follows from the fact
that the kinetic contributions are included in the mean-field
exchange potential ΔviMx in the keKS case. For the four sites we
see the same trend. However, in the keKS construction, we
have a second effective field, which we so far did not take into
account in our comparison. One needs to find an analogous
decomposition into a term that corresponds to the vi

Hx in the
KS case, which can be approximated with a relatively simple

Figure 4. Correlation potential of the keKS Δvcke (continuous curve)
and KS system ΔvcKS (dashed curve) for the two-site case as a function
of the interaction strength U/t. Apart from a small region at vanishing
interaction strength U, |Δvcke| < |ΔvcKS|.

Figure 5. Correlation potentials of the keKS Δvc,ike (dashed) and KS
system Δvc,iKS (dotted-dashed) for the four-site case as a function of the
interaction strength U/t. Again, we find that, apart from a small region
at vanishing interaction strength U, |Δvc,ike| < |Δvc,iKS|.
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functional, and a term that requires more advanced
approximations, in correspondence to vi

c. Of course, if the
latter part is large as compared to the former, we did not gain
anything by introducing the additional field ti

ke.
Starting from the definition of ti

Mxc[n,T] = ti
s[n,T] − ti[n,T],

and using the fact that the kinetic-energy density Ti has to be
the same in the interacting and keKS system, we get that

i
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jjjjjjj
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zzzzzzzγ γ
[ ] =

[ ]
−

[ ]+ +
t Tn T

n T n T
,

1
,

1
,i i

i i i i
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, 1
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, 1 (31)

which by substituting Ti = ti[n,T]γi,i+1[n,T] and reordering the
various terms yields the form:

δγ
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(32)

where we have defined δγi,i+1 ≡ γi,i+1 − γi,i+1
ke . Up to here, there

is no approximation involved. As the term δγi,i+1 involves the
solution of an interacting and noninteracting problem, an
approximation based on a reference solution suggests itself.
The simplest such reference solution would be to use the
homogeneous case of the interacting and the keKS system,
respectively, similar to the local-density approximation in
standard DFT. Because in the homogeneous case with periodic
boundary conditions, as discussed in section 3, the keKS and
the KS density matrices are the same, we can directly use well-
known results such as the Bethe-ansatz solution at half filling.
In this way, it becomes also straightforward to extend the
introduced approximation to the continuum case, where we
can use reference calculations for interacting homogeneous
continuum systems. Let us also do the same uniform
approximation for the zero boundary condition case that we
discuss here, although the uniform KS and keKS density
matrices will not be the same apart from the two-site case.
Here, we assume that we have reference data for the
homogeneous problems for different local hopping parameters
ti > 0, local fillings 0 < ni < 2, and for the local interactions U >
0. Further we ignore the dependence of the ti in the numerator
on the internal pair (n,T) and use an explicit dependence on
Φke in the denominator. In the following, we will simplify the
explicit parts even further and will just take the homogeneous
solution at half filling, that is, calculate δγi,i+1 for two-site and
four-site cases with different U. The update formula for ti

Mxc,
which we will denote as ti

unif to stress that the approximation
comes from using uniform reference data for the 1RDM, reads:

δγ

γ
[Φ ] = +

+

t
t

i
i i

i i

unif ke , 1
unif

, 1
ke

(33)

Let us point out here that when 33 is used in a self-consistent
loop, the ti

unif is updated using the γi,i+1
ke of the previous iteration

as the enumerator is fixed and taken from the reference
calculation. In the two-site case such an ansatz seems
appropriate, because despite the zero-boundary conditions
the keKS and the KS systems are the same by construction. For
the four-site case, however, the zero-boundary conditions make
the keKS and KS density matrices different. Hence, the four-
site case is a very challenging test for the accuracy of such a
simple approximation. In accordance to the above introduced
approximation, we will then define the remainder of the
hopping field as tc,i[n,T,Φke] = ti

Mxc[n,T] − ti
unif[Φke], where we

emphasize that strictly speaking tc,i includes correlations

beyond the correlations present in a uniform system. In Figure
6 we plot the (beyond uniform) correlation hopping field tc/t

as a function of the interaction strength U/t for the two-site
case. We see that the value of tc is small as compared to the
chosen t for all interaction strengths and especially for weak
and strong interactions. For strong interactions, the system
resembles a homogeneous one as the interaction strength
becomes more prominent in comparison to the local potential
difference, and thus tc becomes smaller in this regime. From
this we can infer that for the case of a general system with
periodic boundary conditions, the homogeneous ansatz will
capture not only the weak but also the strong-interaction limit
accurately.
In Figure 7 we turn to the more challenging case of four sites

with zero boundary conditions and plot the three different tc,i/t

components as a function of the interaction strength. As one
can readily see, all three tc,i are small for every interaction
strength U. However, only two of them seem to converge to a
value that is close to zero for strong interactions, at least for the
parameter range we investigated. (We want to point out that
for larger values of U we encountered some convergence issues
in the four-site case. The reason is that while the density
matrices are not homogeneous, the density is, which causes
some problems in the iteration scheme, where we divide by the
density difference between two neighboring sites in each
iteration. This problem, however, can be potentially overcome
by using different update equations.) We remind the reader

Figure 6. Correlation part of the hopping tc,i in units of t, for the two-
site case as a function of interaction strength U/t. For strong
interaction strength, the system resembles a homogeneous one so that
the uniform type of approximation we employed becomes very good.

Figure 7. Correlation part of the hopping tc,i in units of t, for the four-
site case as a function of interaction strength U/t.
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that this difference in accuracy between the two-site and the
four-site cases is not surprising. In the two-site case, the
uniform KS γi,i+1

KS , which is used to construct the approximation
for tunif, coincides with the corresponding uniform γi,i+1

ke of the
keKS system. For four sites this is no longer the case. Still,
comparing the numerical values of the correlation hopping tc,i
to those of the correlation potential vc,i

ke, there is an order of
magnitude difference. This gives some hope that crude
approximations like the ti

unif can still lead to accurate
predictions. Let us test this in the following section.

6. COMPARING A SELF-CONSISTENT KS AND keKS
CALCULATION

While the above considerations about the exact correlation
energies, potentials, and hopping parameters are crucial to
understand what the different approximations to the unknown
exchange-correlation terms are able to capture, it is not their
performance at the exact solutions that matters in practice. A
self-consistent calculation with the approximate functionals is
not at all clear that will converge to a sensible solution or even
converge at all. For instance, even for the prime example of a
nonlinear problem in quantum chemistry, that is, the ground-
state Hartree−Fock equation, the convergence to a unique
solution has not been shown except for highly unusual cases.66

To finally test whether the proposed keDFT and its keKS
construction can be used in practice to predict the properties
of correlated many-electron systems, we perform self-
consistent calculations for our two-site and four-site Hubbard
models. We use the mean-field exchange approximation of eq
29 for two sites and of eqs 69−71 for four sites together with
the uniform approximation for the hopping term of eq 33. This
leads to
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1
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(34)

where we update the involved effective fields in every iteration
until convergence is achieved. We then compare the densities
and kinetic-energy densities that we get with the KS ones
within the exact-exchange approximation (thus ti = t and vHx

given by eq 26 for two sites and eqs 60−62 for four sites). We
do so as in this way we have for both the KS and the keKS
construction the same level of approximation as vMx will reduce
to vHx for ti

ke = t. This allows us to judge whether including the
kinetic-energy density in the modeling of many-particle
systems has any advantages over the usual density-only
approach.
We first quantify the density difference between the

calculated quantities and the exact ones using the following
measure: δnke/KS = ∑i=1

M |ni
ke/KS − ni|, where ni is the interacting

density at site i while ni
ke/KS is the corresponding density of the

keKS/KS system.
Indeed, for both the two-site case (see Figure 8) as well as

the more challenging four-site case (see Figure 9), the self-
consistent keKS approximation performs better than the
corresponding self-consistent KS exact-exchange approxima-
tion. Because the main difference lies in the error correction to
the local kinetic-energy density, we next also compare a
measure for the difference in local kinetic-energy density:

δTke/KS = ∑i=1
M−1|Ti

ke/KS − Ti|, where Ti
ke/KS is the kinetic-energy

density between site i and i+1, while Ti is the corresponding
interacting one. Not surprisingly, in both cases (see Figures 10
and 11), the approximate kinetic-energy density of the keKS
system is much closer to the actual one than the bare KS
energy density. We see that for large interaction strengths the
error is basically zero for the two-site case because in this limit
the interaction is much larger than the asymmetry induced by
the local potential. In the four-site case, our approximation for
the kinetic-energy density is not as accurate, although it is still
better than the corresponding KS one. The reason for this drop
in accuracy is, as discussed around eq 33, the assumption that
γi,i+1
unif,KS = γi,i+1

unif,ke, which is violated for the four-site case.
Nevertheless, for large systems (where the boundaries will not
be significant) or for systems with periodic boundary
conditions, this issue will essentially vanish because then the
uniform reference system obeys γi,i+1

unif,KS = γi,i+1
unif,ke and the strong-

interaction limit is captured highly accurately. Consequently, it
can be expected that including the kinetic-energy density can
help to treat multiparticle systems accurately from the weak to
strong interaction regime.

Figure 8. Density difference δnke/KS between the self-consistent
calculations in the keKS system and the exact one (continuous, blue
line), as well as for the self-consistent solution in the KS system and
the exact one (dotted, red line), for the two-site case as a function of
interaction strength U/t.

Figure 9. Density difference δnke/KS between the self-consistent
calculations in the keKS system and the exact one (continuous, blue
line), as well as for the self-consistent solution in the KS system and
the exact one (dotted, red line), for the four-site case as a function of
interaction strength U/t.
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7. CONCLUSION AND OUTLOOK
In this work, we have introduced a kinetic-energy density-
functional theory (keDFT) and the resulting kinetic-energy
Kohn−Sham (keKS) scheme on a lattice. The idea was that by
lifting the kinetic-energy density T to a fundamental variable
along with the density n, the resulting effective theory becomes
easier to approximate because more parts are known explicitly.
Because the new external field, a site-dependent hopping t, is
part of the kinetic-energy density, the usual Hohenberg−Kohn-
type proof strategy to establish the necessary one-to-one
correspondence between (v,t) and (n,T), where v is the usual
on-site potential, does not work. However, besides giving
proofs for specific cases and discussing the gauge freedom of
the approach, we provided an indication that the necessary
bijectivity holds by numerically constructing the inverse maps
from a given pair (n,T) to (v,t) for two- to four-site Hubbard
models. We did so by introducing an iterative scheme based on
the equations of motion (EOMs) of the density and the
kinetic-energy density. We then introduced a decomposition of
the two unknown effective fields of the keKS scheme, the
mean-field-exchange-correlation potential vi

Mxc[n,T] and the
mean-field exchange-correlation hopping tMxc[n,T], into
explicitly known mean-field exchange (for the effective
potential) and uniform (for the effective hopping) as well as
unknown correlation parts. By comparing the unknown parts

of the standard Kohn−Sham (KS) approach to the keKS
approach, we saw that including the kinetic-energy density in
the fundamental variables reduced the unknown parts
considerably. Finally, we tested the keKS approach in practice
by solving the resulting nonlinear equations with the
introduced approximations. We found that the mean-field
exchange and uniform keKS outperform the corresponding
exact-exchange KS from weak to strong interactions and hence
hold promise to become an alternative approach to treat many-
particle systems efficiently and accurately.
While the presented approach was thoroughly investigated

only for simple few-sites problems, its extension to many sides,
arbitrary dimensions, and even the continuum is straightfor-
ward. Following ref 50 in the continuum, we can choose a
gauge-independent and strictly positive definition of the
kinetic-energy density with a spatially dependent mass term.
The main reason why the keKS scheme can be more accurate
than the usual KS scheme also in the continuum is that we can
model explicitly the kinetic-energy density in this case. Because
the simple kinetic-energy density approximations we intro-
duced proved to be already quite reasonable, the extension to
the continuum seems especially promising. For homogeneous
systems, many reference calculations exist that can be used to
derive a universal local kinetic-energy density approximation
that resembles the uniform approximation introduced in this
work.

■ APPENDIX A: TWO-SITES PROOF OF (Δvke,tke) ↔
(Δn,T)

In this Appendix, we provide a proof of the bijectiveness of the
mapping between density and kinetic-energy density and the
corresponding fields in the case of a noninteracting system of
up to N ≤ 3 electrons on a two-site lattice. For this case, the
noninteracting Hamiltonian reads:

γ̂ = − ̂ + + Δ ̂ − ̂H t
v

n n( h.c.)
2

( )ke
1,2

ke

1 2 (35)

where Δ ∈vke and tke > 0. The mapping that we wish to
show that is bijective is the following:

Δ ↔ Δt v T n( , ) ( , )ke ke 1:1
(36)

with T > 0 and Δn∈[−N,N]. Here, Δvke ≡ v1
ke − v2

ke and Δn ≡
n1 − n2, where the lower indexes refer to different site points.
Note that tke ≥ 0 is a certain gauge choice as {(tke,Δvke),
(−tke,Δvke)} → (T,Δn). Moreover, due to particle hole
symmetry, it holds also that {(−tke,−Δvke),(tke,−Δvke)} →
(T,Δn). Thus, from now on, when we refer to different
potentials and hopping parameters, we will mean that they
differ by more than a sign change. For the local potential, the
gauge choice is v1

ke + v2
ke = 0 as throughout the document.

Proof: We are going to prove eq 36 through different cases.
Case 1: Two Hamiltonians Ĥ, Ĥ′ have the same hopping

parameters tke = tke′ but different local potentials Δvke ≠ Δvke′.
From the Hohenberg−Kohn theorem, we then have that the

corresponding wave functions are different, that is, Φ ≠ Φ′,
and the same holds also for the densities Δn ≠ Δn′ and
consequently (T,Δn) ≠ (T′,Δn′).
Case 2: Two Hamiltonians Ĥ, Ĥ′ have different hopping

parameters tke ≠ tke′ but the same local potentials Δvke ≠ Δvke′.
Assume that (T,Δn) = (T,Δn′). We then have two wave

functions Φ and Φ′ that are ground states of the corresponding
Hamiltonians:

Figure 10. Kinetic-energy density difference δTke/KS between the self-
consistent calculations in the keKS system and the exact one
(continuous line), as well as for the self-consistent solution in the KS
system and the exact one (dotted line), for the two-site case as a
function of interaction strength U/t.

Figure 11. Kinetic-energy density difference δTke/KS between the self-
consistent calculations in the keKS system and the exact one
(continuous line), as well as for the self-consistent solution in the KS
system and the exact one (dotted line), for the four-site case as a
function of interaction strength U/t.
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̂ Φ = ΦH E

′̂ Φ′ = ′Φ′H E (37)

We can multiply Ĥ′ with a scaling factor λ =
′

t
t

ke

ke so that we get

a Hamiltonian Ĥ″, which has the same hopping as the Ĥ.
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jjjjjjj
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(38)

We assume that Δn = Δn′, which means that we have two
different ground-state wave functions with different local

potentials Δ ≠ Δ
′

v vt
t

ke keke

ke that still give the same densities.

This is clearly in contradiction with Case 1.
Case 3: Two Hamiltonians Ĥ, Ĥ′ have different hopping

parameters tke ≠ tke′ and different local potentials Δvke ≠ Δvke′.
Again, we assume that (T,Δn) = (T′,Δn′), and we scale such

that we find:
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(39)

This requires that Δn = Δn′ can only hold if also the local
potentials are the same as we showed in Case 1. Thus, it has to
hold that

λΔ = Δ = Δ′
′ ′v

t
t

v vke
ke

ke
ke ke

(40)

which means that the two Hamiltonians Ĥ and Ĥ′ are
connected through the scaling relation Ĥ = λĤ′. Thus, we have

λ̂ = ′̂ ⇒ Φ = Φ′ ⇒ ≠ ′H H T T (41)

which contradicts our initial assumption.

■ APPENDIX B: EQUATIONS OF MOTION
In this Appendix, we derive the EOMs that we use in our
numerical inversion scheme and to define the vHxc and vMxc

potentials. Furthermore, we provide the explicit expressions of
vHxc and vMxc for four sites. Finally, we discuss how the number
of useful EOMs for our numerical inversion scheme depends
on the number of sites.
The EOM for a generic operator A, which has no explicit

time dependence, is given by

̂ ̇ = [ ̂ ̂]A i H A, (42)

We are interested in obtaining EOM for a non interacting
Hamiltonian of type 11. For a state Φ it follows that

̇ = ⟨Φ|[ ̂ ̂]|Φ⟩A i H A, (43)

which is an EOM for the observable associated with the
operator Â. When Ψ is the ground state, eq 43 equals zero. Let
us take now this operator to be the density. Because the first-
order EOM for the density, that is, the continuity eq 9, is
trivially satisfied as the current is just zero in the ground state,
we consider the second time derivative of the density:

̈ = − ϒ − +−n t n v T( 2( ) ( ) )i i i i i i
s 2 s

(44)

where we have introduced the forward (backward) difference
operators ( −), which act on one-index ob-
jects: = −+f f fi i i1 , = −− −f f fi i i 1. Here we note that in
this Appendix we stray from the convention that we only use
ti
ke and vi

ke because we use the same EOMs for the KS and the
keKS scheme as well. In eq 44, we furthermore introduced

γϒ = +− + −t t ( c.c.)i i i i i
s

1
s

1, 1 (45)

which, by analogy to the continuum case, can be identified as
the kinetic contribution to the momentum-stress tensor. The
time derivative of the kinetic energy density also leads to

̇ = − Ξ +T v J( )i i i i
s

(46)

where we introduced the kinetic-energy current

γΞ = −− + −it t ( c.c.)i i i i i
s

1
s

1, 1 (47)

Both Ξi and Ji vanish trivially for real-valued wave functions
such as the ground state, so eq 46 is fulfilled trivially. Taking
yet another time derivative leads to

̈ = − Ξ̇ + ̇T v J( )i i i i
s

(48)

In eq 48, there are two more EOMs involved. The one for Ξi is

Ξ̇ = − Λ − + ϒ −

+
− − −

−

v t T

t T

(( ) ) ( )

( ( ) )
i i i i i i

i i

s s 2

s 2
(49)

with

γΛ = ++ − + −t t t ( c.c.)i i i i i i1
s s

1
s

2, 1 (50)

The EOM for the current is

̇ = ϒ − +J t n v T2( ) ( )i i i i i i
s 2 s

(51)

Moreover, we use the second-order EOM for the interacting
density, obtained from a Hamiltonian of Case 2, to define the
vHxc and vMxc potentials:

∑ ∑ γ

̈ = − ϒ − +
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(52)

As an example, let us show here the EOM for n̈1 for the two-
site interacting Hamiltonian:

∑̈ = Δ − Δ + ⟨Ψ| ̂ ̂ ̂ − ̂ |Ψ⟩
σ σ

σ σ σ σ

≠ ′

† ′ ′n t n v T Ut c c n n2 2 ( )1
2

1 1 1 1 2 2 1

(53)

Formally, eq 44 defines M equations, that is, one for every
site. However, because the sum of densities at every site has to
give the total number of electrons, it holds that

∑ ̈ =
=

n 0
i

M

i
1 (54)

We get M − 1 nontrivial equations. Now for M sites we do
have M − 1 different Ti of the form eq 48. Yet as the total
energy of the keKS system is fixed to some value E, that is:

∑ ∑+ =
=

−

=

T v n E
i

M

i
i

M

i i
1

1

1

s

(55)
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taking the second time derivative of the above equation shows
us that we have M − 2 nontrivial equations for Ti. Taking into
account the gauge choice of vi

s (eq 2) and the particle number
conservation eq 54, we see that the equations for n̈i and T̈i

connect through the following relation:

∑ ∑ ∑ ∑̈ + ̈ + ̈ =
=

−

=

−

=

−

=

−

T v n v n 0
i

M

i
i

M

i i
i

M

i
j

M

j
1

1

1

1
s

1

1
s

1

1

(56)

At this point, we have to mention that eq 54 still holds for
the interacting system; however, eqs 55 and 56 will not hold
anymore because the on-site repulsion term enters the energy
expression in this case.

■ APPENDIX C: EXCHANGE-CORRELATION
POTENTIALS FOR FOUR SITES

From the EOMs 44 and 52, one can derive the vHxc and vMxc

for any number of sites. We give here their expressions for four
sites because it is one of our test cases in this Article.
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Similarly to the two-site case, we can decompose vHxc to a vHx

and a vc contribution:
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Next, we give the corresponding expressions for the keKS
system:

∑

γ γ

γ

Δ [ ] =
Δ +

+
− Δ −

− ⟨Ψ| ̂ ̂ − ̂ |Ψ⟩
σ σ

σ σ σ

≠ ′

′ ′

v
t n t t

T

t n t

T
Ut
T

n n

n
2( ) 2 2 2

2
( )

1
Mxc 1

ke 2
1 1

ke
2
ke

13
ke

1

2
1

2
13

1

1
1,2 2 1

(66)
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Similarly to vHxc, we decompose vMxc in a vMx and a correlation
part vc. This is analogous to the decomposition for the two-site
case presented in section 5:
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■ APPENDIX D: GAUGE CHOICE FOR HOPPING
In this Appendix, we demonstrate that the sign of the hopping
is just a gauge choice. Let us consider a single-particle
Hamiltonian H. In the site basis, it corresponds to the matrix:

i
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jjjjjjjjjjjj

y

{

zzzzzzzzzzzz

i

k

jjjjjjjjjjj
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zzzzzzzzzzz

ε

ε̲ = = ̲ · · ̲★ †

h h

h hH U U

0

0
11 12

12 22

1

2

μ

μ

∂ ∂ ∏

μ

μ

∂ ∂ ∏ (75)

where we also introduced its spectral decomposition with the
unitary matrix U̲ having its eigenvectors as columns. Suppose
we transform the Hamiltonian by

i

k
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y

{
zzzzz̲ =

̲

− ̲ −
G

1 0

0 1
k

N k (76)

where 1̲n is the n × n unit matrix and N is the total number of
sites. Note that G̲† = G̲−1; that is, G̲ is unitary. It is
straightforward to verify that the transformed Hamiltonian is
given by
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jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
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zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

̲ ′ = ̲ · ̲ · ̲

=

− −

− −

− −

− −

†

+

+

+ + + + +

+

h h h h

h h h h

h h h h

h h h h

H G H G

k k N

k kk k k kN

k k k k k k N

N Nk N k NN

11 1 1( 1) 1

1 ( 1)

( 1)1 ( 1) 1 1 ( 1)

1 ( 1)

μ μ

∂ ∏ ∂ ∂ ∏ ∂

μ μ

μ μ

∂ ∏ ∂ ∂ ∏ ∂

μ μ

(77)

We can see that the effect of the transformation is to change
the sign of all matrix elements in the “off-diagonal” parts
determined by the site k after which the sign in G̲ changes. For
a one-dimensional nearest-neighbor tight-binding Hamiltonian
with “zero boundary conditions”, like the one we consider in
this Article, this corresponds to flipping the sign of the hopping
amplitude between site k and k + 1. Obviously the eigenvalues
of H̲′ are the same as the eigenvalues of H̲, and the eigenstates
are simply given by U̲′ = G̲U̲, which means that the signs of the
wave function in position representation are flipped from site k
+ 1 on. All Hamiltonians, which can be connected by such a
transformation, are to be considered equivalent.
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