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Copyright 2018 The Authors Conclusions: Without retinal layer segmentation, the proposed algorithm could

produce higher segmentation accuracy and was more stable when compared with
state-of-the-art methods that relied on retinal layer segmentation results. Our model
may provide reliable GA segmentations from SD-OCT images and be useful in the
clinical diagnosis of advanced nonexudative AMD.

Translational Relevance: Based on the deep neural networks, this study presents an
accurate GA segmentation method for SD-OCT images without using any retinal layer
segmentation results, and may contribute to improved understanding of advanced
nonexudative AMD.

. atrophy (GA) that is mainly characterized by atroph
of tlljleyr(etina)ll pigment egithelium (RPE).yz In pthz
As a chronic disease, age-related macular degen- comparison of AMD treatments trial, the deve.lop-
eration (AMD) is the leading cause of irreversible ment of GA was one of the major causes for sustained
vision loss among elderly individuals, which is Visual acuity loss,” which is generally associated with
generally accompanied with various phenotypic man- retinal thinning and loss of RPE and photoreceptors.*

ifestations.! The advanced stage of nonexudative A recent review article notes that the reduction in the
AMD is generally characterized by geographic worsening of atrophy is an important biomarker for
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assessing the effectiveness of a given GA treatment.’
Thus, automatic detection and characterization of
retinal regions affected by GA is a fundamental and
important step for clinical diagnosis, which could aid
ophthalmologists in objectively measuring the regions
of GA and monitor the evolution of AMD to further
make treatment decisions.”” GA characterization
generally requires accurate segmentation. Manual
segmentation is time consuming and subject to
interrater variability, which may not produce reliable
results especially for large data sets. Therefore,
automatic, accurate, and reliable segmentation tech-
nologies are urgently needed to advanced care in
AMD.

To the best of our knowledge, most semiauto-
mated or automated image analysis methods to
identify GA are applied to color fundus photographs,
fundus autofluorescence (FAF), or optical coherence
tomography (OCT) modalities.® Semiautomatic and
automatic segmentation GA segmentation methods
applied to these modalities can generally produce
useful results and have been found to agree with
manually drawn gold standards.

Color fundus photographs have been widely used
for measuring GA lesions, where GA 1is characterized
by a strongly demarcated area.” However, the
performance of most methods mainly depends on
the quality of the color fundus images. GA lesions can
be easily identified in high-quality color images, while
the boundaries may be more difficult to be identified
in lower quality images.

As a noninvasive imaging technique for the ocular
fundus, FAF can provide two-dimensional (2D)
images with high contrast for the identification of
GA. Both semiautomated and automated methods
have been proposed for the segmentation of GA in
FAF images. C. Panthier et al.'” proposed a semi-
automated image processing approach for the iden-
tification and quantification of GA on FAF images,
and constructed a commercial package (i.e,. Region
Finder software), which was widely used for the
evaluation of GA in clinical setting. The interactive
approaches including level sets,'' watershed,'” and
region growing'® have also been used in GA
segmentation of FAF images. Meanwhile, the super-
vised classification methods'* and clustering technol-
ogies'” are widely used to automatically segment GA
lesions in FAF images.

Compared with fundus imaging, spectral-domain
(SD) OCT imaging technology can obtain the axial
differentiation of retinal structures and additional
characterization of GA.'® Unlike the planar images

provided by fundus modalities, SD-OCT can generate
three-dimensional (3D) cubes composed of a set of 2D
images (i.e., B-scans), and provide more detailed
imaging characteristics of disease phenotypes.'”"®
Because GA is generally associated with retinal
thinning and loss of the RPE and photoreceptors,
earlier works mainly focused on the thickness
measurement of RPE, which could be further used
as the biomarkers of GA lesions.'” However, seg-
menting GA is not as straightforward as solely
detecting RPE. To directly identify GA lesions by
characterizing RPE, state-of-the-art algorithms prin-
cipally segment the GA regions based on the
projection image generated with the voxels between
the RPE and the choroid layers.”> > Chen et al.”’
used geometric active contours to produce a satisfac-
tory performance when compared with manually
defined GA regions. A level set approach was
developed to segment GA regions in both SD-OCT
and FAF images.21 However, the performance of
these models were generally dependent on the
initializations. To further improve the segmentation
accuracy and robustness to initializations, Niu et al.”?
proposed an automated GA segmentation method for
SD-OCT images by using a Chan-Vese model via
local similarity factor, and then used this segmenta-
tion algorithm to automatically predict the growth of
GA.”* However, as mentioned above, GA is generally
associated with retinal thinning and loss of RPE and
photoreceptors, and state-of-the-art algorithms main-
ly segment GA based on the projection image
generated with the voxels between the RPE and the
choroid layers, implying that these methods rely on
the accuracy of retinal layer segmentation.

Recently, deep learning has gained significant
success and obtained outstanding performance in
many computer vision applications.”* Much attention
has been drawn to the field of computational medical
imaging to investigate the potential of deep learning
in medical imaging applications,”” including medical
image segmentation,”® registration,”’ multimodal
fusion,”® diagnosis,29 disease detection,”® and so on.
For ophthalmology applications, deep learning has
also recently been applied to automated detection of
diabetic retinopathy from fundus photos,”' visual
field perimetry in glaucoma patients,” grading of
nuclear cataracts,” segmentation of foveal microvas-
culature,”* AMD classification,”” and identification of
diabetic retinopathy.’® Here, we use deep leaning
methods to automatically discover the representations
and structures inside OCT data in order to segment
GA. To our best knowledge, we are the first to
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segment the GA lesions from OCT images with deep
learning.

A deep voting model is proposed for automated
GA segmentation of SD-OCT images, which is
capable of achieving high segmentation accuracy
without using any retinal layer segmentation results.
A deep network is constructed to capture deep
representations of the data, which contains five layers
including one input layer, three hidden layers (sparse
autoencoders; SA), and one output layer. During the
training phase, the randomly selected labeled A-scans
with 1024 features are directly fed into the network as
the input layer to obtain the deep representations.
Then a soft-max classifier is trained to determine the
label of each individual pixel. Finally, a voting
decision strategy is used to refine the segmentation
results among ten trained models. Without retinal
layer segmentation, the proposed algorithm can
obtain higher segmentation accuracy and is more
stable compared with the state-of-the-art methods
that rely on the retinal layer segmentation results. Our
method can provide reliable GA segmentations from
SD-OCT images and be useful for evaluating ad-
vanced nonexudative AMD.

Experimental Data Characteristics

Two different data sets acquired with a Cirrus
OCT device (Carl Zeiss Meditec, Inc., Dublin, CA)
were used to evaluate the performance of the
proposed algorithm, where all the training and testing
cases contained advanced nonexudative AMD with
GA. It should be noted that both data sets were
described and used in previous work.”’?* The first
data set contained 51 longitudinal SD-OCT cube
scans from 12 eyes of 8 patients with a size of 512 X
128 X 1024 corresponding to a 6 X 6 X 2-mm” volume
in the horizontal, vertical, and axial directions,
respectively. Two independent experts manually drew
the outlines of GA based on the B-scan images in two
repeated separate sessions, which were used to
generate the segmentation ground truths. Figure la
shows one example study case with the manual
segmentations by two different experts and at two
different sessions and the average ground truth, which
are all outlined on the full projection image. The red
and green contours shows the manually segmenta-
tions by the first experts, and the blue and cyan
contours shows the manually segmentations by the
second experts. The second data set contained 54 SD-

OCT cube scans from 54 eyes of 54 patients with a
size of 200 X 200 X 1024 corresponding to the same
volume in the horizontal, vertical, and axial direc-
tions, respectively. The manual outlines were drawn
based on FAF images, and then were manually
registered to the corresponding location in the
projection images and considered as ground truth
segmentations. Figure 1b shows the registration
ground truth outlined on the full projection image.
All the data processing and methods implementation
were carried out with Matlab 2016a software (The
MathWorks, Inc., Natick, MA). The research was
approved by an institutional human subjects commit-
tee and followed the tenets of the Declaration of
Helsinki. All federal, state, and local laws were abided
by, and this study was conducted with respect to all
privacy regulations.

Processing Pipeline

As shown in Figure 2, an automatic GA segmen-
tation method for SD-OCT images based on the deep
network is proposed, which is capable of capturing
the deep representations of the data while achieving
high segmentation accuracy. The structure of the SA
deep network was composed of five layers, including
one input layer, three hidden/SA layers, and one
output layer. During the training phase, the labeled
A-scans with 1024 features were directly fed into the
network as the input layer to obtain the deep
representations. Then a soft-max classifier was
trained to determine the label of each individual pixel
on the projection image. Finally, a voting decision
strategy was used to refine the segmentation results
among 10 trained models.

Data Preprocessing

As an interferometric method based on coherent
optical beams, one of the fundamental challenges with
OCT imaging is the presence of speckle noise in the
tomograms.”’ To reduce the influence of the noise in
OCT images, we used the BM4D software (The
Matlab code can be found in http://www.cs.tut.fi/
~foi/GCF-BM3D)/) for volumetric data denoising,”®
which is one leading denoising method for OCT. The
3D, 2D, and 1D visualization results can be found in
Figure 2.

Deep Network Training

For each OCT image, each pixel in the projection
image is a D dimensional vector x € R? along the
axial A-scan lines. The labeled dataset is represented
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—ExpertA,

——ExpertA, —ExpertB,

Figure 1.

—ExpertB,

The example ground truths for two data sets. (a) One example study case with manual segmentations by two different

experts during two different sessions, which are all outlined on the full projection image. (b) The registration ground truth outlined on

the full projection image.

asX = {(x;,y)|lx; € R”,yie L,i=1,...,N} where N
is the number of samples in the dataset, which is the
total number of A-scans in this paper, y; is the class
label of the corresponding vector x;, and L =
{lji=1,...,N,l;=1,...,K} is the label set with size
K. Generally, for an OCT image, the dimension of
each vector x is D = 1024. Our target was to segment
the GA tissues and non-GA tissues, so the label set
was K = 2. Therefore, the target of training was to
learn a mapping function f(-) : R° — L, which could
map the input feature vector from the 3D space into
the label space.

An autoencoder is a neural network, which attempts
to replicate its input at its output. As mentioned above,
we stacked three sparse autoencoders® as the hidden
layers to construct our deep model. The training
process was based on the optimization of a cost
function, which measured the error between the input
and its reconstruction at the output. An autoencoder is
composed of an encoder and a decoder. For the input
x € RP of one autoencoder, the encoder maps the
vector x to another vector ZGRD as

0 = W (whx 4+ p1)), where the su}l)erscrlpt (1)
indicates the first layer. (") : RD — RD is a transfer
function for the encoder, w(l) € R?" %2 is a weight
matrix, and »() e RP" is a bias vector. Then the
decoder maps the encoded representation z back into
an estimate of the original input vectorx as
£ =h® (w?PzM 4+ p?)), where the superscript (2)
represents the second layer. 4®) : RP? — RP is the

transfer function for the decoder, w® e R? <D s a
weight matrix, and 5 € R? is a bias vector.

The cost function for training a sparse autoen-
coder is an adjusted mean squared error function as
follows:

| N K
E=52_ > (u

i=1 k=1

-xlk + AX Qweights + ﬁ X Qsparsity

(1)

Qyeignis 18 the L, regularization term with the
coefficient A, which can be defined as:

N K

1 2
Qweights = 5 Z ( )

m=1 i=1 k=1

(2)

Qqparsiry 18 the sparsity regularization term with the
coefficient 5, which can be defined as:

p
Qsparsity = Z KL(p”:E)l)

b(l))

Sparsity regularization term attempts to enforce a
constraint on the sparsity of the output from the
hidden layer, which is constructed based on the
Kullback-Leibler divergence.

For each hidden layer of the stacked autoencoders,
the training target is to obtain the optimal parameter

N
where ﬁi:%Z ( w; (3)
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Figure 2. The pipeline of the proposed automatic GA segmentation method.

{W*,b*} by minimizing the target cost function
defined in Equation 1. The layers of stacked
autoencoders are learned sequentially from top to
bottom. As one of the most popular optimization
methods, stochastic gradient descent is used for
training the stacked autoencoders, and more details
can be found in Ref. 40.

The learning of the stacked autoencoders is
unsupervised learning. Lastly, behind the last autoen-
coder layer, we stacked another supervised classifier
layer, which took the output of the last autoencoder
layer as the input, and outputs classification results.
By stacking this supervised layer, the deep network in
this paper could be treated as a multilayer perceptron,
where the parameters involved in autoencoders are
learned by an unsupervised phase and further fine
tuned by the backpropagation.*’ Table | summarizes
the parameter settings of the autoencoder structure
and autoencoder training for all the experiments in

this paper. It should be noted that the coefficients 1
and f for L, regularization term and sparsity
regularization term are manually set based on the
experimental results.

The representations learned by stacked autoen-
coders can decrease the redundant information of the
input data, and preserve more useful information for
the final classification. From the outputs of each layer
of stacked autoencoders shown in Figure 2, a trend of
sparsity can be clearly observed with the data
propagation from the top layer to the bottom layer
of the network.

Voting Strategy

As we mentioned before, during the training phase,
the labeled A-scans with 1024 features were directly
fed into the network as the input layer to obtain the
deep representations, which meant that the spatial
consistency among A-scans were not taken into

TVST | 2018 | Vol. 7 | No. 1 | Article 1



translational vision science & technology

Ji et al.

Table 1. The Parameter Settings in the Proposed
Model

Parameter Value
Number of hidden layers 3
Number of nodes in the input layer 1024
Number of nodes in the output layer 2
Number of nodes in SA-layer1 1024
Number of nodes in SA-layer2 1024
Number of nodes in SA-layer2 1024
Unsupervised training epochs 1000
Supervised training epochs 2000

L, weight regularization 4 0.001
Sparsity Regularization 8 4

account. Moreover, due to the retinal structure and
the characterizes OCT imaging, the corresponding
OCT data (3D), B-scan images of the cross section
(2D), and the A-scan samples (1D) contain various
structural difference as shown in Figure 3. Figure 3a
shows a full projection image of one study case with
GA, where the ground truth is overlaid with the red
line. Based on Figure 3a, three B-scan images of the
cross section heighted with blue line are selected, and
the corresponding images are shown in Figure 3b,
where the GA lesions are overlaid with the blue
regions. Then, for each B-scan image, two GA
samples and two normal (non-GA) samples are
selected highlighted with red and green lines, respec-

tively. The intensity profiles of the selected samples
are shown in Figure 3c. From Figure 3a, we can find
that the full projection image contains obvious
intensity inhomogeneity. Moreover, the contrast
between GA lesion and background is very low.
Figure 3b shows various structural difference among
the selected B-scan images of the cross section. The
corresponding intensity profiles of the selected A-
scans further demonstrate that the structure for GA
and non-GA samples had high variability, which
meant that it was very difficult for the corresponding
deep learning model to capture the uniform or general
structural information among these samples. There-
fore, in our experiment, we found that it was very
difficult to get an accurate classification result by only
using one deep network.

To deal with the above observation, in this paper,
we trained 10 deep network models, and a voting
decision strategy was used to refine the segmentation
results among 10 trained models. Specifically, we
randomly selected ten thousand A-scans with GA as
positive samples and 10,000 normal A-scans without
GA as negative samples to train one model, and there
was no intersection among the training data used in
each model. Then we classified the 3D OCT data case
with these 10 models and obtained ten classification
results. Finally, the segmentation results were ob-
tained with the voting decision strategy by setting the
labels for each pixel as the voting probability greater
than 70%. Finally, a 7 X 7 median filtering was

Figure 3.

On example to show the various structural difference in OCT data. (a) A full projection image of one study case with GA,

where the ground truth is overlaid with the red line. (b) Three B-scan images of the cross section selected from (a) heighted with blue line,
where the GA lesions are overlaid with the blue regions. (c) The intensity profiles of the selected A-scans, where A-scans with GA and
normal A-scans (A-scans without GA) are highlighted with red and green lines, respectively.
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Figure 4. The voting decision strategy.

operated on the final voting results to ensure the
smoothness of the final segmentations.

Figure 4 shows the voting decision strategy where
the testing case is the same with that in Figure 3.
From this figure, we can observe that each classifica-
tion result obtained by these 10 models contains
misclassifications due to the impact of the defects and
various structural difference involved in OCT images.
The voted classification result demonstrates that the
proposed model can produce an accurate segmenta-
tion result, which is highly consistent with the ground
truth.

Evaluation Criterions and Comparison
Methods

In this paper, we used three criteria to quantita-
tively evaluate the performances of each comparison
method: overlap ratio (OR), absolute area difference
(AAD), and correlation coefficient (CC).

The overlap ratio is defined as the percentage of
area in which both segmentation methods agree with
respect to the presence of GA over the total area in
which at least one of the methods detects GA (Jaccard
index):

_Area(XN'Y)

ORX,Y)=—F—"F—F~
(X, ¥) Area(XUY)

(4)
where X and Y indicate the regions inside the
segmented GA contour produced by two different
methods (or graders), respectively. The operators N
and U indicate union and intersection, respectively.

The mean OR and standard deviation values are
computed across scans in the data sets.

The absolute area difference measures the absolute
difference between the GA areas as segmented by two
different methods:

AAD(X,Y) = |Area(X) — Area(Y)| (5)

Similar with OR, X, and Y indicate the regions
inside the segmented GA contour produced by two
different methods (or graders), respectively. The mean
AAD and standard deviation values are computed
across scans in the data sets.

The CC were computed using Pearson’s linear
correlation between the measured areas of GA
computed by the segmentation of different methods
or readers, measuring the linear dependence using
each scan as an observation.

In the comparison experiments, we mainly com-
pared with two related methods, called the Chen et
al. method”” and the Niu et al. method,” respec-
tively, the Chen et al. method is a semisupervised
method based on the geometric active contours,
while the Niu et al. method is an unsupervised
method based on Chan-Vese model. It should be
noted that both methods relied on the retinal layer
segmentation results. They needed extract the RPE
layers first, and then constructed the projection
images based on the pixels below RPE layers.
Finally, they performed their methods on 2D-
projected images. Comparatively, our proposed
algorithm directly processed 3D samples without
using any retinal layer segmentation results.

TVST | 2018 | Vol. 7 | No. 1 | Article 1



translational vision science & technology

Ji et al.

—Average Ground Truth

—Our Segmentation

Figure 5. Segmentation results overlaid on full projection images for eight example cases selected from eight patients in Dataset 1,
where the average ground truths are overlaid with a red line, and the segmentations obtained with the proposed model are overlaid with

blue line.

Testing I: Segmentation Results on the
Dataset With a Size of 512 X 128 X 1024

In the first experiment, we tested the proposed
model on Dataset 1, which contained 51 longitudinal
SD-OCT cube scans from 12 eyes of § patients with a
size of 512 X 128 X 1024. In the training phase, we
randomly selected 10,000 A-scans with GA as positive
samples and 10,000 normal A-scans without GA as
negative samples to train one model, and there was no
intersection among the training data used in each
model. In the testing phase, we directly fed the testing
3D case into the proposed model to get the final
segmentation result.

In Figure 5, eight example cases selected from eight
patients were used to show the performance of the

Table 2. Intraobserver and Interobserver CC, AAD
and OR Evaluations?®??

A1 VS Az B1 VS Bz A12 VS 312
CC 0.998 0.996 0.995
AAD, mm? 024 += 021 024 * 041 0.31 * 047
AAD, % 3.70 £ 297 334 =537 468 = 5.70
OR, % 93.29 = 3.02 93.06 = 5.79 91.28 * 6.04

proposed model, where the red contours show the
average ground truths and the blue contours are the
segmentation results. In each figure, the ground truths
and the segmentation results are overlaid on the full
projection images, where the red line is the outline of
average ground truth, and the blue line shows the
outline of the segmentation results obtained by the
proposed model. From this figure, we found that the
full projection images contained obvious intensity
inhomogeneity and low contrast between GA lesions
and normal regions. Using the deep network and
voting strategy, the proposed model can produce
smooth and accurate segmentation results, which are
highly consistent with the average ground truths.
The quantitative results in interobserver and
intraobserver agreement evaluation for Dataset 1
are summarized in Table 2, where A4;(i=1,2)
represents the segmentations of the first grader in
the i-th session, and B;(i=1,2) represents the
segmentations of the second grader in the i-th session.
Interobserver differences were computed by consid-
ering the union of both sessions for each grader: 4g»
and Bjg, represent the first and second grader,
respectively. The intraobserver and interobserver
comparison showed very high CC, indicating very
high linear correlation and between different readers
and for the same reader at different sessions. The
overlap ratios (all >90%) and the absolute GA area
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Figure 6. Comparison of segmentation results overlaid on full projection images for six example cases selected from six patients in
Dataset 1, where the average ground truths are overlaid with a white line, and the segmentations obtained with the proposed model,
Chen et al’s*® method and Niu et al.’s>* method are overlaid with red, green, and blue lines, respectively. In each subfigure, the top image
shows the segmentation results overlaid on full projection images, and the bottom image shows the enlarged view of the rectangles

region marked by an orange box.

differences (all <5%) indicate very high interobserver
and intraobserver agreement, highlighting that the
measurement and quantification of GA regions in the
generated projection images seem effective and
feasible.”"””

Then we qualitatively compared the outlines of the
segmentations obtained by the proposed model and
two comparison methods on six examples in Figure 6.
In each figure, the white line shows the average

ground truth. The green, blue, and red lines show the
Chen et al.,”° Niu et al.,”> and our segmentations,
respectively. For the second and the fifth cases, all the
comparison methods could produce satisfactory
results because the structure of GA is obvious and
the corresponding contrast is higher. For the first and
the sixth cases, due to the impact of the low contrast,
both the Chen et al.”’ and Niu et al.”* methods failed
to detect parts of the boundaries between GA lesions

TVST | 2018 | Vol. 7 | No. 1 | Article 1
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and non-GA regions. The Niu et al.”> method
misclassified normal regions as GA lesions for the
third and sixth cases, while the Chen et al.>’ method
misclassified GA lesions as normal regions for the
fourth case. Moreover, in the fourth case, the upper
left corner of the GA lesions were all missed by the
Chen et al.”” and Niu et al.>> methods. Comparative-
ly, the proposed model qualitatively outperformed the
other two methods even without using any retinal
layer segmentation results, and obtained higher
consistency with the average ground truths.

Figure 7 shows the quantitative comparison results
between our segmentation results and manual gold
standards (average expert segmentations) on all the
cases in Dataset 1, where the top figure shows the OR
comparison, the middle figure shows the AAD
comparison measured with volume, and the bottom
figure shows the AAD comparison results measured
with percentage. In each subfigure, the green rhom-
bus, blue squares, and red circles, respectively,
indicate the segmentation accuracy of the Chen et
al.,”’ Niu et al.,”> and our methods. From this figure,
we can quantitatively observe that the proposed
model can produce more accurate segmentation
results in most cases. Table 3 summarizes the average
quantitative results between the segmentation results
and manual gold standards (individual reader seg-
mentations and the average expert segmentations) on
Dataset 1. Overall, our model is capable of producing
a higher segmentation accuracy to the manual gold
standard than both the Chen et al.”” and Niu et al.”?
methods by presenting higher CC (0.986 vs. 0.970 and
0.979), lower AAD (11.49% vs. 27.17% and 12.95%),
and higher OR (86.94% vs. 72.6% and 81.86%). A
higher CC indicates that our model resulted in more
similar results to the ground truth. Lower AAD
indicates the areas estimated by the proposed model
are closer to those manual productions. Higher OR
indicates the proposed model can obtain more similar
results to the manual outlines. Moreover, the
proposed model is more robust to all the cases in
Dataset 1 due to the lower standard deviations. In
conclusion, the proposed algorithm showed better
segmentation performances than the other two
comparison methods on Dataset 1.

Testing Il: Segmentation Results on the
Dataset With a Size of 200 X 200 X 1024

In the second experiment, we tested the proposed
model on Dataset 2, which contains 54 SD-OCT cube
scans from 54 eyes of 54 patients with a size of 200 X

200 X 1024. Similar to the first experiment, in the
training phase, we randomly selected 10,000 A-scans
with GA as positive samples and 10,000 normal A-
scans without GA as negative samples to train one
model, and there was no intersection among the
training data used in each model. In the testing phase,
we directly fed the testing 3D case into the proposed
model to obtain the final segmentation results.

In Figure 8, eight example cases selected from eight
patients were used to show the performance of the
proposed model, where the red and blue contours
show the average ground truths and segmentation
results, respectively. In each figure, the ground truth
and the segmentation results are overlaid on the full
projection images with the red and blue lines,
respectively. We obtained similar results in that the
proposed model could produce accurate results highly
consistent with the average ground truths.

We qualitatively compared the segmentations ob-
tained by the proposed model and two comparison
methods on six examples in Figure 9. In each figure,
the average ground truths were overlaid with the white
lines, and the segmentations obtained with the Chen et
al.”’, Niu et al.,”” and the proposed methods were
overlaid with the green, blue, and red lines, respective-
ly. In the first and fifth cases, all the comparison
methods could produce satisfactory results due to the
higher contrast of GA lesions. In the second and the
sixth examples, the Chen et al.”’ and Niu et al.*?
methods obtained grossly misclassified regions. The
Niu et al.*> method failed to segment the third case,
while the Chen et al.”® method failed to segment the
fourth case. Moreover, in the last example, the region
inside the GA lesions were all misclassified by both the
Chen et al.>’ and Niu et al.”> methods. Comparatively,
without using any retinal layer segmentation results,
our proposed model qualitatively outperformed the
other two methods, and obtained results more
consistent with the average ground truths.

Figure 10 shows the quantitative comparison
results between the segmentation results and average
expert segmentations on all the cases in Dataset 2,
where the figures from top to bottom show OR
comparison, AAD comparison measured with vol-
ume, and AAD comparison measured with percent-
age. In each subfigure, the green rhombus, blue
squares, and red circles, respectively, indicate the
segmentation accuracy of the Chen et al.,” Niu et
al.,” and our methods. Table 4 summarizes the
average quantitative results between the segmentation
results and manual gold standards on Dataset 2.
Overall, our model was capable of producing higher
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Table 3. The Summarizations of the Quantitative Results (Mean = Standard Deviation) Between the
Segmentations and Manual Gold Standards (Individual Reader Segmentations and the Average Expert

Segmentations) on Dataset 1

Methods Criterions  Average Expert Expert A, Expert A, Expert B, Expert B,
Chen et al?® CC 0.970 0.967 0.964 0.968 0.977
method AAD, mm? 144 + 1.26 131 = 1.28 1.40 = 1.31 1.60 += 1.33 147 = 1.14
AAD, % 2717 = 2206 25.23 = 2271 26.14 = 2148 29.21 £ 2217 27.62 = 20.57
OR, % 72.60 = 12.01 7326 + 1561 73.12 = 15.15 71.16 = 1542 72.09 = 14.82
Niu et al.*? cC 0.979 0.975 0.976 0.976 0.975
method AAD, mm? 0.81 = 0.94 0.76 = 0.99 0.85 = 1.04 0.98 + 1.08 0.90 = 1.05
AAD, % 1295 =+ 11.83 1262 = 12.86 13.32 = 12.74 1491 + 12,65 14.07 = 11.78
OR, % 81.86 = 12.01 81.42 = 12.12 81.61 = 12.29 80.05 = 13.05 80.65 = 12.51
The proposed CC 0.986 0.986 0.985 0.985 0.991
model AAD, mm? 0.67 = 0.73 0.55 = 0.74 0.62 = 0.80 0.82 + 0.83 0.69 + 0.66
AAD, % 11.49 £ 11.50 9.75 + 1135 10.32 = 11.09 13.58 + 1241 11.73 = 9.35
OR, % 86.94 + 8.75 8764 = 875 8771 =832 85.17 =940 86.37 = 7.67

Boldface values indicate the highest results.

segmentation accuracies to the manual gold standards
than both the Chen et al.”” and Niu et al.”” methods
by presenting higher CC (0.995 vs. 0.937 and 0.955),
lower AAD (8.30% vs. 19.68% and 22.96%), and
higher OR (81.66% vs. 65.88% and 70.00%). More-
over, the proposed model was more robust to all the
cases in Dataset 2 due to the lower standard
deviations. In conclusion, the proposed algorithm

showed better segmentation performance than the
other two comparison methods on Dataset 2.

Testing lll: Segmentation Results With
Patient-Independent Testing

In Testing I and Testing II, A-scans used for
training came from the same patients that were later

— Average Ground Truth

—Our Segmentation

Figure 8. Segmentation results overlaid on full projection images for eight example cases selected from eight patients in Dataset 2,
where the average ground truths are overlaid with red line, and the segmentations obtained with the proposed model are overlaid with

blue line.
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A
Average Ground Truth —Our Segmentation — Chen's Segmentation —Niu's Segmentation

Hs

Figure 9. Comparison of segmentation results overlaid on full projection images for six example cases selected from six patients in
Dataset 2, where the average ground truths are overlaid with a white line, and the segmentations obtained with the proposed model, the

|.20 |.22

Chenetal.”" and Niu et a

methods are overlaid with red, green, and blue lines, respectively. In each subfigure, the top image shows the

segmentation results overlaid on full projection images, and the bottom image shows the enlarged view of the rectangles region marked

by an orange box.

tested on, which means that these two experiments
were not independent on the patient level. To further
verify the performance of the propose model on
patient-independent testing, in this experiment, we
respectively divided Dataset 1 and Dataset 2 into two
disjoint parts on the patient level. Specifically, for
Dataset 1, 51 cases from eight patients were divided
into two parts: the first part contains 25 images from
four patients and the second part contains the other
26 images from the other four patients. For Dataset 2,

54 eyes from 54 patients were also divided into two
disjoint parts, and each part contains 27 images from
27 patients without any overlap. In the training phase,
we randomly selected 10,000 A-scans with GA as
positive samples and 10,000 normal A-scans without
GA as negative samples from one part to train the
models. In the testing phase, we directly fed the
testing 3D cases in the other part into the proposed
model to get the final segmentation result. Therefore,
the training and testing sets are totally independent

13
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Figure 10. The quantitative comparisons between the segmentations and average expert segmentations on all the cases in Dataset 2.
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Table 4. The Summarizations of the Quantitative

Results (Mean = Standard Deviation) Between the

Segmentations and Manual Gold Standards on Dataset 2

Methods Chen et al.?° Segmentation Niu et al.”? Segmentation Our Segmentation
CC 0.955 0.937 0.995

AAD, mm? 0.95 + 1.28 121 * 1.58 0.34 = 0.27
AAD, % 19.68 £ 22.75 2296 + 21.74 8.30 = 9.09
OR, 65.88 + 18.38 70.00 = 15.63 81.66 = 10.93

Boldface values indicate the highest results.

with each other on the patient level. Table 5
summarizes the average quantitative results between
the segmentation results obtained with patient-inde-
pendent testing procedure and manual gold standards
on both data sets. For the first dataset, our algorithm
on patient-independent testing procedure obtains a
total mean OR 83.45% =+ 9.56%, AAD 14.49% =+
14.30%, and CC 0.975. For the second dataset, the
mean OR, AAD, and CC of the proposed method
patient-independent testing procedure are 78.00% =+
12.86%, 11.86% = 12.09%, and 0.992, respectively.
The performances of patient-independent testing
procedure declined approximately 4% compared with
the quantitative results of the proposed model under
patient-dependent procedure (Testing I and Testing
II). However, performances under the patient-inde-
pendent procedure still outperform the Chen et al.”’
and Niu et al.”” methods.

Testing IV: Segmentation Results With Cross
Testing

In the last experiment, we executed a cross-testing
procedure by using the trained models on one dataset
to test the cases in the other dataset. Specificity, we
tested all the cases in Dataset 1 with the models
trained by Dataset 2, and we tested all the cases in
Dataset 2 with the models trained by Dataset 1. It
should be noted that we did not retrain the models,
instead we directly used the models trained in the first
and second experiments.

Figure 11 shows the cross testing results comparing
with the original segmentations of the proposed

Table 5. The Summarizations of the Quantitative

model and the ground truths. The figures in the first
line shows the cross segmentations on four cases
selected from Dataset 1, while the figures in the first
line shows the cross segmentations on four cases
selected from Dataset 2. In each figure, the average
ground truths, the segmentations obtained with the
proposed model, and the cross segmentation results
were overlaid with red, green, and blue lines,
respectively. From Figure 11, we can observe that
the proposed model can still produce satisfactory
results with cross testing procedure. However, com-
pared with the original segmentations of the proposed
model, the results obtained with cross testing contain
misclassifications, especially for the regions near
boundaries.

Table 6 summarizes the average quantitative
results between the segmentation results obtained
with cross-testing procedure and manual gold stan-
dards on both data sets. The performances of cross-
testing procedure declined sharply (~10%) compared
with the original results of the proposed model.
However, the cross-testing procedure still outperform
the Chen et al.”’ method, and can produce similar
accuracy comparing with the Niu et al.”> method.

Discussion

In this paper, based on the deep neural networks,
we proposed an automatic and accurate GA segmen-
tation method for SD-OCT images without using any
retinal layer segmentation results. This is the first

Results (Mean = Standard Deviation) Between the

Segmentations and Manual Gold Standards on Two Data Sets for Patient-Independent Testing

Training on Part 1 and Testing on Part 2

Training on Part 2 and Testing on Part 1

Strategy

Criterions ~ AAD mm? AAD, % OR, % AAD, mm? AAD, % OR, %
Dataset 1 1.07 + 1.33 1954 = 17.46 80.27 = 11.78 059 = 043  9.64 + 8.15  86.50 + 5.45
Dataset 2 0.52 + 0.31 15.10 = 13.74 7538 + 1327 038 =032 849 + 919  80.72 + 12.09
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Figure 11.

—Average Ground Truth —Our Segmentation — Cross Segmentation

Segmentation results overlaid on full projection images for four cases selected Dataset 1 (top row) and four cases selected

Dataset 2 (bottom row), where the average ground truths, the segmentations obtained with the proposed model, and the cross
segmentation results are overlaid with red, green, and blue lines, respectively.

method that segments GA lesions from OCT images
using deep learning technologies.

As listed in Table 3, our model produced higher
segmentation accuracies to the manual gold standards
generated by two different readers and repeated at
two separated sessions than both the Chen et al.”” and
Niu et al.”> methods. Our model had a higher CC
(0.986), lower AAD (11.49%), and higher OR
(86.94%). The proposed method also improved
segmentation accuracy over 5% when compared with
related algorithms on Dataset 1.

As summarized in Table 4, the proposed model
also obtained higher segmentation accuracies when
compared with the registered ground truths manually
drawn in FAF images (CC: 0.995, AAD: 8.30%, OR:

81.66%), and improve segmentation accuracy by over
10% when comparing with related algorithms on
Dataset 2. The example segmentations shown in
Figures 5 and 8 corroborate the highly consistent
with the average ground truths, and the comparison
results shown in Figures 6, 7, 9, and 10 further
demonstrate the superior performances comparing
with the related methods.

Compared with the results summarized in Table 5
and the results of the proposed model listed in Tables
3 and 4, the segmentation accuracy decreased
approximately 10% on both data sets. The main
reasons were: (1) the ground truths were inherently
different. As shown in Figure 1, the ground truths of
two data sets were obtained through different

Table 6. The Summarizations of the Quantitative Results (Mean = Standard Deviation) Between the
Segmentations and Manual Gold Standards on Two Data Sets

Dataset Dataset 1 Dataset 2
Average FAF

Ground Truth Expert Expert A, Expert A, Expert B, Expert B, Segmentation

CcC 0.940 0.937 0.942 0.946 0.939 0.962

AAD, mm? 1.03 = 1.14 1.02 = 1.21 1.03 = 1.12 1.01 = 1.18 1.07 = 1.15 0.92 = 0.76

AAD, % 1436 = 930 1296 = 9.15 1405 * 936 13.65 £9.18 14.81 £ 939 1649 *= 13.85

OR, % 7851 £598 7923 =587 79.16 =598 7869 * 558 7840 * 599 7277 £ 12.71
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Table 7. The Summarizations of the Quantitative Results (Mean = Standard Deviation) Between the
Segmentations and Manual Gold Standards (Individual Reader Segmentations and the Average Expert
Segmentations) on Dataset 1 by Applying One Deep Model and Shallow Voting Model

Methods Criterions  Average Expert Expert A, Expert A, Expert B, Expert B,
One deep CC 0.900 0.903 0.900 0914 0.905
model AAD, mm? 141 = 1.82 143 = 1.85 1.39 = 1.85 133 = 1.63 137 = 1.78
AAD, % 2049 = 24.69 2095 *= 24.68 20.81 = 2528 19.37 * 23.52 19.86 = 24.05
OR, % 7286 = 15.94 7272 = 1631 73.14 = 1626 72.43 = 1558 72.67 *= 15.51
Shallow cC 0.963 0.965 0.963 0.968 0.970
voting AAD, mm? 0.84 = 1.00 0.79 = 0.94 0.80 = 1.00 0.89 *+ 0.96 0.83 = 0.90
model AAD, % 1535 + 16.89 1429 = 16.06 1426 = 17.19 1591 = 17.03 15.07 = 15.29
OR, % 79.57 = 12,61 7995 * 12.85 80.18 = 12.67 7834 = 1272 79.16 = 11.93

procedures. The ground truths were drawn based on
the OCT data itself for Dataset 1, while the ground
truths were registered based on drawn outlines in
FAF images for Dataset 2. Therefore, the perfor-
mance of cross testing was better in Dataset 1 than
those in Dataset 2. (2) The structure of the data
varied. As shown in Figure 3, we found that even
within one dataset, the intensity profiles of A-scans
varied greatly, which meant that it was very difficult
for the corresponding deep learning model to capture
general structural information or general features
among these A-scans. When we executed the cross
testing, this difficulty was further magnified and the
performance of the cross testing procedure declined
sharply (~10%) compared with the original results of
the proposed model. Ultimately though, the cross-
testing procedure still outperformed the Chen et al.*’
method, and produced similar accuracy when com-
pared with the Niu et al.>> method.

Consequently, without retinal layer segmentation,
the proposed algorithm was able to obtain a higher
segmentation accuracy when compared with the state-
of-the-art methods relying on the retinal layer
segmentations. Our methods may provide reliable
GA segmentations for SD-OCT images and be useful
for clinical diagnosis.

In this paper, a deep voting model is proposed to
segment GA in SD-OCT images, which contains two
keywords (i.e., deep and voting). To further test the
efficiency of the proposed deep voting model, we
implemented two other models: the first model was a
shallow voting model in which the voting strategy was
applied on a shallow neural network with a single
hidden layer. Therefore, in shallow voting model, the
structure of the SA neural network was composed of
three layers, including one input layer, one hidden/SA
layer, and one output layer. Finally, a voting decision

strategy was used to refine the segmentation results
among 10 trained models. The second model was
called one deep model by training a single deep model
with 100% of the training set data without using the
voting strategy. It should be noted that the structure
of the SA deep network is the same with that in deep
voting model.

Then, we tested the above two models (i.e., one
deep model and shallow voting model, on Dataset 1
and Dataset 2). For the shallow voting model, we
randomly selected 10,000 A-scans with GA as positive
samples and 10,000 normal A-scans without GA as
negative samples to train one model, and there was no
intersection among the training data used in each
model. For the one deep model, we used 10° A-scans
with GA as positive samples and 10° normal A-scans
without GA as negative samples to train the model.
The testing phase is same for all the models. The
quantitative results in interobserver and intraobserver
agreement evaluation for Dataset 1 are summarized in
Table 7. Table 8 summarizes the average quantitative
results between the segmentation results and manual
gold standards on Dataset 2. It should be noted that

Table 8. The Summarizations of the Quantitative
Results (Mean = Standard Deviation) Between the
Segmentations and Manual Gold Standards on Dataset
2 by Applying One Deep Model and Shallow Voting
Model

One Deep Shallow Voting
Methods Model Model
CC 0.860 0.964
AAD, mm? 3.53 = 2.77 0.97 * 0.89
AAD, % 55.16 = 42.35 22.87 = 2343
OR, % 52.44 + 23.00 56.91 = 19.30
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Table 9. The Quantitative Results of the Proposed Model Based on the Patient Group and Eye Group

Cubes Patient-Dependent Procedure
Dataset Group Index N AAD, mm? AAD, % OR, %
Dataset 1 Patient-based P1 5 0.14 + 0.09 12.00 + 7.89 87.27 *= 5.43
groups P2 6 0.27 = 0.18 9.62 * 5.09 85.22 + 6.57
P3 9 1.54 = 1.50 24.75 = 20.36 77.16 = 14.62
P4 4 1.02 = 0.31 6.04 = 2.32 92.16 = 0.53
P5 6 0.48 *= 0.41 6.87 * 5.87 88.54 + 3.86
P6 10 0.73 = 0.25 12.37 £ 6.35 86.92 = 547
P7 10 0.31 = 0.14 479 = 217 9343 + 1.29
P8 1 0.72 8.41 88.52
Eye-based oD 31 0.63 = 0.83 11.56 = 13.98 87.11 = 1040
groups (ON) 20 0.74 = 0.74 11.37 = 6.24 86.68 = 5.53
Dataset 2 Eye-based oD 31 0.38 £ 0.29 8.60 = 947 80.57 = 12.59
groups (ON) 23 0.27 £ 0.24 8.58 = 948 82.03 = 9.79

the results of the proposed deep voting model were
listed in Tables 3 and 4, respectively.

From Tables 7 and 8 we can observe that the
shallow voting model outperforms the deep model
without using the voting strategy, which means that
the voting strategy is an efficient way to further
improve the performance of the model. Comparing
the results obtained with the shallow voting model
and the proposed deep voting model, we can find that
the representations learned by stacked autoencoders
can decrease the redundant information of the input
data, and preserve more useful information for the
final classification.

In our experimental results, we quantitatively
evaluated the proposed model over all the OCT cases
without considering any patient group or eye group.
To further demonstrate the robustness of proposed
model on different patients and different eyes, Table 9
lists the grouping quantitative results based on the
patient-dependent procedure (Testing I and Testing
II) and patient-independent procedure (Testing III).
For Dataset 1, 51 SD-OCT cubes from 12 eyes of 8
patients were firstly grouped based on the patients as
8 groups (from P1-P8), and then grouped based on
eyes as twos groups where right eye group is oculus
dexter (OD) and left eye group is oculus sinister (OS).
For Dataset 2, 54 SD-OCT cube scans from 54 eyes of
54 patients were grouped based on eyes as two groups
(i.e., OD group and OS group). From Table 9 we can
observe that the proposed model is robust to the
patient group and eye group.

Our proposed model moves past the limitations
that retinal layer segmentation present, thus making it
more practical in real-life applications. Because GA is

generally associated with retinal thinning and loss of
RPE and photoreceptors, state-of-the-art algorithms
mainly segment the GA regions based on the
projection image generated with the voxels between
the RPE and the choroid layers, which means the
corresponding methods rely on the accuracy of retinal
layer segmentations. Comparatively, the data samples
(A-scans) with 1024 features, without using any layer
segmentation results, are directly fed into the network
during the training and testing phases.

Our method also does not rely on large data sets.
In the training phase for the Dataset 1 and Dataset 2,
we only, respectively, needed approximately 5% and
9% of the total data to train our model. The proposed
algorithm also showed data transfer capability, which
was demonstrated with the third experiment. Even
though the corresponding segmentation accuracy
obtained by the cross testing procedure decreased
approximately 10% on both data sets when compared
with the original proposed model, the cross-testing
procedure could still produce satisfactory results.

There are also some limitations about the pro-
posed algorithm, which are summarized as follows:

(1) an interferometric method based on coherent
optical beams, one of the fundamental challenges with
OCT imaging is the presence of speckle noise in the
tomograms. However, in the proposed model, the 1D
data samples (A-scans) were directly fed into the
network as the input layer, which meant that the
spatial consistency among samples were not taken
into account. Therefore, the proposed deep voting
model was sensitive to the noise, and data prepro-
cessing for image denoising was necessary. Our future
work will focus on how to take the spatial consistency
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Table 9. Extended
Patient-Independent Procedure

AAD, mm? AAD, % OR, %
0.21 £ 0.10 18.29 + 9.06 82.72 £ 6.70
0.42 *+ 0.41 14.95 + 8.50 80.97 * 6.83
1.88 + 1.84 29.03 + 25.05 73.90 * 16.32
1.27 £ 0.86 7.76 = 5.39 89.99 + 1.73
0.55 = 043 7.81 = 6.06 85.21 *= 4.19
0.81 = 0.38 14.29 = 9.11 85.26 = 7.49
0.38 = 0.39 6.08 *= 6.37 88.53 = 3.07
1.26 15.04 82.33

0.737 £ 1.03 13.85 £ 17.33 83.48 = 11.08
0.964 = 0.97 1548 = 7.90 8341 = 6.83
0.504 = 0.36 11.13 £ 10.70 77.74 = 13.38
0.377 £ 0.26 1291 £ 14.05 78.36 = 12.40

among samples into account in the deep learning
models, for example, using convolutional neural
networks or recurrent neural networks. (2) The voting
strategy used in this paper is heuristic and intuitive,
which treats each result obtained by ten models as
equally important. In the future, we plan to auto-
matically detect the importance for each model. (3)
How deep should the deep network be? The deep
network used in this paper is actually not very deep.
In our experiments, we tried to add more hidden
layers to further improve the performance. Unfortu-
nately, in GA segmentation, we found that the
accuracy improvement with more hidden layers was
very limited and only served to increase the training
cost. This is mainly due to the varying structural
differences in OCT data. As shown in Figure 3, the
intensity profiles of the selected samples demonstrate
that the structure for A-scans with GA and normal A-
scans without GA vary greatly, and it is very difficult
for the corresponding deep learning model to capture
the uniform or general structural information from
these A-scans. In the future, we plan to detect the
foveal center in the OCT data, which would further
reduce the structural variance among different OCT
scans and improve the performances of deep neural
networks. (4) Instead of using the current widely used
networks, like AlexNet and GoogleNet, in this paper,
we used the sparse autoencoder to construct our deep
model to discover and represent the sparsity of OCT
data. From Figure 2, a trend of sparsity can be clearly
observed with the data propagation from the top
layer to the bottom layer of the network, which
further indicates the efficiency of the proposed model.
How to segment GA with pretrained deep network is

out of the scope of this paper and subjects to future
research.
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