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A B S T R A C T   

Seagrasses are higher flowering plants that live entirely in marine environments, with the greatest 
habitat variation occurring from land to sea. Genetic structure or population differentiation 
history is a hot topic in evolutionary biology, which is of great significance for understanding 
speciation. Genetic information is obtained from geographically distributed subpopulations, 
different subspecies, or strains of the same species using next-generation sequencing techniques. 
Genetic variation is identified by comparison with reference genomes. Genetic diversity is 
explored using population structure, principal component analysis (PCA), and phylogenetic re-
lationships. Patterns of population genetic differentiation are elucidated by combining the 
isolation by distance (IBD) model, linkage disequilibrium levels, and genetic statistical analysis. 
Demographic history is simulated using effective population size, divergence time, and site fre-
quency spectrum (SFS). Through various population genetic analyses, the genetic structure and 
historical population dynamics of seagrass can be clarified, and their evolutionary processes can 
be further explored at the molecular level to understand how evolutionary processes contributed 
to the formation of early ecological species and provide data support for seagrass conservation.   

1. Introduction 

Characterizing the population history of a species and identifying local adaptations are critical in functional ecology, evolutionary 
biology, biological conservation, and agriculture. There has been a proliferation of genomic studies elucidating population evolution 
over the last decade [1], including understanding migration and adaptation [2], the origin of domesticated species [3], and the genetic 
basis of local adaptation [4]. 

Speciation is an ongoing process, and understanding it is one of the main goals of evolutionary biology. The effect of evolutionary 
processes on population genetic diversity to drive differentiation and ultimately species formation, has been a hot topic [5–8]. The 
“neutral theory” of molecular evolution holds that most polymorphisms within species are in mutation-drift equilibrium, and that 
differentiation is not the result of adaptation [9,10]. Based on population structure, the identification of genome-wide variation loci to 
indicate the impact of natural selection on specific loci can contribute to a better understanding of polymorphism and adaptation [11, 
12]. 

Population genetics studies initially focused on model organisms and less on natural populations with complex life histories. 
However, many key questions in ecology and evolutionary biology cannot be addressed using model organisms alone. Recent advances 
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in computational biology, genomics, and phylogenetics have made it possible to study the genetic evolution of non-model systems 
[13]. Using next-generation sequencing techniques, genetic heterogeneity has been identified in several biological species, enriching 
the study of speciation and divergence, such as higher plants [1,8,14], insects [15], fishes [16,17], mammals [18], shellfish [19], and 
birds [20,21]. 

To date, most plant species do not conform to the population statistical assumptions of standard equilibrium neutral models and 
deviations from neutral expectations are relatively common [11]. Analyzing highly divergent genomic regions and exploring how 
selection drives speciation have been a hot spot in speciation and population evolution studies [8,16]. Selection can lead to changes in 
traits and related genes that affect the relative fitness of individuals and the differences between populations, which in turn drive 
speciation [22]. Recent population genomics studies have shown that selective traits have existed during the evolution of many species 
[23,24] and that genomic landscapes are largely influenced by natural selection [5]. The development of high-throughput sequencing 
technologies has facilitated the generation of genome-wide data for a wide range of species, which can help distinguish between 
neutral processes and selective features. Population genomics provides methods to better integrate selection into population history. 

Seagrasses, composed of 60 monocotyledonous angiosperms, are the only flowering plants that live entirely in a marine envi-
ronment [25–27] and play an important ecological role in coastal ecosystems [28,29]. The “return to the ocean” is one of the biggest 
changes in the habitat of vascular plants, and ecologists and evolutionary biologists are increasingly interested in the ecological and 
evolutionary significance of seagrasses. On an evolutionary scale, genetic diversity provides the basis for adaptive evolution, enabling 
populations to respond to their environment [30]. Maintaining genetic diversity to support adaptation is particularly important in light 
of increased environmental pressures such as rapid climate change and habitat loss or fragmentation [31]. With the development of 
next-generation sequencing technology, the global evolution of seagrass populations has been studied extensively. For example, ge-
netic analysis based on eight microsatellite markers assessed the genetic and physical connectivity of Zostera Noltei population, 
enhancing our understanding of the population dynamics of important coastal base species [32]. 

Studies on the population genetic diversity and systematic geographic relationships of 32 Thalassia Testudinum samples from the 
Caribbean and Gulf of Mexico have shed light on its evolutionary and ecological history [33]. A 5–12 year resampling of Zostera marina 
from Bodega Bay, San Francisco, and coastal Bays in Virginia to determine the genetic diversity and structural variation within and 
among meadows [34] showed that neither diversity nor differentiation has changed over time. A 10-year survey of genetic structure 
and diversity could provide an accurate description of populations and increase the utility of published genetic data for the restoration 
and design of protected area networks. 

Oceans cover 71% of the world’s surface area, and the conservation of marine biodiversity has become one of the United Nations 
Sustainable Development Goals [35]. Genetic diversity provides the basis for adaptive evolution and underpins ecosystem resilience 
and function [36,37]. In recent decades, global seagrasses have declined dramatically and their degradation rate has accelerated owing 
to climate change and anthropogenic factors [38–40]. Studies have shown that increasing genetic diversity can promote the resilience 
and productivity of seagrasses [37]. Population genetic results from Zostera marina in the Channel Islands and adjacent coastal areas of 
California suggest that seagrass restoration and transplantation must identify species populations and consider the degree of genetic 
and genotypic variation in candidate donor populations [41]. Studies on the genetic patterns of hydrodynamically related populations 
of Thalassia Hemprichii widely distributed in the Western Indian Ocean, have also been used to improve seagrass management in the 

Fig. 1. Typical research ideas for studying the evolution of higher plant populations.  
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region to maintain healthy seagrass populations [42]. The clonal diversity, fine spatial genetic structure, and flowering yield of Enhalus 
acoroides, which is widely distributed on the eastern coast of Hainan Island, China, were evaluated for population conservation and 
restoration [43]. The genetic diversity of Z. marina, widely distributed in the Shandong Peninsula, China, was found to be different at 
each site owing to different population distributions and sampling ranges, which raised new thoughts on local population conservation 
[44,45]. Information on the genetic structure and variation of seagrasses can provide important data for coastal management [42]. It 
also plays a significant role in the successful transplantation and reconstruction of seagrasses [37]. 

Therefore, more details on the speciation history and comparisons between lineages with different degrees of divergence and 
geographical distributions are required to infer the population adaptation of seagrasses [8]. Exploring the relationships between 
different evolutionary clades of seagrasses will help clarify their origin [46] and reveal the evolutionary mechanisms underlying the 
transition of seagrass from land to sea [47,48]. 

2. Materials and methods 

Seagrasses form different subspecies or subpopulations under different survival conditions due to natural selection, genetic drift, 
and other factors. To parse these processes and infer the evolutionary mechanisms by which populations adapt to radiation [49], 
detailed information on the speciation history and comparisons between lineages with different degrees of divergence and 
geographical distribution is required [8]. Understanding the correlations and genetic structure within and among populations is an 
important starting point for inferring selection or demographic history. The population evolution of seagrasses relies on research 
methods of terrestrial higher plants (Fig. 1).  

(1) CASE 1: Wang et al. used whole-genome resequencing data from 517 Arabidopsis relatives of Bochera stricta to determine the 
genetic population and demographic history; combined with population genetic characteristics, three genomic regions with 
high π exhibited long-term balancing selection. Moreover, FST islands that had undergone directional selection were also 
identified [8].  

(2) CASE 2: Ke et al. analyzed five species of Primulina from Karst limestone habitats and Danxia habitats, with a total of 132 
individuals. The results showed that gene flow and linkage selection influenced the genome-wide variation landscape, and 
identified several gene islands affected by the divergent sorting of ancient polymorphisms involved in the speciation of endemic 
plants in special soil habitats and their adaptation to specific habitats [1]. 

2.1. Population sampling, genome sequencing, and single nucleotide polymorphism (SNP) calling 

The sampling sites are set according to the distribution locations of the research objects. To maintain genetic diversity, at least 10 
samples are randomly selected from each site with a certain distance [50], and the total sample size should not be not less than 30. The 
extraction of DNA from samples has been described in previous studies on the physiological ecology of seagrasses [38]. 

Libraries are prepared for each sample and sequenced on the Illumina platform. Trimmomatic V.0.36 is used to remove read 
connector sequences and trim bases [51], and FastUniq is used to remove duplicate reads [52]. Clean reads for each genotype are 
compared to the reference genome using BWA V.0.7.15 [53]. The sequences are recalibrated using HaplotypeCaller [54]. GATK V.3.8 
was used to filter raw SNP [55]. Genomic variant call format (GVCF) files are generated using HaplotypeCaller for each individual and 
are combined and genotyped using CombineGVCFs and GenotypeGVCFs in GATK. 

2.2. Population genetic diversity 

To clarify the genetic diversity and selection of natural seagrass populations, genotypes and subpopulations should first be 
determined, followed by the genetic relationships among populations. Genetic diversity and genome-wide variation are affected by 
effective population size and population structure. The three methods used to verify and jointly elucidate the genetic structure and 
phylogenetic relationships are population structure analysis, principal component analysis (PCA), and phylogenetic tree construction. 

Population structure analysis can be performed using different software packages [1,7] such as Admixture [56], FastSTRUCTURE 
[57], sNMF [58] and NGSadmix [59]. During the operation, genotypes can be called using GATK with K values and repeated 30 times 
for different samples. The ΔK method is used to determine optimal K value [60]. Ten-fold cross-validation and cross-entropy criteria 
are used to evaluate the Admixture and sNMF with different K values. 

PCA is mainly performed using EIGENSOFT V.6.0 [61] in PLINK [62]. For each SNPs cluster, the heterozygosity of each individual 
is estimated as the ratio of heterozygous to homozygous SNP. 

Phylogenetic trees for nuclear data can be constructed using three different methods: a maximum likelihood (ML) tree using an IQ- 
tree [63], a neighbor-joining (NJ) tree using bootstrap values of MEGA V.7 [64], and a window-based gene tree using Astral-III [65]. 

2.3. Linkage disequilibrium (LD) 

LD decay is the evolutionary process from LD to linkage equilibrium between loci, and the mean square correlation (r2) per SNP pair 
is used to represent the LD level of the population, which assists in the analysis of the evolution and selection processes [66]. The LD 
decay distance can be used to describe the decay rate [66], and the LD decay expression varies greatly among different subgroups. To 
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explore the degree of LD in different subgroups, SNPs with minor allele frequency (MAF) > 0.05 are first extracted and r2 is estimated 
using PLINK V.1.90 [67]. The decay of LD with physical distance is estimated using nonlinear regression in equation (1) of Hill and 
Weir [68]. The LD in nonoverlapping windows is calculated using Vcftools. The window-LD value is averaged for each biallelic locus in 
each window. 

2.4. Isolation by distance (IBD) 

VEGAN in the R package is used to reorder permutations, and the Mantel test is conducted for the correlation between the genetic 
and geographic matrices of the permutations [69]. The intensity of IBD in each population should be quantified. Considering the 
problem of uneven sampling, the genotype group pairs are used to calculate the average genetic distance between each group. On this 
basis, a weighted linear regression is used to estimate the slope and intercept of the genetic distance to the geographical distance. The 
rate of increase in pairwise diversity at a geographical distance can be estimated from the slope of the mean of the pairwise diversity in 
each group. 

2.5. Demographic history 

The dynamics of marine connectivity is complex, and seagrasses undergo significant habitat changes after returning to the ocean. 
Detailed information on their evolutionary histories is important for understanding the process of genome differentiation after 
speciation. The change in the effective population size over time will be studied. The divergence time and sequence evolution should be 
estimated to determine the population dynamics, construct a phylogenetic tree, evaluate the site frequency spectrum (SFS) to model 
the demographic history, and select the optimal population statistical model to simulate the population dynamic history of seagrasses. 

2.5.1. Effective population size (Ne) 
Pairwise sequentially Markovian coalescent (PSMC) is one of the most popular and widely used methods for Ne calculation [70]. 

SMC++ V.1.15.2 is used to track the change in individual effective population size over time based on non-phase data [71]. 

2.5.2. Estimation of divergence time 
The Markov chain Monte Carlo (MCMC) module in BEAST V.1.8.0 [72] is used to infer phylogenetic relationships and merge dates. 

The divergence time is estimated using HKY + G + I and BEAUti. Due to the lack of accurate data records to calibrate the mutation rate, 
the generation time and mutation rate (μ) is set based on fossil or related species of target species [73]. The best-fit model for sequence 
evolution is jModelTest 2.1.4 [74], and all samples are tested in Tracer V.1.6 to generate the final population trajectories [75]. All the 
runs are combined in LogCombiner 1.4.8 [76] and the resulting tree is visualized using FigTree 1.2 [77]. 

2.5.3. Site frequency spectrum (SFS) 
The probability method in ANGSD V.0.919 is used to evaluate SFS [78]. Considering the missing data, downsampling is performed 

to reduce errors [19]. Folded SFS is used to reduce bias in determining the ancestral allele status [79]. Population statistical models are 
constructed using the coalescence-based simulation method in Fastsimcoal V.2.6.0.3 to infer the demographic history of seagrasses 
[79]. 

2.6. Population-genetic parameters 

Identification of differential selection regions or infiltration barrier regions and natural selection characteristics can be achieved 
using genetic parameters such as Tajima’s D, Fay and Wu’s H, FST [80], dXY [81], da [81]), and nucleotide diversity (π) [82]. To test the 
overall recombination rate (ρ = 4Nec) for the entire dataset and each population [7], the software package LDhelmet V.1.10, running 
with default parameters can be used, and a weighted average should be performed [83]. The impact of effective population size on 
estimated ρ is explained in terms of ρ/π [7]. 

2.7. Outlier screening and gene ontology (GO) analysis 

We can standardize π in every window of each population and define high π windows with Z-π ≥ 2 as π islands. According to 
formula Z-FST = (FST × FST’)/std-FST, FST of each window in each paired group is normalized to the Z-score [84]. High FST windows with 
Z-FST ≥ 2 are defined as FST islands. To examine the functional classes of the overexpressed genes in the islands, GO analysis is per-
formed using TBtools [85] and multiple tests are corrected using Benjamini-Hochberg (B–H) [86]. After B–H correction, GO items with 
a false discovery rate (FDR) < 0.05 are considered to be significantly enriched. 

3. Results and discussion 

As sequencing technologies develop and costs decrease, marine scientists have begun to use genomic technologies to address long- 
standing and emerging questions in evolutionary biology, thereby improving their understanding of marine biodiversity and evolution. 
To better explore the evolutionary mechanisms of genetic variation and understand the causality among biology, genetics, develop-
mental science, and ecology, current research approaches use a combination of multiple information aggregated statistics [6,13], 
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which allows an integrated analysis of demographic history and selection to learn more about the population structure and evolu-
tionary process [6]. It provides a comparative study of lineages with different degrees of divergence and geographical distributions [6]. 
For example, high-quality genomic information from zebrafish has been increasingly used to study the evolution of the human genome 
and for disease diagnosis [87]. RNA-seq has been used to investigate the evolutionary mechanism of Tigriopus californicus [88] and to 
reveal the population history dynamics of Nematostella vectensis [89]. Plastid genome studies have provided new insights into the early 
origins of green algae [90]. 

To measure genetic differentiation among subpopulations, genome-wide single-copy nuclear loci can be used to study LD, which 
can elucidate the extent of linkage, recombination, and mutation, and determine whether migration-drift equilibrium exists among 
populations [66]. Different statistics are used to find the selected loci and identify selection features. Selection can generate highly 
differentiated regions and determine the selection process by searching for gene islands and examining the functional classes of 
overexpressed genes on the island, which can infer the evolutionary mechanism that affects the genomic landscape. 

Genetic heterogeneity among multiple species has been identified using next-generation sequencing technologies [7]. Balanced 
selection can result in increased π and decreased FST in the offspring. Positive and purifying selection favor single dominant alleles and 
reduce genetic diversity [91]. With changes in geographical location, selection is more likely to be based on locally adapted alleles in 
offspring; that is, regions with strong linkage selection have low recombination rates and a high density of functional loci with peak 
diversity and divergence, resulting in increased FST but decreased or unchanged dXY [7]. Further predictions of linkage selection 
include positive and negative correlations between recombination rate and π/FST, respectively, and negative correlations between 
π/FST and genetic density in the selection target region. Because of the stress induced by background selection and periodic selection 
gaps, genetic diversity in low-frequency recombination regions decreases, FST increases, and dXY remains the same or decreases. The 
combination of FST and dXY can distinguish linkage selection from other evolutionary processes affecting genomic divergence [6]. 
Differential selection for gene flow and divergent sorting using ancient polymorphisms can produce genomic regions with elevated FST 
and dXY. Other processes also produce highly divergent regions. For example, genetic drift can lead to peaks in genetic diversity and 
divergence [8]. It is difficult to distinguish population genetic patterns [49], as they are not mutually exclusive and can produce similar 
“footprint” across the genome [6]. 

The diversity and distribution of genetic variation within and among populations can reflect the interaction of complex processes 
and thus infer the genetic mechanisms of local adaptation and the adaptive potential of species. In other words, plant adaptation can be 
maximized only by identifying variation sites at the gene level, dividing genetic variation, and exploring the impact of natural selection 
on population evolution [24]. 

4. Conclusion and outlook 

Whole-genome sequencing is performed in different geographical regions or subpopulations of target species to obtain hundreds of 
genotypes that represent a considerable geographical range. With large SNP data, population genetic questions can be solved, such as 
identifying selection characteristics and differences in the genome or introgression disorders and determining whether there is a 
mutation-drift balance [6,13]. Synthetic analysis of effective population size, divergence time, and SFS evaluation allows model 
simulations of demographic history to clarify the molecular nature of speciation, drive the evolutionary mechanism of genetic vari-
ation due to habitat changes, and thus reveal the theoretical genetic basis of population dynamics. 

Currently, restoration of seagrasses generally focuses on burying plants underground to maximize coverage and density, with less 
attention paid to the preservation and restoration of genetic variation. Genetic structures can reveal the potential mechanisms of 
population dynamics and sustainability, and information on genetic diversity and differentiation is crucial for conservation of sea-
grasses conservation. Based on this bioevolutionary information, suitable donor plants and the most vulnerable extinction areas can be 
identified as conservation targets [92]. 

Fig. 2. Ideas for studying the evolution of seagrass populations.  
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In conclusion, information on the population evolution of seagrasses is essential for conservation of population diversity and 
policymaking. Seagrasses, as marine higher plants, can be used to explore the population structure and discuss the evolution of genetic 
variation (Fig. 2) on the basis of previous approaches to terrestrial higher plants (Fig. 1), to identify and assess the different processes 
that drive evolutionary differences and the formation of genetic variation patterns, which provide a genetic basis and data support for 
the conservation of seagrasses, and to further elucidate the adaptation of seagrasses from land to sea. 
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