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ABSTRACT

Non-selenocysteine-containing phospholipid hy-
droperoxide glutathione peroxidase (NPGPx or
GPx7) is an oxidative stress sensor that modu-
lates the antioxidative activity of its target pro-
teins through intermolecular disulfide bond forma-
tion. Given NPGPx’s role in protecting cells from ox-
idative damage, identification of the oxidative stress-
induced protein complexes, which forms with key
stress factors, may offer novel insight into intra-
cellular reactive oxygen species homeostasis. Here,
we show that NPGPx forms a disulfide bond with
the translational regulator cytoplasmic polyadenyla-
tion element-binding protein 2 (CPEB2) that results
in negative regulation of hypoxia-inducible factor 1-
alpha (HIF-1�) RNA translation. In NPGPx-proficient
cells, high oxidative stress that disrupts this bond-
ing compromises the association of CPEB2 with HIF-
1� RNA, leading to elevated HIF-1� RNA transla-
tion. NPGPx-deficient cells, in contrast, demonstrate
increased HIF-1� RNA translation under normoxia
with both impaired induction of HIF-1� synthesis
and blunted HIF-1�-programmed transcription fol-
lowing oxidative stress. Together, these results re-
veal a molecular mechanism for how NPGPx medi-
ates CPEB2-controlled HIF-1� RNA translation in a
redox-sensitive manner.

INTRODUCTION

Reactive oxygen species (ROS) are natural byproducts of
oxygen-dependent cellular reactions, such as the produc-
tion of superoxide (O2

−) from mitochondrial respiration
and oxidative protein folding in the endoplasmic reticulum
(ER) (1,2). ROS are important signaling molecules criti-
cal for maintaining homeostasis (3–5). However, cumulative

overproduction of ROS can cause macromolecular damage
that contributes to a spectrum of physiological disorders or
dysfunction, like cancer (6) and aging (7). In an effort to
counter this threat, cells have developed many enzymatic re-
dox mechanisms to eliminate excessive ROS. For example,
the family of superoxide dismutases initially converts super-
oxide into hydrogen peroxide (H2O2) that is subsequently
metabolized to water and oxygen by catalase. Alternatively,
thioredoxin peroxidases or glutathione peroxidases (GPx)
can reduce H2O2 using thioredoxin or glutathione, respec-
tively, as electron donors in the reactions (8–10).

The mammalian GPx family consists of eight phyloge-
netically related members (GPx1–8) with diverse subcellu-
lar distributions. Despite their common action to balance
intracellular ROS levels, mouse knockouts of different GPx
proteins display a broad range of phenotypic effects (11,12).
GPx1 was the first identified and the most abundant GPx
(13), but GPx1, GPx2 or GPx3 knockout (KO) mice are vi-
able with grossly normal phenotypes (14–16). Loss of GPx4
or GPx5 results in defective male fertility (17,18). GPx6-
or GPx8-deficient mice have not been reported. Of particu-
lar interest, GPx7 (i.e. NPGPx) KO mice show systemic ox-
idative stress, increased tumorigenesis, obesity and shorter
life span (19,20). Interestingly, NPGPx does not have en-
zymatic activity (21,22), but it senses and transmits ROS
signaling by transferring the disulfide bonding between its
Cys57 and Cys86 residues to downstream effectors, which
are involved in obesity, carcinogenesis, protein folding or
degradation of non-targeting siRNA stress (19–20,22–26).
However, the mechanistic details of how NPGPx alleviates
oxidative stress remain to be explored.

HIF-1� is a master regulator for controlling homeo-
static responses to hypoxia or various oxidative stresses
by activating transcription of many genes important for
angiogenesis, metabolism and cell survival (27–29). Inter-
estingly, HIF-1� is constantly synthesized and degraded
under normoxic conditions. In response to hypoxia- or
chemical-induced oxidative stress, HIF-1� protein levels
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are rapidly increased by simultaneous blockade of degra-
dation and activation of RNA translation (27–29). Previ-
ously, we found that CPEB2 interacts with eukaryotic elon-
gation factor 2 (eEF2) on ribosomes and inhibits guanosine
triphosphate hydrolysis activity of eEF2 to negatively reg-
ulate HIF-1� RNA translation (30). This mechanism ex-
plains the rate-limiting step of HIF-1� RNA translation
at elongation instead of initiation (30). Under normoxia,
HIF-1� is synthesized at a reduced rate but still under-
goes proteasome-mediated degradation. Such an energy-
consuming and counterproductive manner of HIF-1� pro-
tein synthesis ensures that HIF-1� RNA remains ribosome-
associated, thereby facilitating an urgent response to stress.
Under increased oxidative stress, the release of CPEB2 from
HIF-1� RNA enhances the translation elongation rate of
HIF-1� RNA to promptly produce HIF-1� protein (30).
However, the underlying mechanism explaining this obser-
vation remains to be elucidated.

NPGPx is a critical sensor of oxidative stress. Whether
NPGPx plays a role in controlling HIF-1� expression is an
open question. In this communication, we found that HIF-
1� RNA translation was aberrantly upregulated in NPGPx-
deficient mouse embryonic fibroblasts (MEFs) under nor-
moxia. Since CPEB2 is the only RNA-binding protein re-
ported to suppress HIF-1� synthesis under oxygenated con-
ditions (30–32), it is likely that NPGPx modulates HIF-
1� RNA translation via CPEB2. Next, we discovered that
NPGPx forms a covalent bond with CPEB2 primarily via
cysteine residues C57NPGPx and C157CPEB2. This interaction
promotes a conformational change in CPEB2 and enhances
its binding activity to HIF-1� RNA to suppress its transla-
tion. In NPGPx-proficient cells, high oxidative stress dis-
rupts this disulfide bonding between NPGPx and CPEB2,
which results in an increase of HIF-1� RNA translation.
In the absence of NPGPx, HIF-1� RNA translation is al-
ready upregulated, yet further induction of HIF1� synthesis
is impaired and HIF-1�-programmed transcription is de-
layed, in response to oxidative stress. Our findings provide
a mechanistic framework that links NPGPx and CPEB2 in-
teraction to the regulation of HIF-1� expression as a crucial
component of the immediate response to oxidative stress.

MATERIALS AND METHODS

Cell culture, lentiviral infection, transfection and plasmid
construction

MEFs were prepared using 13.5-day embryos of the indi-
cated genotypes following the procedures described previ-
ously (33). HEK-293T and HeLa cells were cultured in Dul-
becco’s modified Eagle’s medium (DMEM) with 10% fetal
bovine serum (FBS). Immortalized human 199Ct fibrob-
lasts were cultured in DMEM/F12 with 10% FBS (34). For
reconstituted expression of NPGPx, MEFs were plated in
10-cm dishes to 30% confluence and infected twice with
lentiviral particles expressing wild-type (WT) or Cys mutant
NPGPx proteins in the presence of 8 �g/ml polybrene. The
infected MEFs were selected with 2 �g/ml puromycin and
passaged once for further experiments. Transfection of plas-
mid DNAs was carried out using Lipofectamine 2000 (In-
vitrogen) following the manufacturer’s protocol. The mu-
tants of myc-CPEB2 described herein were generated us-

ing the QuikChange Site-Directed Mutagenesis Kit (Strata-
gene) according to the manufacturer’s protocol. The N-
terminal mutants of CPEB2 carrying various Cys mutations
were transferred to the Ms2CP plasmid for the tethered re-
porter assay (30). The other plasmid constructs were de-
scribed previously (19,30).

Sucrose density gradient for polysome profiling

The procedures for performing this analysis were as de-
scribed (30).

RNA extraction, cDNA synthesis and quantitative PCR
(qPCR)

Total RNAs from MEFs were extracted using the TRIzol
reagent (Invitrogen). One microgram of total RNA was
reverse-transcribed into cDNA and then 1/25 of the cDNA
reactions were used for qPCR. The primers used for qPCR
are mHIF-1�, 5′-TGGCAGCGATGACACAGAAA-3′
and 5′-AGTGGCTTTGGAGTTTCCGA-3′; hHIF-1�,
5′-TTCCTTCTCTTCTCCGCGTG-3′ and 5′-ACTTATC
TTTTTCTTGTCGTTCGC-3′; mGAPDH, 5′-AAGGG
CTCATGACCACAGTC-3′ and 5′-CAGGGATGATG
TTCTGGGCA-3′; hGAPDH, 5′-GAAAGCCTGCCGG
TGACTAA-3′ and 5′-GCCCAATACGACCAAATCA
GAG-3′; mVEGF, 5′-CTGGACCCTGGCTTTACTG
C-3′ and 5′-TGAACTTGATCACTTCATGGGACT-3′;
mGLUT-1, 5′-TCTTAAGTGCGTCAGGGCGT-3′ and 5′
-GTCACCTTCTTGCTGCTGGGA-3′; mHKII, 5′-GCC
TCGGTTTCTCTATTTGGC-3′ and 5′-ATACTGGTC
AACCTTCTGCACT-3′; m18S, 5′-TGGTTGATCCTGC
CAGGTAGCA-3′ and 5′-AGCGACCAAAGGAACCA
TAACTGA -3′.

Luciferase reporter assay

MEFs transfected with the DNA mixture containing 1 �g
WT or C3A3 myc-CPEB2 plasmid, 1 �g firefly luciferase
and 0.5 �g Renilla luciferase reporter plasmids, or 293T
cells transfected with the DNA mixture containing 0.3 �g
WT or C2A2 NPGPx plasmid, 0.3 �g WT or various Cys-
to-Ala mutant CPEB2N-Ms2CP, 0.3 �g firefly luciferase
and 0.1 �g Renilla luciferase reporter plasmids, were har-
vested and analyzed using Dual-Luciferase Reporter Assay
System (Promega).

Immunoprecipitation (IP) and RNA-IP

Immunoprecipitation (IP) was performed as described (19).
For RNA-IP, the procedures were as described (30).

Click-iT assay

The assay procedures were as described (30). Briefly, MEFs
were incubated with methionine-free medium for 45 min
and then metabolically labeled with 50 �M AHA (L-
azidohomoalanine). The labeled cells were harvested and
the protein concentration was determined by bicinchoninic
acid (BCA) protein assay (Pierce). Lysate proteins (100 �g)
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were conjugated with biotin-alkyne according to the man-
ufacturer’s protocol (Invitrogen), precipitated with Dyn-
abeads M-280 Streptavidin (Invitrogen) and analyzed by
immunoblotting.

Western blotting and antibodies

Cells were harvested and lysed with the IP buffer. The
lysates were boiled in sodium dodecyl sulphate (SDS) sam-
ple buffer (1% SDS, 50 mM Tris–HCl, pH 6.8, 10% glyc-
erol, 50 mM dithiothreitol (DTT) and 0.01% bromophe-
nol blue) and separated by SDS-polyacrylamide gel elec-
trophoresis (PAGE). For non-reducing SDS-PAGE, the
lysates were incubated with the sample buffer without DTT
at 37◦C for 5 min. Antibodies used in this study were
NPGPx (cat #GTX70266), green fluorescent protein (GFP,
cat #GTX113617) and glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH, cat #GTX100118) from GeneTex;
HIF-1� (cat #NB100–134) from Novus; ribosomal protein
S6 (RPS6, cat #74576) from Santa Cruz Biotechnology;
FLAG epitope (cat #F1804) from Sigma-Aldrich. CPEB2
and myc antibodies were described previously (30).

Recombinant protein purification and mass spectrum analysis
of disulfide bonding interaction

Because recombinant CPEB2 is very insoluble, the small
ubiquitin-like modifier (sumo) tag was appended to the N-
terminus of CPEB2 to increase the solubility of CPEB2
(35). Recombinant CPEB2 and NPGPx proteins were pu-
rified as described previously (19,30). Ten microgram of re-
combinant NPGPx were incubated with or without 1 �g of
recombinant CPEB2 at 25◦C for 2 h. The protein mixtures
were separated on an 8% non-reducing SDS-PAGE gel, fol-
lowed by PageBlue staining (Pierce). The protein bands of
interest were excised for in-gel digestion with trypsin and
chymotrypsin. The resulting peptides were analyzed by tan-
dem mass spectrometry. All MS/MS spectra were converted
to the mgf format and analyzed by MassMatrix (http://
www.massmatrix.net) according to the previously described
procedures (19).

UV-crosslinking RNA-binding and crosslinking-
immunoprecipitation (CLIP) assays

The RNA binding assay was performed as described (30).
Briefly, the radiolabeled probe of the CPEB2-binding se-
quence 1904 RNA (36) was mixed with the cell lysates con-
taining myc-CPEB2 proteins and treated with 120 J of UV
(254 nm) for 10 min. The UV-treated samples were digested
with 200 ng of RNase A at 37◦C for 10 min to remove the
excess RNA and then analyzed by SDS-PAGE. The corre-
sponding cell lysates were also assayed by immunoblotting
to determine the expression level of the myc-CPEB2 vari-
ants. The RNA binding activity was calculated based on the
amount of the labeled RNA with the total expressed myc-
CPEB2 protein.

For the crosslinking-immunoprecipitation (CLIP) assay
to measure RNA-binding in vivo, the procedure was as de-
scribed (36). Briefly, the 293T cells expressing full-length,
C595A mutant or the N-terminal fragment of myc-CPEB2
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Figure 1. HIF-1� RNA translation is upregulated in NPGPx-deficient
MEFs. (A and B) The NPGPx WT (+/+), heterozygous (+/−) and KO
(−/−) MEFs treated or not treated with MG132 for 3 h were harvested for
(A) immunoblotting of HIF-1�, NPGPx and GAPDH and (B) RT-qPCR
to analyze the levels of HIF-1� and N-cadherin (N-Cad) RNAs (normal-
ized with the GAPDH RNA level). (C) Two representative polysome pro-
files from NPGPx WT and KO MEFs. The polysomal distribution of HIF-
1� and GAPDH RNAs in the WT and KO MEFs were determined by
RT-qPCR using the RNAs isolated from each fraction.

were incubated overnight with fresh medium containing 50
�M 4-thiouridine. The cells were then irradiated with 120
J of UV (350 nm) for 10 min and harvested for IP using
myc IgG-bound magnetic Protein G beads (GE Healthcare
Life Sciences). The precipitated samples were treated with
calf intestinal phosphatase followed by T4 polynucleotide
kinase in the presence of � -32P-ATP to label the crosslinked
RNAs. The samples were then separated by SDS-PAGE.
The radioactive signals were monitored by the phosphorim-
ager Typhoon FLA 4100 system (GE Healthcare).

RESULTS

Elevated HIF-1� RNA translation in NPGPx-deficient
MEFs

To test whether the presence of NPGPx affects the ex-
pression of the oxidative stress-induced transcription fac-
tor HIF-1�, the NPGPx wild type (WT, +/+), heterozy-
gous (+/−) and knockout (KO, −/−) MEFs were treated
with or without the proteasome inhibitor MG132 and an-
alyzed by immunoblotting (Figure 1A). An approximately
two-fold increase of HIF-1� protein expression was ob-
served in the KO MEFs regardless of MG132 treatment
(Figure 1A). To explore how NPGPx affects HIF-1� pro-
tein expression, we measured HIF-1� RNA levels in WT,
heterozygous and KO MEFs, and found that their HIF-
1� RNA expression was similar (Figure 1B). This result
suggested that NPGPx did not significantly affect HIF-1�
RNA transcription. Next, we performed polysome profil-
ing (Figure 1C, left graphs) and found that the distribu-

http://www.massmatrix.net
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tion of HIF-1�, but not GAPDH, RNA was shifted to-
ward polysomes of heavy density (Figure 1C), suggesting
that NPGPx deficiency selectively enhances HIF-1� RNA
translation.

NPGPx covalently binds to CPEB2

To determine whether NPGPx associates specifically with
HIF-1� RNA, HEK293T cells expressing HA-tagged
WT (NPGPxWT) or mutant (NPGPxC2A2) NPGPx, whose
Cys57 and Cys86 are substituted with Ala to abolish its abil-
ity to form disulfide bonds with target molecules (19,25),
were used for IP by HA antibody. We found that HIF-1�
RNA was present in the immunoprecipitates of NPGPxWT

but not NPGPxC2A2 (Supplementary Figure S1). NPGPx
does not contain a canonical RNA-binding domain to
bind RNA directly. It may use its Cys residues to partici-
pate in HIF-1� mRNA translation regulation by binding
to other factors. Since translation of HIF-1� RNA un-
der normoxia is downregulated by CPEB2 (30), it is likely
that NPGPx affects HIF-1� synthesis through CPEB2.
We then performed co-IP assays to examine the NPGPx-
CPEB2 interaction using 199Ct fibroblast (immortalized
primary human fibroblasts) lysates. In the presence of
RNase A treatment, NPGPx and CPEB2 were reciprocally
co-immunoprecipitated (Figure 2A), suggesting their inter-
action is RNA-independent. Moreover, when the immuno-
precipitates were analyzed by non-reducing (i.e. without the
addition of reducing agent DTT) SDS-PAGE, CPEB2 was
detected in a high-molecular-weight (HMW) (>130 kDa)
complex along with NPGPx, and vice versa (Figure 2B). To
ensure the HMW complex was composed of CPEB2 and
NPGPx, we ectopically expressed myc-CPEB2 and HA-
NPGPx in 293T cells for co-IP assay using HA and myc an-
tibodies. Similarly, HA-NPGPx and myc-CPEB2 were re-
ciprocally associated in the HMW complex, which could be
disrupted by DTT (Figure 2C), indicating the interaction
between NPGPx and CPEB2 is mediated by disulfide bond-
ing. Furthermore, when we co-transfected, respectively, ei-
ther NPGPxWT or NPGPxC2A2 with myc-tagged CPEB2
(myc-CP2) in 293T cells, only WT, but not mutant, NPGPx
was co-immunoprecipitated with CPEB2 (Figure 2D), sup-
porting the conclusion that the CPEB2–NPGPx interaction
is mediated by disulfide bonding.

Loss of NPGPx compromises CPEB2-mediated inhibition of
HIF-1� RNA translation

CPEB2 has been shown to slow down de novo transla-
tion of HIF-1� through binding to the HIF-1� RNA 3′-
untranslated region (UTR) (30). It is likely that NPGPx
may affect CPEB2-controlled translation through this
mechanism. To test this possibility, we co-transfected the
enhanced GFP (EGFP) reporter appended with the HIF-1�
3′-UTR along with the EGFP-Ms2CP control plasmid (i.e.,
EGFP is fused with the dimeric bacteriophage Ms2 coat
protein to be separated distinctly from EGFP on the gel)
into NPGPx WT and KO MEFs for measuring new pro-
tein synthesis rate. As shown in Figure 3A, the newly syn-
thesized rate of EGFP, but not EGFP-Ms2CP, was faster
in the NPGPx-deficient MEFs (Figure 3A), suggesting that

NPGPx affects the translational process mediated by the
HIF-1� 3′-UTR. Next, we performed a reporter assay using
firefly luciferase (FLuc) appended with the HIF-1� 3′-UTR,
along with Renilla luciferase (RLuc) to normalize variation
in transfection efficiency, in NPGPx WT and KO MEFs
upon expression of myc-CPEB2. As shown in Figure 3B, the
expression of myc-CPEB2 in NPGPx WT cells significantly
suppressed FLuc synthesis, but not in KO MEFs. However,
suppression was observed when KO MEFs stably express-
ing ectopic NPGPxWT, but not NPGPxC2A2 (Figure 3B).
In addition, an RNA-IP assay demonstrated that the as-
sociation of CPEB2 and HIF-1� RNA was impaired in
NPGPx KO MEFs, in contrast to the N-cadherin (N-Cad)
RNA non-target control (Figure 3C). These results indi-
cate that NPGPx negatively modulates HIF-1� RNA trans-
lation through the 3′-UTR-bound translational repressor
CPEB2.

Identification of the cysteine residue(s) in CPEB2 necessary
for the interaction with NPGPx

To determine which cysteine residues of CPEB2 responsible
for the disulfide bond-mediated interaction with NPGPx,
recombinant CPEB2 and NPGPx proteins were combined
in vitro with or without DTT. The mixtures were then sep-
arated by SDS-PAGE and analyzed by PageBlue stain-
ing and immunoblotting. As shown in Figure 4A, CPEB2
formed a complex (denoted as band 1) with NPGPx under
non-reducing conditions. NPGPx in the band 2 region was
also detected in the absence of CPEB2 (Figure 4A). Both
bands were processed and analyzed by mass spectrometry.
A disulfide linkage between Cys57 of NPGPx and Cys157
of CPEB2 was identified in band 1 (Figure 4B, the mass
spectrum in Supplementary Figure S2A). In addition, an
intramolecular disulfide bond between Cys444 and Cys595
in the RRM2 segment of CPEB2 (Figure 4C) was also de-
tected in both complexes (Figure 4B, the mass spectrum in
Supplementary Figure S2B).

Based on the mass spectrometry data, the Cys157 residue
of CPEB2 appeared to be responsible for the binding to
NPGPx. To confirm this possibility, 293T cells express-
ing full-length (myc-CPEB2), N-terminus (myc-CP2N, a.a.
1–456) or C-terminal RNA-binding domain (RBD, myc-
CP2C, a.a. 457–716) CPEB2 constructs along with NPGPx
were used for co-IP assays with NPGPx antibody. As ex-
pected, only the full-length and N-terminus recombinant
proteins interacted with NPGPx (Supplementary Figure
S3). Sequence alignment of CPEB2 from several species also
revealed significant conservation among a cluster of three
cysteine residues (Cys157, 350, 444) in the N-terminus of
CPEB2 (Figure 5A). Of note, Cys350 is located in the al-
ternatively spliced exon 4. Next, we generated myc-CPEB2
mutants with alanine substitutions at the indicated cys-
teine sites, including C157A, C350A, C444A, C157/350A,
C157/444A, C350/444A and C157/350/444A (C3A3), for
testing binding to NPGPx by co-IP. We found that C157 is
the most critical residue for disulfide bonding with NPGPx
(Figure 5B). Nevertheless, it was noted that substitution
of all three Cys residues in the N-terminus of CPEB2
is required to completely abolish the binding to NPGPx
(Figure 5B). The NPGPx-binding ability of these CPEB2
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Figure 2. NPGPx covalently associates with CPEB2 via its Cys residues. (A) Reciprocal co-immunoprecipitation (co-IP). The immortalized human 199Ct
fibroblast lysates treated with RNase A were immunoprecipitated with control (Ctrl), NPGPx (GPx) or CPEB2 (CP2) IgG. The precipitated substances
were used for Western blotting of CPEB2, NPGPx and GAPDH. (B) The immunocomplexes pulled down by NPGPx or CPEB2 antibody were analyzed
by western blotting under reducing (+DTT) or non-reducing (−DTT) conditions. Under the non-reducing condition, a high-molecular-weight complex
(denoted by arrowheads) was immunodetected by NPGPx and CPEB2 antibodies. (C) The 293T cells expressing myc-CPEB2 and HA-NPGPx were lysed
and precipitated with HA or myc antibody, followed by immunoblotting with myc or HA antibodies under ± DTT. (D) The 293T cells expressing myc-
CPEB2 along with WT (NPGPxWT) or C2A2 mutant (C57/86A, NPGPxC2A2) of NPGPx were lysed and precipitated with NPGPx antibody, followed by
immunoblotting using myc or NPGPx antibodies.

mutants correlated with the amount of HMW complex
and oxidized form of CPEB2 detected in the non-reducing
SDS-PAGE (Figure 5C). These results suggest that the
N-terminal cysteine residues of CPEB2 are important for
binding to NPGPx.

Formation of disulfide bonding between NPGPx and CPEB2
is critical for the translational repression activity of CPEB2

To test whether the formation of the covalent bonding with
NPGPx is important for the translational repression activ-
ity of CPEB2, we expressed the WT and various CPEB2
mutants in cells and compared the amounts of HIF-1� pro-
tein in the presence of MG132 by immunoblotting. The
CPEB2 C3A3 mutant, which failed to bind to NPGPx
(Figure 5B), also did not repress HIF-1� RNA transla-
tion (Figure 5D). In contrast, the CPEB2 C2A2 mutants
(C157/350A and C157/444A) showed partial binding to
NPGPx (Figure 5B) and intermediate inhibition of HIF-1�
synthesis (Figure 5D). Expression of these CPEB2 variants
did not affect HIF-1� RNA levels (Figure 5D). Similarly,
the presence of either the CPEB2 C3A3 (C157/350/444A)

or NPGPx C2A2 (C57/86A) mutants was sufficient to abol-
ish CPEB2-suppressed translation of the FLuc-HIF-1� 3′-
UTR RNA using the reporter assay (Figure 5E). Although
CPEB2 binds to eEF2 via its N-terminus (30), none of these
CPEB2 C2A2 and C3A3 mutants were defective in asso-
ciation with eEF2 (Figure 5F). When the N-terminus of
CPEB2 (CP2N) carrying either the C2A2 or C3A3 muta-
tions fused to Ms2CP (i.e., a bacteriophage RNA-binding
protein that recognizes the unique stem-loop Ms2 sequence)
was used in the tethered function assay (30), all of these
CP2N-Ms2CP mutants were able to repress FLuc reporter
activity (Figure 5G). Thus, the NPGPx–CPEB2 covalent
interaction affects the function of the C-terminal RBD
of CPEB2, which is critical for CPEB2-controlled transla-
tional repression.

Interaction of NPGPx with CPEB2 at its N-terminal cys-
teine residues affects the C-terminal RNA-binding domain
activity

Oxidative stress causes the dissociation of CPEB2 from
HIF-1� RNA, resulting in augmentation of HIF-1� syn-
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thesis (30). Because the covalent interaction with NPGPx
relies mostly on the C157 residue of CPEB2, the formation
of the C57NPGPx–C157CPEB2 linkage likely affects disulfide
bonding at the C-terminal RBD to enhance CPEB2 RNA-
binding activity. To test this possibility, we used lysates from
cells expressing either the WT or C3A3 mutant of CPEB2
for the RNA-IP assay and found less HIF1-� RNA asso-
ciated with the C3A3 mutant (Figure 6A). Furthermore,
when we used cytoplasmic lysates prepared from 293T cells
overexpressing WT, the C157/444A mutant or the C3A3
mutant of CPEB2 for a UV-crosslinking RNA-binding as-
say and immunoblotting to measure RNA-binding activity,
the C3A3 mutant was again found to be defective (based on
a normalized value reflecting the ratio of RNA-binding sig-
nal versus the expression level) (Figure 6B). Apparently, the
cysteine mutation at the N-terminus of CPEB2 affects the
RNA-binding activity of its C-terminal RBD.

Interestingly, a disulfide link between Cys444 and Cys595
in the RNA recognition motif 2 (RRM2) of CPEB2 was
identified (Figure 4B). The interaction of NPGPx–CPEB2
may facilitate the formation of this Cys444–Cys595 bond to
alter the RNA-binding activity of CPEB2. We then tested
the RNA binding activity of CPEB2 in the presence of
DTT and/or with C3A3 mutations, and found that un-
der both conditions, CPEB2 RNA-binding activity was sig-
nificantly reduced (Figure 6C). However, the addition of
C595A mutation in CPEB2 under both aforementioned
conditions only moderately decreased RNA-binding activ-
ity (Figure 6C). To precisely evaluate the binding activity of
the C595A mutant in vivo, 293T cells transfected with plas-
mids expressing the WT, C595A mutant or the N-terminus
of CPEB2 were UV-crosslinked and immunoprecipitated.
The bound and crosslinked RNAs were subsequently ra-
diolabeled. Using this CLIP approach (37), we found the
C595A mutant had ∼20% reduction in RNA binding (Fig-
ure 6D). Similarly, the RBD without Cys444 (myc-CP2C)
also bound to RNA in a DTT-sensitive manner (Figure 6E).
In agreement with the recent structure study in which none
of these Cys residues in the RBD was found to be directly
in contact with RNA (38,39), the formation of the Cys444-
Cys595 bond in CPEB2 likely promotes conformational re-
arrangement to achieve optimal, but not essential, RNA-
binding activity.

Oxidative stress weakens the NPGPx–CPEB2 interaction to
initiate HIF-1� expression and HIF-1�-programmed tran-
scription

It was noted that arsenite-induced oxidative stress causes
the dissociation of CPEB2 from HIF-1� RNA and con-
sequently upregulates translation of HIF-1� RNA (30).
The aforementioned results showed that NPGPx modulates
the RNA-binding activity of CPEB2 in a redox-dependent
manner. Thus, it is likely that oxidative stress disrupts the
NPGPx–CPEB2 covalent interaction and hence weakens
the binding of CPEB2 to HIF-1� RNA. To test this pos-
sibility, fibroblast cells were treated with H2O2 for the in-
dicated times to induce oxidative stress, and reciprocal co-
IP/immunoblotting assays with CPEB2 and NPGPx an-
tibodies were performed on the lysates. As shown in Fig-
ure 7A, there is decreased interaction between CPEB2 and

NPGPx with the increasing duration of H2O2 treatment.
Similar to arsenite (30), H2O2 treatment also abolished
the association of CPEB2 and HIF-1� RNA in the RNA-
IP assay (Figure 7B). The level of HIF-1� in NPGPx-
deficient MEFs was elevated under normoxia; however,
H2O2-induced HIF-1� synthesis was only evident in the
WT MEFs (Figure 7C). Similar results were obtained when
the cells were incubated in the 1% O2 hypoxia chamber
(Supplementary Figure S4A).

Since HIF-1� induction was not detected following treat-
ment with H2O2 or 1% O2 of NPGPx KO MEFs, we
hypothesized that stress-induced HIF-1�-controlled tran-
scription may be diminished in the absence of NPGPx. To
test this possibility, we examined the expression of several
HIF-1� target genes in the NPGPx WT and KO MEFs
treated with H2O2 or 1% O2. The levels of vascular endothe-
lial growth factor (VEGF), glucose transporter-1 (GLUT-1)
and hexokinase II (HK II) RNAs in the WT MEFs were sig-
nificantly higher than those in the KO cells within 2–4 h of
H2O2 treatment (Figure 7D) or by 12–24 h of 1% O2 incu-
bation (Supplementary Figure S4B). Taken together, these
results demonstrate a potential mechanism of how NPGPx,
in response to cellular redox conditions, modulates CPEB2-
controlled HIF-1� RNA translation that is critical for tun-
ing HIF-1�-programmed transcription.

DISCUSSION

The observation that NPGPx KO mice exhibit elevated sys-
temic oxidative stress and shortened life span strongly sug-
gests a critical role of NPGPx in redox homeostasis (19).
NPGPx, lacking glutathione-binding and peroxidase activ-
ity (22), senses cellular redox status and conveys ROS sig-
naling to its downstream effectors via Cys57 and Cys86
(19,25). The function of the NPGPx-catalyzed thiol-based
redox reaction is to enhance the function of its target sub-
strates (19,25) involved in stress defense and the balance
of redox status in cells. In this communication, we show
that CPEB2 is another cytoplasmic substrate of NPGPx.
In addition, we found that the covalent interaction between
CPEB2 and NPGPx is important for optimal RNA-binding
activity of CPEB2, which is crucial for CPEB2’s suppres-
sion of HIF-1� RNA translation under normoxia. Such a
unique mechanism explains how redox signaling modulates
CPEB2-controlled translation.

HIF-1� is a critical factor for hypoxic adaption and em-
bryonic cells lacking HIF-1� exhibit a decreased growth
rate under hypoxic, but not normoxic, environmental con-
ditions (40–42). HIF-1� is also known to play essential roles
in tumorigenesis and its expression is correlated with can-
cer prognosis (28,43–44). Specific ablation of hif-1α in stro-
mal fibroblasts accelerates mammary tumor growth that
is accompanied by a reduction in vascular density and
macrophage infiltration (45). Thus, the expression of HIF-
1� must be tightly controlled to maintain normal physio-
logical functions. Although NPGPx null mice initially de-
velop normally, the accumulation of oxidative stress dam-
age as they age contributes to a higher occurrence of tu-
morigenesis and other diseases (19). Consistently, NPGPx
was found to protect against oxidative stress-induced DNA
damage and reduce the incidence of carcinogenesis (24,46–
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Figure 6. NPGPx-CPEB2 modulates the RNA-binding activity of CPEB2. (A) RNA-IP assay. The 293T cells transfected with the plasmids expressing
myc-tag, WT or C3A3 mutant of myc-CPEB2 were lysed and immunoprecipitated with myc IgG. The levels of precipitated HIF-1� and N-Cad RNAs were
analyzed by RT-qPCR using the amount of GAPDH RNA for normalization. (B) The 293T cell lysates containing WT, C2A2 and C3A3 mutant CPEB2
were treated or not treated with DTT of indicated concentration. The cell lysates were UV-cross-linked with 32P-labeled 1904 RNA probe to measure RNA
binding or used for immunoblotting. The normalized RNA-binding abilities (the ratio of RNA-binding signal versus the expression level) of various CPEB2
mutants were quantified and expressed as a relative ratio. (C) Similar to (B), more CPEB2 mutants were tested to measure their RNA-binding abilities. (D)
In vivo RNA-binding assay. The 293T cells expressing WT, C595A and the N-terminus of myc-CPEB2 were UV-irradiated to crosslink the RNA–protein
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P < 0.01, respectively (Student’s t-test).

47). Our findings that the loss of NPGPx results in elevated
HIF-1� RNA translation under normoxia with delays in
HIF-1�-activated transcription under hypoxia and oxida-
tive stress provides a potential link between these two im-
portant molecules (Figures 1 and 7). However, whether the
aberrant HIF-1� expression in the NPGPx KO mice signif-
icantly contributes to tumor formation and other diseases
awaits further investigation.

It was shown that several RNA-binding proteins, such as
iron regulatory protein 2, chloroplast poly(A)-binding pro-
tein, HuR and TAR DNA-binding protein 43, alter their
RNA-binding ability via thiol-based redox regulatory pro-
cesses targeting their RNA-binding domains (48–52). Sim-
ilarly, NPGPx covalently binds to the N-terminal cysteine
residues of CPEB2, subsequently altering the RNA-binding
activity of the CPEB2 C-terminal RBD. Although it re-
quires alanine substitution of all three N-terminal cysteines
(Cys157, Cys350 and Cys444) in CPEB2 to completely
abolish its covalent interaction with NPGPx (Figure 5B and
C), Cys157 appears to be the major cysteine to form a disul-
fide bond with NPGPx (Figures 4 and 5). Intriguingly, the
single nucleotide polymorphism (SNP) database shows that

the SNP rs373750640 in the cpeb2 gene causes a missense
mutation (C157Y). Based on our results, this substitution
would be expected to influence redox signaling-regulated
CPEB2-controlled translation. It would be of great interest
to further explore whether the C157Y mutation in CPEB2 is
linked to other abnormalities or is more prevalent in patho-
logical conditions, including cancers.

All CPEB1 and CPEB1-like proteins (CPEB2, CPEB3
and CPEB4) have a similar structure in which the carboxyl-
terminal RBD is composed of two RNA recognition motifs
(RRM) and two zinc fingers (Zifs) (Figure 4C). In particu-
lar, CPEB2, CPEB3 and CPEB4, which share 96% sequence
identity and contain ten cysteine residues (Figure 4C) in the
RBD, bind to RNAs with the same sequence specificity in
vitro (36). Nevertheless, it is not known if CPEBs2–4 bind
to the same repertoire of RNAs or exhibit functional re-
dundancy in vivo. Similar to CPEB1, several studies indi-
cate that CPEBs2–4 function as activators or repressors in
the translational regulation of their target RNAs, but the
mechanisms employed by each CPEB to control protein
synthesis appear to differ (30,36,53–56). Moreover, why a
CPEB functions as an activator for some RNAs but as a
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repressor for others remains enigmatic. Despite the pres-
ence of all four CPEBs in the hippocampus, studies looking
at the effects on hippocampus-related learning and mem-
ory in mouse knockout models of the cpeb1 (57), cpeb3
(58) or cpeb4 (59) genes suggest that CPEBs are not func-
tionally redundant in vivo as these animals do not pheno-
copy each other. Although CPEB2 null mice have not yet
been reported, we believe for at least two reasons that the
NPGPx-regulated RNA-binding mechanism applies only
to CPEB2 and not the other CPEBs. First, CPEB3 and
CPEB4 contain only one cysteine at the N-terminus, which
is located in close proximity to Cys444 of CPEB2 (Sup-
plementary Figure S5A, marked with red rectangles). Sec-
ond, the high-molecular-weight protein complex was only
detected for myc-CPEB2, and not for either myc-CPEB3 or
myc-CPEB4, under non-reducing conditions (Supplemen-
tary Figure S5B). Thus, the specific covalent interaction
between CPEB2 and NPGPx likely makes this aspect of
CPEB2-controlled translational regulation unique among
all the CPEBs.

The identification of the C57NPGPx–C157CPEB2 and
C444CPEB2–C595CPEB2 disulfide bonds in vitro (Figure 4)
raises some interesting issues. The covalent interaction with
NPGPx may facilitate CPEB2’s formation of an intramolec-
ular disulfide bond between its C444 and C595 residues
to enhance its RNA-binding ability. Based on the obser-
vations that the RNA-binding activities of the C157/444A

and C595A mutants were less affected than the C3A3
(C157/350/444A) mutant (Figure 6B and C) and the ac-
tivity of all these CPEB2 mutants, like the WT protein, is
sensitive to DTT, there is the possibility that disulfide bond
formation in CPEB2 can be rearranged dynamically. Al-
though C157 is the key residue covalently linking CPEB2
to NPGPx, the C157A mutant does not completely lose in-
teraction with NPGPx. Similarly, C444 may form alterna-
tive disulfide bonds with C522 or C532 in the RRM1 of
the C595A mutant protein. It was reported that yeast Gpx3
forms a disulfide bond between its Cys36 and the Cys598 of
Yap1 with the thionilate anion formed at Cys303 of Yap1
then attacking this bond to establish the first intramolecu-
lar disulfide bond (Cys303–Cys598) in Yap1. Sequentially,
the second, third and fourth disulfide bonds linking the N-
and C-terminal domains are formed (60). A similar mecha-
nism may apply to the NPGPx and CPEB2 interaction.

Dynamic cysteine-based redox switches are difficult to
predict and can only be monitored using nuclear magnetic
resonance spectroscopy. Due to the intrinsic insolubility of
either the full-length or the C-terminal RBD constructs of
all recombinant CPEB proteins, it is difficult to obtain reli-
able structural information. Although the two RRMs and
two Zifs (C4 and C2H2 types) in the RBD of CPEBs were
initially thought to be all required for RNA-binding based
on reduced RNA-binding in Zif-deleted or Zif-disrupted
mutants (36,61), two recent structure studies on RRM1–
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RRM2 of CPEB1 and CPEB4 suggest otherwise (38,39).
None of the three cysteines in the RRMs of CPEB4 are in
direct contact with RNA (i.e. C522, C532, C595 in CPEB2),
supporting the notion that disulfide bond formation be-
tween C444 and any one of the more C-terminal cysteines is
likely to modulate but not determine the binding to RNAs.
Based on structure data obtained for the CPEB1 Zif do-
main (38,62), sequence alignment predicts that CPEBs2–4
also contain C4 and C2H2 Zif motifs (Supplementary Fig-
ure S6A). However, an extra cysteine (C657) is present in the
Zif domain of CPEB2. Alanine substitution of either C654
or C657 of CPEB2 dramatically decreases the protein’s sol-
ubility in cells (Supplementary Figure S6B). Thus, it is likely
that the extra cysteine in the Zif domain of CPEB2 has an
important role in stabilization of CPEB2.

In summary, our findings described here reveal a unique
example of how HIF-1� RNA translation is coupled with
NPGPx-modulated RNA-binding of CPEB2 to tightly con-
trol HIF-1� synthesis in a redox-dependent manner.
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