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Abstract 
Primary ovarian insufficiency (POI) is an uncommon yet devastating 
occurrence that results from a premature depletion of the ovarian 
pool of primordial follicles. Our understanding of both putative and 
plausible mechanisms underlying POI, previously considered to be 
largely “idiopathic”, has been furthered over the past several years, 
largely due to advances in the field of genetics and through expansion 
of translational models for experimental research. In this review, our 
goal is to familiarize the multidisciplinary readers of the F1000 
platform with the strides made in the field of reproductive medicine 
that hold both preventative and therapeutic implications for those 
women who are at risk for or who have POI.

Keywords 
Primary ovarian insufficiency, fertility, hypergonadotropic 
hypogonadism

Open Peer Review

Reviewer Status    

Invited Reviewers

1 2 3

version 1
07 Sep 2020

Faculty Reviews are review articles written by the 

prestigious Members of Faculty Opinions. The 

articles are commissioned and peer reviewed 

before publication to ensure that the final, 

published version is comprehensive and 

accessible. The reviewers who approved the final 

version are listed with their names and 

affiliations.

Berenice Mendonca, Hospital das Clínicas da 

Faculdade de Medicina da Universidade de 

São Paulo, São Paulo, Brazil

1. 

Zi-Jiang Chen, Shandong University, 

Shandong, China

2. 

Dongmei Lai, Shanghai Jiaotong University, 

Shanghai, China

3. 

Any comments on the article can be found at the 

end of the article.

 
Page 1 of 13

F1000Research 2020, 9(Faculty Rev):1101 Last updated: 07 SEP 2020

https://f1000research.com/articles/9-1101/v1
https://f1000research.com/articles/9-1101/v1
https://doi.org/10.12688/f1000research.26423.1
https://doi.org/10.12688/f1000research.26423.1
https://f1000research.com/articles/9-1101/v1
https://f1000research.com/browse/faculty-reviews
https://facultyopinions.com/prime/home
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.26423.1&domain=pdf&date_stamp=2020-09-07


Corresponding author: Lubna Pal (Lubna.pal@yale.edu)
Author roles: Wesevich V: Conceptualization, Data Curation, Investigation, Writing – Original Draft Preparation, Writing – Review & 
Editing; Kellen AN: Conceptualization, Data Curation, Investigation, Methodology, Project Administration, Supervision, Writing – Review 
& Editing; Pal L: Conceptualization, Data Curation, Investigation, Methodology, Project Administration, Supervision, Writing – Review & 
Editing
Competing interests: No competing interests were disclosed.
Grant information: ANK gratefully acknowledges funding and support provided by the Reproductive Scientist Development Program 
(National Institutes of Health [NIH] National Institute of Child Health and Human Development project #2K12HD000849-26), the 
American Society for Reproductive Medicine, and the NIH Loan Repayment Program. 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2020 Wesevich V et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Wesevich V, Kellen AN and Pal L. Recent advances in understanding primary ovarian insufficiency [version 
1; peer review: 3 approved] F1000Research 2020, 9(Faculty Rev):1101 https://doi.org/10.12688/f1000research.26423.1
First published: 07 Sep 2020, 9(Faculty Rev):1101 https://doi.org/10.12688/f1000research.26423.1 

 
Page 2 of 13

F1000Research 2020, 9(Faculty Rev):1101 Last updated: 07 SEP 2020

mailto:Lubna.pal@yale.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.26423.1
https://doi.org/10.12688/f1000research.26423.1


Introduction
Despite the resounding progress that the field of reproductive  
endocrinology has witnessed over the past three decades, our  
understanding of the myriad of mechanisms causative to the  
entity of primary ovarian insufficiency (POI) remains lagging.  
Consequences of POI range from psychological devastation  
relating to the diagnosis to symptom burden, of which loss of  
fertility dominates the spectrum, to the long-term consequences 
of premature loss of ovarian function which include an increased 
lifetime risk for skeletal fragility and cardiovascular and neuro-
cognitive disorders. Many gaps remain in our understanding of  
the processes regulating ovarian follicle quantity and quality, and 
what causes these processes to go awry, as occurs in POI. Until 
recently, the treatment modalities available to patients with POI 
were limited to the use of hormone therapy to mitigate symptom  
burden and minimize long-term risks of estrogen deprivation  
as well as the use of donor eggs as the only viable option for  
biological parenting. We recently reviewed the clinical presenta-
tion and diagnosis of POI1. The purpose of the present review is 
to familiarize readers with the recent advances that have furthered 
our understanding of POI and which, in the foreseeable future,  
may even offer women with POI hope for biological parenting in 
every sense of the expression.

Background
The prevalence of POI in the overall population is about 1%, 
although contributing to this background prevalence are the  
increasing rates of premenopausal cancer survivors with iatrogenic  
POI caused by gonadotoxic therapy2. The diagnosis of POI is 
dependent on evidence of hypergonadotropic hypogonadism,  
namely elevated serum levels of the pituitary gonadotropin  
follicle-stimulating hormone (FSH) with low serum levels of  
estradiol (E2) in a patient who has irregular or absent menses and  
is younger than 40 years. When a POI diagnosis is suspected,  
serum levels of FSH and E2 should be measured twice, at least  
one month apart; persistently elevated FSH levels greater than  
25 IU/L are consistent with POI3,4.

The clinical presentation of POI is highly variable. Changes 
in menstrual cyclicity (including prolonged or missed cycles,  
menstrual abnormalities, or amenorrhea), symptoms of hypoes-
trogenism (such as hot flushes, night sweats, vaginal dryness),  
and issues of subfertility or infertility are common presentations  
of POI. A finite spectrum of known causes of POI is summarized  
in Table 1. Notably, patients may manifest signs and symptoms 
(other than those of POI) that relate to the underlying etiology.  
For example, one or more of the phenotypic features of Turner 

Table 1. Known causes of primary ovarian insufficiency.

     X chromosome disorders 
          X chromosome deletions, inversions, duplications, balanced translocations 
          Turner syndrome (XO and mosaics) 
          Triple X syndrome (XXX) 
          Fragile X (FMR1 gene premutation carrier) 
          DIAPH2 translocation 
          BMP15 variants 
          PGRMC1 variants 
     Genetic syndromes 
          Ataxia telangiectasia 
          Fanconi anemia 
          Premature aging syndromes (Bloom and Werner) 
          BPES 
     Other single-gene variants 
          See Table 3. 
     Enzyme deficiencies 
          Galactosemia (GALT) 
          17 alpha-hydroxylase 
          Aromatase 
     Autoimmune 
          Polyglandular autoimmune syndrome types I and II 
          Primary adrenal insufficiency 
          Autoimmune thyroiditis 
          Non-endocrine conditions (systemic lupus erythematosus, pernicious anemia, and myasthenia gravis) 
     Infectious 
          Viral (mumps, cytomegalovirus, and varicella) 
          Bacterial (tuberculosis and shigella) 
          Parasite (malaria) 
     Toxins and injury 
          Chemotherapy (for example, alkylating agent) 
          Radiation 
          Pelvic surgery (oophorectomy) 
          Smoking

BMP15, bone morphogenetic protein 15; BPES, blepharophimosis, ptosis, and epicanthus inversus syndrome; CMV, 
cytomegalovirus; DIAPH2, diaphanous-related formin 2; FMR1, fragile X mental retardation gene 1; GALT, galactose-1-
phosphate uridylytransferase; PGRMC1, progesterone receptor membrane component 1.
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syndrome (TS) may be evident, depending on the underlying 
genotype, in a POI patient who is missing one X chromosome in 
some (mosaic) or all cells. Similarly, symptoms of overt thyroid  
dysfunction or vitiligo, alopecia or hypoadrenalism may be  
evident in patients of POI if autoimmune underpinnings are  
deemed causative to ovarian follicle depletion5. Once POI  
diagnosis is suspected, further workup is warranted to elucidate  
the etiology and identify covert comorbidities (Table 2). The  
various causes of POI have different implications for long-term 
health; for example, a patient with a new diagnosis of TS is also 
at risk for existing cardiovascular structural abnormalities such  
as aortic coarctation, which if undiagnosed, may hold sinister  
health implications1. Thus, recommended genetic testing includes 
karyotype and fragile X premutation testing; recommended  
screening for risk of autoimmune endocrinopathies includes  
testing for TSH and TPO and for 21-hydroxylase antibodies (if  
positive, identify the individual at an enhanced lifetime risk 
for autoimmune adrenal insufficiency).

Recent advances in the field of POI
Diagnostic insights related to the genetic 
underpinnings of POI
Certain karyotypic abnormalities and single-gene mutations have 
long been recognized as causes of POI (Table 3). In addition to 
the known contribution of X chromosome aneuploidies and  
mutations to the etiology of POI, increasing attention has focused 
on single genes known to regulate follicle development and  
maturation (Figure 1), such as newborn ovary homeobox  

(NOBOX), bone morphogenetic protein 15 (BMP15), and growth 
differentiation factor 9 (GDF-9)6. These genetic mutations  
(>60 identified thus far) demonstrate the complexity of the genetic 
architecture leading to this condition and offer targets for future 
genetic screening panels and possibly treatment modalities for 
women with idiopathic, sporadic POI. In efforts to detect novel  
POI genes, genotyping via genome-wide association studies 
(GWASs) and genome-wide sequencing through next-generation 
sequencing (NGS) have been used to identify genetic variations  
associated with POI. GWASs identify associations between  
genetic variation to a particular phenotype using many individuals  
with the disease or trait of interest. This evaluation is achieved  
by comparing common genetic variations known as single- 
nucleotide polymorphisms (SNPs), the most common genetic  
variations in the human genome in patients with POI versus  
unaffected controls. These SNPs may thus be used to identify 
genetic profiles that can be used to assess for causal relationships 
between phenotypes, many of which have been validated through  
in vivo or in vitro functional studies or both.

Whereas GWAS uses traditional Sanger sequencing, which  
can analyze only 700 base pairs per reaction, NGS is a sequencing  
technique that enables the analysis of millions or billions of DNA 
strands in parallel. Whole exome sequencing (WES), a format  
of NGS, allows simultaneous analysis of base pairs across the  
entire exome and has been used in multigenerational POI families 
to identify single-nucleotide variants within genes known to be 
involved in ovarian function. From these studies, many potentially 

Table 2. Suggested workup for patients with primary ovarian insufficiency: 
elucidating the underlying etiology or identifying associated risks or both.

Tests Relevance

Serum hormones 
Follicle-stimulating hormone, 
luteinizing hormone, estradiol 
 
Anti-Müllerian hormone 
Inhibin B 
Thyroid-stimulating hormone

 
Hypergonadotropic hypogonadism is a diagnostic 
criterion for primary ovarian insufficiency (POI) 
Marker of ovarian reserve-undetectable in POI 
Marker of ovarian reserve-undetectable in POI 
To assess thyroid function

Genetic testing 
Karyotype 
Fragility, mental retardation (FMR)

 
Aneuploidy/mosaicism/deletion/duplications 
Fragile X premutation carrier screening

Autoimmunity screening 
Thyroid autoantibodies 
     Thyroid peroxidase antibody 
     Thyroglobulin antibody 
21-hydroxylase antibodies

 
Risk for thyroid dysfunction 
 
 
Risk for adrenal insufficiency

Imaging studies 
Ultrasound 
     Ovarian antral follicle count 
Dual x-ray absorptiometry 
     Bone mineral density

 
 
Ovarian reserve assessment 
Quantify lifetime risk for fracture
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Table 3. Selected single genes associated with primary ovarian insufficiency.

Gene Function

DNA damage repair genes

MCM8/9 Required for homologous recombination-mediated repair of double-stranded breaks7

FANCA/M/C/G Required for S phase of growth cycle after exposure to DNA crosslinking agents8

RAD51 Search for homology and DNA strand pairing; binds with BRCA1/29

ATM Cellular responses to genomic damage10

BRCA1/2 Stimulates and maintains strand invasion within homologous recombination11–13

PSMC3IP Meiotic recombination, coactivator of nuclear hormone receptor–dependent transcription14

STAG3 Subunit of cohesion, required in meiosis for proper pairing and segregation of chromosomes15

NUP107 Nucleoporin protein involved in transport between cytoplasm and nucleus, meiosis/mitosis 
progression16

SPIDR Recruits RAD51 complex in homologous recombination17

MSH4/5 Complex that guides DDR toward crossover over non-crossover option17

Ovarian function genes

BMP15 Member of TGFB superfamily, regulates folliculogenesis18

GDF9 Synergizes with BMP15; granulosa cell proliferation19

FIGLA E-box containing promoter15

FSHR Receptor to follicle-stimulating hormone, required for folliculogenesis20

POLR3H Regulates FOXO3A expression and subsequent primordial follicle activation21

NOTCH2 Signal that regulates primordial follicle formation22

FOXL2 Steroidogenesis, ovarian development, and maintenance23–26

AHM/R Impair apoptosis repression27

Of note, the above listed genes are not representative of a comprehensive list, as there are more than 60 which have been described. Rather, 
this  list  is  intended to highlight genes have been most well-established and represent a broad spectrum of genetic functions contributing to 
POI pathogenesis. AMH, anti-Müllerian hormone; AMHR, anti-Müllerian hormone  receptor; ATM, ataxia  telangiectasia mutates; BMP15, bone 
morphogenetic protein 15; BRCA1/2, breast cancer gene 1/2; FANCA/M/C/G, Fanconi anemia complementation group A/M/C/G; FIGLA, folliculo-
genesis-specific basic helix–loop–helix transcription factor; FOXL2, forkhead box L2; FSHR, follicle-stimulating hormone receptor; GDF9, growth 
differentiation  factor  9; MCM8/9, minichromosome maintenance 8/9; MSH4/5, MutS protein homolog 4/5; NOTCH2, neurogenic  locus notch 
homolog protein 2; NUP107, nucleoporin 107; POLR3H, RNA polymerase III subunit H; PSM3IP, proteasome 26S subunit ATPase 3-interacting 
protein; RAD51, radiation-sensitive 51; SPIDR, scaffold protein involved in DNA repair; STAG3, stromal antigen 3.

relevant variants from multiple family members can be rapidly 
investigated via gene panels using WES/NGS. Whereas GWAS is 
a more cost-effective method for common genetic variants, NGS 
allows a determination of the exact DNA sequence and can reveal 
information about all genetic variants, including those that are 
rare.

Once potential genetic candidates for POI have been identified,  
in vitro and in vivo techniques can be used for functional  
validation. One recent example of this is RNA polymerase 
III subunit H (POLR3H), a gene that is highly expressed in  
developing spermatogonia, oocytes, and ovarian granulosa cells 
(which surround oocyte, which causes a POI phenotype)17. In 
this study, two of eleven unrelated families with idiopathic POI  
were found to have a missense mutation c149.A>G via WES. In  
this setting, mouse models can be used for functional validation 

using clustered regularly interspaced short palindromic repeat 
(CRISPR)/CRISPR-associated system 9 (Cas9) technology to 
demonstrate functional effects of a particular mutation, which can 
readily investigate a particular gene’s dosage on phenotype, rather 
than complete loss of function via gene expression modulation. 
In that study, Polr3hD50G knockout mice exhibited delayed puberty  
and decreased litter size and decreased expression of the ovarian 
transcription factor forkhead box O3 (FOXO3) and fewer antral  
and primary follicles17. In a study of a family with four genera-
tions of women affected by POI, WGS identified a heterozygous 
nonsense mutation in an RNA polymerase II subunit, POLR2C21; 
subsequent POLR2C knockdown in an embryonic carcinoma  
cell line resulted in decreased protein production and impaired  
cell proliferation. These data support a role for RNA polymerase 
II and III mutations as candidates in the etiology of POI. However,  
despite efforts to identify single genes causative for POI, it is  
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Figure 1. Selected genes involved in ovarian follicle activation, maturation, and death. AMHR2, anti-Müllerian hormone receptor 
2;  BMP15,  bone  morphogenic  protein  15;  BMPR2,  bone  morphogenetic  protein  receptor  2;  FMR1,  fragile  X  mental  retardation;  FSHR, 
follicle-stimulating hormone receptor; FOXO3A, forkhead box O3; FOXL2, forkhead box L2; GDF9, growth differentiation factor 9; KHDRBS1, 
heteronuclear ribonucleoprotein particle K homology domain RNA binding S1; LHX8, LIM homeobox 8; NOBOX, newborn ovary homeobox; 
NR5A1, nuclear receptor subfamily 5 group A member 1; PGRMC1, progesterone receptor membrane component 1; POLR3H, RNA polymerase 
III subunit H; SOHLH1, spermatogenesis and oogenesis specific basic helix–loop–helix 1.

likely that in many POI cases the disorder is more polygenic in 
nature. In a retrospective cohort study of 69 women affected by 
POI, WES identified 55 coding variants in 49 genes potentially  
related to POI; in 42% of the patients studied, at least two  
mutations in distinct genes were identified28.

As the increasing use of GWAS and NGS has led to the  
identification of many genes potentially increasing an individual’s 
POI risk, the next step will be sifting through the data to better 
understand the synergy and specific relevance for these genes29. 
As a clinical screening tool, genetic testing (beyond karyotype  
and FMR1 testing via WES/NGS) may help to associate a diag-
nosis of POI with a specific syndrome, cancer predisposition,  
or neurodegeneration. However, broad use of genetic testing  
(via WES/NGS) is controversial given the poorly understood  
phenotypic variation associated with each genetic mutation; if 
implemented, it is likely best performed in conjunction with a 
multidisciplinary team, including a genetic counselor and experts 
across multiple medical fields (for example, endocrinology,  
gynecology, and oncology). Furthermore, genetic testing can be 
more closely tailored via candidate gene sequencing if a mono-
genic syndromic condition is suspected on the basis of whether the  
patient is suspected to have a syndromic or non-syndromic  
phenotype30. An ultimate clinical goal is the design of a targeted 
panel that can best describe a patient’s risk or even provide a  
diagnosis, allowing a more timely intervention.

Genes involved in DNA damage repair
Mutations within the DNA damage repair (DDR) system  
represent intriguing candidate regulators of ovarian function  

(Table 3). DNA double-strand break (DSB) repair and other DDR 
mechanisms are recognized for playing important roles in pre-
serving the integrity of the follicle pool11,31,32. Because the supply  
of available follicles is finite, the ability to detect and repair  
DNA damage is crucial for survival11,31,32. Aging oocytes and  
follicles are less able to detect and repair DNA damage11,12,33,34. 
DNA damage is considered a “hallmark of aging”—a process that  
manifests during normal aging, accelerates the aging process  
when induced, and retards normal aging when blocked35. DSB 
repair is critical in oocyte survival given the high frequency of  
DNA DSB which occurs during the meiosis portion of game-
togenesis. Impaired DNA DSB repair, such as that observed in  
oocytes with deficiencies in RAD51 and ATM, blocks mouse  
oocyte maturation and results in oocyte death11. Loss of oocyte  
DNA damage checkpoints also appears to be an important  
mechanism for the drastic increase in oocyte aneuploidy seen 
with aging36.

It has been hypothesized that owing to the inheritance patterns  
of early menopause and POI within the same families, these two 
conditions are possibly manifestations of the same underlying  
genetic susceptibility with variable expressivities30. Perhaps  
among the most well-known DSB repair genes are breast cancer 
type susceptibility protein 1 and 2 (BRCA1 and BRCA2). Mutations  
of both BRCA1 and BRCA2 have been associated with decreased 
ovarian reserve11, failed follicular development and lower  
oocyte yield after ovarian stimulation in women undergoing  
assisted reproductive technology, and with an earlier age at  
natural menopause; conversely, in an experimental model, meiosis 
was restored with recovered levels of BRCA2 protein37. Existing 
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data are, however, limited by the heterogeneneity of the control 
groups, observational study designs, and small sample sizes32,38. 
Other DDR genetic mutations (for example, STAG3 [7q22.1]39) 
have been shown to cause a premature depletion of the follicle  
pool, decreased primordial follicles, and increased recruitment  
and subsequent atresia/destruction of the growing follicles40.  
Many other genes involved in the same DBS repair process  
have been discovered as potential gene candidates underlying 
POI. Other potentially pathogenic variants recently identified via 
WES of patients with POI include minichromosome maintenance 
8/9 (MCM8 [20p12.3] and MCM9 [6q22.31])7,38,41. In particular,  
MCM8, a DNA DSB repair gene, has been implicated in the  
timing of menopause onset; a GWAS of about 70,000 women 
implicated MCM8 as well as HELB and SLC04A1 in the process  
of ovarian aging38. Mutations in PSMC3IP, a gene regulating  
meiosis of germ cells and DSB repair, have been associated with 
the phenotype of primary amenorrhea and POI in a consanguine-
ous family of four sisters with ovarian dysgenesis and a brother  
with azoospermia42. Another interesting finding that overlaps two 
categories of POI—syndromic and non-syndromic (reviewed in 
32)—is the recent finding of two missense variants of FANCA 
(the gene responsible for Fanconi anemia, or FA) in non- 
syndromic patients. FA genes are involved in DNA DSB repair14 
and are implicated in the category of syndromic POI; half 
of the patients with FA were reported to be infertile8, and FA 
genes have been described as relevant variants of known 
causative gene mutations of gonadal dysregulation.

Advances of therapeutic relevance for POI-associated 
infertility: toward a plausible “cure”?
A crucial question in ovarian biology is why some primordial  
follicles are maintained in dormancy for many years whereas  
others are activated for growth. Unlike in menopause, which  
occurs upon gradual depletion of the follicular pool via atresia  
or activation, residual primordial follicles unresponsive to  
standard gonadotropic signals remain in the ovaries. What is the 
mechanism by which adjacent follicles can be earmarked for  
such different fates? Current evidence suggests that whether 
an individual dormant follicle stays in the resting pool or  
initiates growth, transitioning out of a growth-arrested phase and  
developing into a mature peri-ovulatory follicle may depend on the 
balance of stimulatory and inhibitory factors at a particular point  
in time43 but these factors remain poorly understood. A detailed 
understanding of the processes regulating timing of follicular 
activation would potentially allow the development of therapies 
designed to suppress this process and preserve ovarian function, 
which would be transformative for women with POI.

One exciting advance in POI is the exploration of stem cell  
therapy via residual follicle rescue44. Live births have been  
achieved for POI patients with bone marrow transplant; this 
is thought to be due to replenishing factors necessary for an  
environment that facilitates growth within the ovary. One study 
injected bone marrow–derived stem cells (BMDSCs) and  
peripheral blood mononuclear cells into two groups of chemo-
induced POI mice and immunodeficient mice with xenografted 
ovarian cortical fragments from poor-responder patients45. The 
study showed many promising findings for both rodent and  

human ovarian tissue after BMDSC injection, including higher 
ovarian weight, higher ovulatory follicles, metaphase II oocytes, 
two-cell embryos, live births, estradiol secretion, and ovarian  
vascularization45. Another recent study used an alternative stem  
cell source: endometrial mesenchymal stem cells (MSCs) injected 
into mice with chemo-induced POI resulted in higher circulating  
levels of anti-Mullerian hormone (AMH, a known marker of  
ovarian reserve), greater number of developing follicles, and  
higher ovulation and live birth rates46. Furthermore, the thera-
peutic benefit of stem cells from other tissues, including adipose,  
umbilical cord blood, and amniotic epithelial cells, has been 
explored47–50. Recent research has begun to explore how stem  
cells specifically affect the ovarian microenvironment and restore 
ovarian function through the use of exosomes derived from stem 
cells in chemotherapy-induced POI models51,52. However, it is 
unclear at this point whether therapies aimed at prevention of 
POI in the oncofertility population will be broadly appli-
cable to the larger POI population, including women with 
autoimmune and idiopathic POI and women in whom the onset 
of POI occurs early in life. 

Another approach that has been explored aims at increasing  
the concentration of local growth factors within the ovary  
utilizing intra-ovarian injection of platelet-rich plasma (PRP).  
Prepared from autologous plasma, intraovarian PRP has been 
shown to support the viability and growth of preantral follicles 
and to increase the number of retrieved oocytes53. Growth factors  
that are thought to be delivered via PRP include platelet- 
derived growth factor (PDGF), epidermal growth factor (EGF), 
insulin-like growth factor (IGF), transforming growth factor b-I 
(TGFb-I), vascular endothelial growth factor (VEGF), hepatocyte 
growth factor (HGF), and basic fibroblast growth factor (bFGF)54. 
This PRP-based tissue regenerative approach has been attempted 
across several injured human tissue types (tendons, muscles, and 
nerves) with the goal of improved healing55 primarily through  
the promotion of neoangiogenesis. In a case report, the use of  
PRP with direct gonadotropin intraovarian injection resulted in  
successful conception in a POI patient who subsequently 
achieved a live birth56. 

Ovarian tissue cryopreservation (OTC), in which a portion or  
the entire ovary is removed and frozen with the intention of  
autotransplantation, is a promising preventative option for fer-
tility preservation in women planning initiation of chemother-
apy or radiation57,58, especially for those with cancer diagnosed  
before puberty (and thus before controlled ovarian stimulation  
for oocyte cryopreservation can feasibly be achieved) (reviewed 
in 59–63). Live birth rates have been calculated at about 
25% across 80 patients following transplant of the thawed ovar-
ian tissue at a later date; these pregnancies reflect a cumulative 
success and include both spontaneous conceptions and preg-
nancies resulting from in vitro fertilization64. The majority of 
these patients underwent OTC for cancer-related POI risk 
(mostly, for breast cancer and leukemia diagnoses). However, it is 
unclear whether OTC studies largely consisting of patients 
with cancer can be extrapolated to patients with or at risk for 
POI relating to other etiologies, such as an abnormal genotype65. 
A retrospective case-controlled study looking at ovarian biopsies 

Page 7 of 13

F1000Research 2020, 9(Faculty Rev):1101 Last updated: 07 SEP 2020



in 15 patients with TS after OTC showed follicles in only 
nine of the ovaries (eight of these nine in Turner mosaic 
karyotype), along with markedly lower follicular fluid testoster-
one and estradiol concentrations65, suggesting that a careful and 
patient-specific approach is essential when identifying TS 
patients who may benefit from OTC66. 

Investigation into the mechanisms involved in the pathogenesis  
of POI are rapidly improving the potential for future POI  
treatments. A promising area of study as a therapeutic target  
involves the gene expression pathways regulating primordial  
follicle growth activation and recruitment with an eye toward 
oncofertility applications. Central regulators of this process include 
the c-Kit/Kit ligand signaling pathway, FOXO3, and members of 
the phosphatase and tensin homolog deleted on chromosome ten 
(PTEN) pathway, which modulate activity of protein kinase A 
(Akt) and mechanistic target of rapamycin (mTOR) and FOXO3 
(reviewed in 43). In a study by Goldman et al., blockade of 
mTOR pathways with small-molecule inhibitors preserved ovarian  
reserve, primordial follicles, AMH levels, and fertility in a  
cyclophosphamide-treated mouse model67. AMH, as a critical  

“gatekeeper” hormone that regulates follicular quantity by  
inhibiting recruitment and growth, is a particularly interesting  
molecule in the regulation of this follicular “clock”68–73. The  
use of exogenous AMH has been explored as an innovative new 
preventative strategy and treatment option for gonadotoxin- 
induced follicle loss74. In two recent studies, co-treatment with  
exogenous delivery of AMH in chemotherapy-exposed mice 
resulted in an inhibition of primordial follicle growth activation, 
although the protective effect varied depending upon the agent 
used75,76. Because the PI3K signaling pathway is not activated  
by AMH, FOXO3 phosphorylation has been proposed as a  
causative mechanism for the protective effects of AMH75  
(Figure 2).

In vitro activation has been proposed as a novel strategy for  
reactivating the dormant primordial follicle that still exist in POI 
ovaries. This concept is buoyed by recent advances in understand-
ing of the role of the Hippo signaling pathway in activation of  
residual dormant follicles, and if substantiated, will hold  
transformative therapeutic relevance for patients diagnosed  
with POI (Figure 2), (reviewed in 77). Disruption of the Hippo  

Figure 2. Selected pathways relevant for plausible salvaging of residual ovarian function in primary ovarian insufficiency. (1) 
Ovarian cortex fragmentation disrupts the Hippo signaling pathway  leading to dephosphorylation of YAP and TAZ, which (2) stimulates 
transcription of growth factors (GFs), including GDF9 and BMP15 (transforming growth factor-beta family). (3) GF and Kit-ligand (Kit-L) as 
well as (4) 740YP administration increase PI3K activity, whereas PTEN serves to keep follicles dormant. (5) Activation of the PI3K complex 
activates PIP2  to PIP3, which  (6)  leads  to  increased Akt expression.  (7) Phosphorylated Akt upregulates mTOR,  leading  to downstream 
GF  transcription, and  (8)  inhibits activation of RAD51 and FOXO3A.  (9)  This prevents nuclear export of  FOXO3A, decreasing primordial 
follicle activation. Similarly, (10) anti-Müllerian hormone (AMH) decreases activation of phosphorylation of FOXO3A. Green arrows represent 
activation steps, and red bar-headed lines represent inhibition. AKT, protein kinase B; FOXO3, forkhead box O3; mTOR, mammalian target of 
rapamycin; PI3K, phosphatidylinositol-3-kinase; PIP2, phosphatidylinositol-4,5-bisphosphate; PIP3, phosphatidylinositol-3,4,5-bisphosphate; 
PMF,  primordial  follicle;  PTEN,  phosphatase  and  tensin  homolog  deleted  on  chromosome  10;  TAZ,  transcriptional  coactivator  with 
PDZ-binding motif; YAP, Yes-associated protein.
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pathway caused by mechanical ovarian fragmentation has 
been used to activate resting follicles (although concerns about  
early activation and depletion of the follicular pool are also a  
consideration). In a study by Kawamura et al. using murine  
ovaries, ex vivo fragmentation of ovaries followed by reimplan-
tation of fragmented tissue resulted in expression of key Hippo  
signaling genes and an increased percentage of late secondary  
and antral follicles, although an overall loss of follicles was 
observed after grafting78. Moreover, when disrupted secondary  
mouse follicles were incubated with Akt-stimulating drugs  
(PTEN inhibitor and PI3K activator), similar increases in follicle  
counts were observed. Others have also demonstrated that  
primordial follicle activation (mediated via YAP1, the main  
downstream effector in the Hippo signaling pathway) is regulated 
in part by AKT79. In humans, fragmentation of human ovarian  
tissue cubes followed by Akt stimulation also resulted in antral  
follicle growth when tissue strips were transplanted into  
immune-deficient mice. Subsequently, 27 patients with POI  
underwent ovarian tissue harvesting and fragmentation, and tis-
sue was subjected to Akt treatment in vitro for 2 days, followed 
by auto transplantation beneath Fallopian tube serosa. Follicle  
growth was subsequently observed in eight patients and 
mature oocytes were retrieved from five patients; one woman 
achieved a live birth78. In light of the understanding of the Hippo  
signaling pathway and its relevance for ovarian follicular  

development, it is plausible to consider that any benefits of  
intraovarian PRP injection on ovarian physiology may be  
secondary to a modulation of the Hippo pathway from physical  
disruption of the ovarian tissue (from injection), and not from 
intraovarian growth factors, as is hypothesized56.

Conclusions and Future directions
POI has historically been considered a poorly understood and  
catastrophic condition. Although the etiology of POI has largely 
been considered idiopathic, recent advances in the field of  
genetics have begun to unravel a complex network of molecular 
pathways that are critical to normal ovarian biology and that may  
be involved in the pathophysiology of this heterogeneous  
entity. Many potentially promising diagnostic and treatment  
modalities are already being explored. The overarching goal for  
the emerging tests and tools is to allow opportunities for an  
earlier diagnosis in those at risk of POI. Timely interventions  
may offer salvage of residual reproductive potential in the  
earlier stages of the POI processes. Elective freezing of oocytes 
and ovarian tissue are tried and tested interventions that allow  
for a preemptive approach to fertility preservation in those  
deemed at risk for POI, such as young girls and women with 
genetic predispositions (for example TS65 and FMR1 premutation 
carriers81,82), pediatric and reproductive age cancer survivors80,  
or women with autoimmune conditions83.
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