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Abstract

Motivation: Protein orthologous group databases are powerful tools for evolutionary analysis, functional annotation
or metabolic pathway modeling across lineages. Sequences are typically assigned to orthologous groups with
alignment-based methods, such as profile hidden Markov models, which have become a computational bottleneck.

Results: We present DeepNOG, an extremely fast and accurate, alignment-free orthology assignment method based
on deep convolutional networks. We compare DeepNOG against state-of-the-art alignment-based (HMMER,
DIAMOND) and alignment-free methods (DeepFam) on two orthology databases (COG, eggNOG 5). DeepNOG can
be scaled to large orthology databases like eggNOG, for which it outperforms DeepFam in terms of precision and re-
call by large margins. While alignment-based methods still provide the most accurate assignments among the
investigated methods, computing time of DeepNOG is an order of magnitude lower on CPUs. Optional GPU usage
further increases throughput massively. A command-line tool enables rapid adoption by users.

Availabilityand implementation: Source code and packages are freely available at https://github.com/univieCUBE/
deepnog. Install the platform-independent Python program with $pip install deepnog.

Contact: thomas.rattei@univie.ac.at

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding protein function is a fundamental problem in mo-
lecular biology. Characterizing function through biological experi-
ment has very slow throughput, compared to the ongoing growth of
sequence data. While functional characterization is time consuming
even in model organisms, experiments become particularly complex
for currently uncultivatable or otherwise inaccessible organisms,
such as intracellular symbionts. The continuous massive stream of
sequence data emerging from large-scale genomic and metagenomic
projects widens the gap between available raw information and pre-
cise data from experiments. Highly efficient and accurate computa-
tional methods are, thus, required to extract functional and
evolutionary information from all sequence data.

Orthologous relationships are highly informative about protein
function (Fitch, 2000; Gabaldón and Koonin, 2013). Phylogenetic
and functional information is largely stored in the primary structure
of proteins, i.e. the amino acid sequence [Protein sequences contain
sufficient information to code for their structure (Possenti et al.,
2018). As per the thermodynamic hypothesis, protein sequences de-
termine native conformations (Anfinsen, 1973). It is commonly

accepted that protein 3D structures determine function. By transitiv-
ity, function (generally) follows sequence.]. Several public resources
provide precomputed orthologous groups of protein sequences to
aid, for example, comparative genomics and phylogenetics. Among
these resources are hand-curated databases, such as COG (Galperin
et al., 2015), and (semi-)automatically created databases, such as
OMA (Altenhoff et al., 2018) or eggNOG (Huerta-Cepas et al.,
2019). The latter is a superset of COG, and additionally comprises
over 4 M orthologous groups automatically created from fully
sequenced and assembled genomes of 5090 organisms in its latest it-
eration eggNOG 5. Mapping protein sequences against these well-
annotated orthology resources is a popular approach to functional
inference, evolutionary classification or metabolic pathway analysis
(Galperin et al., 2019).

The problem of grouping protein sequences according to orthol-
ogous relationships includes (i) constructing databases of ortholo-
gous groups, and (ii) assigning new sequences to precomputed
orthologous groups. Here, solely the second subproblem is consid-
ered. Several methods for orthology assignments of novel sequences
to precomputed groups are available, including alignment-based and
alignment-free techniques. Alignment-based methods typically rely
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on comparisons of multiple sequences, which provide substantially
better sensitivity than pairwise sequence alignments. Probabilistic
profile hidden Markov models (pHMMs) are used frequently for
database search of proteins by sequence homology (El-Gebali et al.,
2019). Profile HMMs are derived from multiple sequence align-
ments (MSAs) and leverage position-specific state transition proba-
bilities for scoring of protein similarity against their corresponding
MSA (Eddy, 2011). This fully probabilistic model was found to con-
fer superior performance in detecting homologous protein sequen-
ces, particularly for distant relatives, compared to non-probabilistic
alignment-based methods like BLAST (Eddy, 2011). For this reason,
pHMMs have also seen application specifically in protein orthology
mapping (Huerta-Cepas et al., 2017; Mi et al., 2010; Petersen et al.,
2017). Hidden Markov models are trained from multiple alignments
of protein families or orthologous groups. Inference with all models
is then required to assign one particular family or group to a se-
quence of interest. These steps were rate-limiting factors in previous
studies (Feldbauer et al., 2015; Seo et al., 2018). Alignment-based
methods are, thus, becoming a computational bottleneck in protein
function prediction. This is especially the case for current metage-
nomic projects. Due to readily available low-cost high-throughput
sequencing technologies, millions and soon to be billions of proteins
await analysis (see, for example, Pasolli et al., 2019).

Recently, alignment-free deep learning approaches have been
applied successfully to numerous biological and biomedical tasks
(Eraslan et al., 2019). DeepFam is a deep convolutional network for
assigning novel sequences to precomputed orthologous groups (Seo
et al., 2018). While it achieves high accuracy and significant speed-
up compared to the commonly used pHMM tool HMMER3 (Eddy,
2011), we identify several limitations:

• Sub-optimal scaling to larger datasets.
• COG only (no eggNOG or other large-scale orthology databases).
• Sequence length restrictions.
• Missing user interface for inference (assignments).

To fill these gaps, we introduce the deep network architecture
DeepNOG. It features superior assignment accuracy and computa-
tional efficiency in large orthology databases. DeepNOG allows to
assign eggNOG 5 orthologous groups and handles proteins of arbi-
trary sequence lengths. The Python package deepnog provides
researchers with easy-to-use deep learning-based orthologous group
assignment. Note, that DeepNOG’s scope does not encompass the
delineation of new groups, or further disentanglement of protein
relationships within individual groups.

2 Materials and methods

In this section, we introduce the orthology databases, deep network
architectures and a metagenomic dataset used for DeepNOG
evaluation.

2.1 Orthology databases
We used two orthology databases for our experiments: Our primary
interest is eggNOG, a large public database with semi-supervised,
fine-grained orthologous groups on multiple levels of the tree of life.
We demonstrate fast and reliable orthologous group assignments in
eggNOG 5 in Section 4.3. COG is a comparatively small, manually
curated database by NCBI that serves here for comparison to previ-
ous results of competing methods.

Table 1 gives an overview of the most important characteristics
and differences between COG (2014) and eggNOG 5. For the latter,
we considered sequences with exactly one orthologous group (OG)
assignment at the bacteria level. The population of orthologous
groups is typically highly skewed. While the expected population size
of each OG in the top taxonomic levels is roughly in the order of one
hundred members, there exist many OGs comprising few members,
or even a single sequence (singletons). Conversely, relatively few
groups with high cardinality contain a large fraction of all sequences

in the database. In the machine learning context, datasets highly
imbalanced with respect to class cardinalities pose a challenge to both
traditional and modern methods (Johnson and Khoshgoftaar, 2019),
some consequences of which are being discussed in the results Section
4.1. When technically necessary, we disregarded OGs below a certain
member threshold. This typically only affected a relatively low num-
ber of sequences. Additional details on database characteristics are
provided in Supplementary Section SC.1.

2.1.1 COG: Clusters of Orthologous Genes

The Clusters of Orthologous Genes database was introduced in
1997 to provide evolutionary classification of protein families. COG
is a relatively small, but manually curated and, thus, high-quality
orthology resource. Orthologous groups are constructed by consid-
ering bidirectional best hits of sequences comparing complete
genomes.

COG was used in Seo et al. (2018) for evaluating DeepFam in
terms of accuracy and speed in comparison to HMMER. Here, we
used COG to reproduce those results, and as a baseline to compare
the new DeepNOG architecture with its competitor DeepFam and
alignment-based methods. For a broader comparison of alignment-
free methods including k-mer-based algorithms the reader is referred
to Seo et al. (2018). Since identical datasets were used for bench-
marking, and DeepFam had been found to outperform the compet-
ing methods, those comparisons were not re-iterated here, but only
the state-of-the-art alignment-free method was considered.

2.1.2 EggNOG 5

The evolutionary genealogy of genes: non-supervised orthologous
groups database (eggNOG) builds upon the COG database. In add-
ition to this supervised part, a large fraction of the database is con-
structed by an unsupervised clustering algorithm (Huerta-Cepas
et al., 2019). The resulting orthologous groups are often referred to
as NOGs or ENOGs. In its current version 5, eggNOG consists of
4.4 million orthologous groups distributed across 379 taxonomic
levels. For this work, we primarily considered single-label proteins,
following the approach of DeepFam (Single-label proteins are asso-
ciated with only one OG, which excludes, for example, certain
multi-domain proteins. For effect sizes see Supplementary Table
S1.). We focused on the bacterial level, which is highly relevant for
metagenomic studies. For example, reliable phenotypic trait predic-
tion from complete or incomplete genomes has so far been demon-
strated for bacteria only (Feldbauer et al., 2015; Weimann et al.,
2016), and is used, for instance, in the PhenDB pipeline (PhenDB:
https://phendb.csb.univie.ac.at/). The methodology is, however, not
limited to specific taxonomic levels. DeepNOG is also evaluated on
the eggNOG 5 root level.

2.1.3 Human infant gut metagenomes

The human gut microbiome has received extensive attention and has
been linked to numerous medical conditions, including infectious
diseases, obesity or cancer (Cani, 2018). Three human infant gut
metagenome studies (SRP069019, SRP090628 and SRP056054)
were selected exemplarily for orthologous group annotation with
particular focus on the type VI secretion system (T6SS). From each
infant, the sample with the largest number of high- and medium-
quality metagenome-assembled genomes (MAGs) was selected to
form a set of 3337 MAGs.

Table 1. Main characteristics of orthologous groups databases

COG 2014 eggNOG 5 (bacteria)

Number of proteins 1 674 176 13 836 642

Number of OGs 4631 206 782

OG population range 1–10 632 1–97 670

Sequence length range 21–29 202 23–24 921
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2.2 Convolutional networks for OG assignment
Both the newly developed DeepNOG architecture and DeepFam
rely on convolutional units to extract informative subsequence pat-
terns from proteins for orthologous group assignment. That is, both
are supervised end-to-end learning methods, which do not require
manual feature extraction, such as k-mer frequencies. Instead, they
take raw protein sequences as input and return class labels for each
sequence. In this section, we describe common features and import-
ant differences between these methods.

2.2.1 Architectural comparison of DeepNOG and DeepFam

DeepNOG is a convolutional network architecture inspired by
DeepFam with multiple improvements to overcome its limitations
including the restriction to fixed length protein sequences, and ap-
plicability to eggNOG. Figure 1 provides a visual overview of the
DeepNOG architecture (see Supplementary Fig. S3 for the DeepFam
architecture). The following subsections give a brief overview of
DeepFam and introduce the architectural improvements incorpo-
rated into DeepNOG. The influence of each of the introduced archi-
tectural changes compared to DeepFam was investigated in an
ablation study (see Supplementary Section SD.1).

2.2.2 Encoding layer: word embeddings

Proteins are commonly represented in human-readable form, such
as the FASTA format, which contains the sequence encoded in the
IUPAC one-letter amino acid code. For deep learning, sequences
must be transformed into a format processible by deep networks,
typically numerical vectors. Therefore, categorical data are frequent-
ly embedded into vector spaces by one-hot encoding: Vector length
is determined by the alphabet size (for example, the number of pro-
teinogenic amino acids), and the vector for a particular amino acid
is 1 in a cell specific for this amino acid, and 0 everywhere else.
One-hot encodings hence exhibit equidistance between all catego-
ries. Clearly, this is an undesirable feature for amino acids, which
naturally cluster with respect to chemical and biological features or
size.

DeepFam employs a pseudo one-hot encoding: The 20 standard
amino acids and the ‘X’ character (unknown) are one-hot encoded,
yielding a 21-dimensional embedding. Three ambiguous codes are
allowed to interpolate between their manifestations (e.g. J ¼ 1

2I þ
1
2L). In sequence alignments, substitution matrices such as
BLOSUM, PAM or PSSMs are employed to factor in similarities be-
tween individual amino acids. DeepNOG accounts for these similar-
ities by embedding each of 26 amino acid codes (using Biopython’s
extended IUPAC protein alphabet) into RD (‘word embedding’).
These D-dimensional vector representations are jointly trained with
the network. That is, the embedding layer has flexibility to learn

common properties of amino acids by placing them in RD so that
distances in this space reflect biochemical (dis-)similarities. The
word embedding dimension D can be lower than the alphabet size,
and thus, lower than the one-hot encoding dimension. For
DeepNOG, D¼10 gave best results on validation data, which
reflects the findings of a recent survey on amino acid encoding
schemes (ElAbd et al., 2020). Consequently, each amino acid is rep-
resented as a ten-dimensional vector. Concrete realizations were
obtained for each model individually during training. Conveniently,
the learned amino acid embeddings can be visually inspected for bio-
logical plausibility, which enhances the interpretability of trained
models (see Fig. 3). The embedded sequences are passed to feature
extraction in the convolutional layer.

2.2.3 Convolutional layer

After the embedding, a 1-D convolutional layer is employed in
DeepFam. The ith row in the convolutional layer corresponds to a
filter of size Ki which is applied to L-Kiþ1 consecutive (encoded)
protein subsequences of length Ki resulting in L-Kiþ1 convolutional
units (with L, the protein sequence length). 1-D means that the filter
treats each column in the encoding as a separate input channel. If
the amino acid alphabet consists of C letters, this results in the filter
learning C vectors of weights (tunable network parameters), each of
length Ki. Therefore, the kth element in a weight vector corresponds
to the weight given to a certain amino acid occurring in the kth pos-
ition of the looked upon protein subsequence. The 1-D convolution-
al operation is followed by an activation function (non-linearity).
DeepFam uses rectified linear units (ReLU) as activation functions.
Furthermore, it chooses eight different filter sizes (8, 12, 16, 20, 24,
28, 32 and 36). In the most successful parametrization, it uses 250
different filters for each filter-size resulting in 2000 independent fil-
ters. Seo et al. (2018) showed that the learned filters are sensitive to
sequence motifs typical for certain orthologous groups, and their
occurrences can distinguish orthologous groups, underlining suc-
cessful feature extraction by the convolutional layer.

DeepNOG’s convolutional layer closely resembles the architec-
ture of DeepFam but exchanges the ReLU activation function for
scaled exponential linear units (SELU) to obtain a self-normalizing
network: Activations converge toward zero mean and unit variance,
without an additional explicit normalization step, such as batch nor-
malization. This eliminates the vanishing or exploding gradients
problems, enables strong regularization and yields stable learning
(Klambauer et al., 2017; see also Section 2.2.6).

In DeepNOG, employing a 1-D convolution means that each di-
mension in the embedding vector space RD is treated by the filter as
an independent input feature vector. The filter then weights the im-
portance of the positive or negative strength of a feature at a certain

Fig. 1. DeepNOG network architecture
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position in the input protein subsequence for each input feature vec-
tor separately. The positive or negative strength of a feature at a cer-
tain position is determined by the concrete amino acid in this
specific position in the subsequence. Thus, the interpretation of fil-
ters getting sensitive to discriminatory motifs for OG assignments,
as put forth by Seo et al. (2018), holds.

2.2.4 Pooling layer

DeepFam employs a standard 1-max-pooling layer. This means, the
ith node in the pooling layer corresponds to the maximum value in
the ith row of the convolutional layer and all other values are dis-
carded. 1-max-pooling layers require the length of the input rows to
be specified exactly. For this reason, DeepFam fixed the length L of
input sequences to 1000, zero-padded smaller input sequences and
discarded longer ones. Both COG and eggNOG, however, comprise
sequences of very high length variability (see Table 1, and
Supplementary Fig. S1). Therefore, this is a significant limitation for
the applicability of this architecture to arbitrary sequences in COG
and eggNOG as well as for classifying arbitrary user sequences.

To this end, DeepNOG exchanges the pooling layer for an adap-
tive max-pooling layer. It also extracts the maximum value in an in-
put row of the convolutional layer but can handle arbitrary input
sizes and has, therefore, no upper bound on the length of the input
sequences. Extremely short input sequences of lengths smaller than
the biggest filter size K are zero-padded to length K for training and
inference (where max(K) ¼ 36 in DeepNOG). DeepNOG has, con-
sequently, no restriction on protein sequence length.

2.2.5 Classification layer

DeepFam aggregates activations from the feature extraction subnet-
work in a fully connected subnetwork with one hidden layer fol-
lowed by a softmax for classification. In the most successful
parametrization of DeepFam, it uses 2000 units in the hidden layer.
The output at each node can be interpreted as the confidence the
network has in associating the input protein sequence with the spe-
cific orthologous group corresponding to the node (Goodfellow
et al., 2016). The OG assignment is finally based on the highest con-
fidence among the output nodes.

DeepNOG directly places the softmax output layer after the
adaptive max-pooling layer, thereby omitting the additional hidden
layer. This reduces the total number of parameters and improves
run time [The number of model parameters is not necessarily a good
measure of its complexity, and deep networks have been shown to
generalize better in overparametrized regimes (Belkin et al., 2018).
Here, reducing the number of parameters should be seen in the light
of increasing training and inference speed rather than as a regular-
ization method.]. Since softmax layers are equivalent to logistic re-
gression, DeepNOG can be understood as a two-stage machine
learning model. In the first stage, it extracts the (strength of) occur-
rence of sequence motifs with discriminatory information regarding
OGs. In the second stage, it applies logistic regression, using the
(strength of) occurrence of sequence motifs as input, to calculate
probabilities of all orthologous groups in the model. Finally, the in-
put sequence is assigned to the OG with the highest probability.

2.2.6 Hyperparameters and training procedure

DeepNOG is trained as a self-normalizing network with scaled ex-
ponential linear units (SELU) as activation functions. DeepNOG
with SELUs achieved better empirical results (on validation data)
than with ReLU plus batch-normalization approach taken by
DeepFam, while at the same time being computationally more effi-
cient. The convolutional and dense layers of DeepNOG are initial-
ized as described in Klambauer et al. (2017). Dropout with P¼0.3
is employed for regularization. Additionally, alpha-dropout with
P ¼ f0:05; 0:10; 0:20;0:30g as suggested in Klambauer et al. (2017)
as well as dropout with P¼0.5 as suggested by Hinton et al. (2012)
were investigated but found to perform inferior (on validation data).
Due to computational limitations and the similarity of COG to
eggNOG, the performance of hyperparameter choices on COG was
used as an estimator for the performance on eggNOG. Therefore,

DeepNOG uses identical parametrization and the same filter sizes 8,
12, 16, 20, 24, 28, 32 and 36 as DeepFam and 150 filters for each
size. For stochastic optimization, Adam (Kingma and Ba, 2014) was
used with a learning rate set to 0.01 in conjunction with a scheduler
decreasing the learning rate by 25% after each epoch. Additional
Adam parameters were set to default values. Batch size was set to
64, unless GPU memory was exceeded, in which case the batch size
was reduced to fit into memory. Training was performed on an
Nvidia P6000 GPU with 24 G memory. For some experiments, the
memory requirements of the best DeepFam parametrization
exceeded the total memory on the available hardware. Therefore, an
additional parametrization was trained, which used 150 instead of
250 convolutional filters for each filter size, and 1500 instead of
2000 hidden units in the classification layer. These design decisions
are in accordance with investigations of different hyperparameter
choices in Seo et al. (2018), which reported only a minor increase in
error (< 1%-point) for the more lightweight parametrization. We
refer to these models as ‘DeepFam light’.

2.3 Alignment-based orthologous group assignment
DeepNOG is also compared with alignment-based methods achiev-
ing state-of-the-art performance in orthologous group assignment,
which are used in eggNOG-mapper (Huerta-Cepas et al., 2017), the
official OG-assignment tool by the eggNOG consortium.
Comparison is against the core methods rather than eggNOG-
mapper, because the tool performs additional steps, such as gene
ontology assignments. The complete eggNOG-mapper pipeline
would, therefore, be at a disadvantage in timing experiments.

2.3.1 Profile hidden Markov models

Profile hidden Markov models (pHMMs) drive eggNOG-mapper
v1, and can optionally be chosen in v2.

For experiments on COG and eggNOG, multiple sequence align-
ments were built for each orthologous group with FAMSA v1.3.2
(Deorowicz et al., 2016) restricted to training set proteins. Profile
HMMs were created from these alignments with hmmbuild
(HMMER 3.3). Test set inference was performed by hmmsearch.
Default parameter values were used, unless explicitly specified
otherwise. Each query was assigned to the OG with the lowest cor-
responding inference e-value. Inference speed was measured with
hmmsearch with parameters –noali –cpus 1. Parallel queries were
handled by the hmmpgmd daemon.

2.3.2 DIAMOND

DIAMOND is the main algorithm driving eggNOG-mapper v2.
DIAMOND databases were created for each training set with dia-
mond makedb. Test set inference was performed by diamond blastp
with parameters –more-sensitive -e 0.001 –top 3 –query-cover 0 –
subject-cover 0 to mimic eggNOG-mapper.

2.4 Training, validation, test splits
Unbiased estimation of the true performance of machine learning
models requires splitting data into independent training, validation
and test sets, or nested cross-validation. We employed different split
strategies for the experiments described below.

Experiments on COG used a single cross-validation scheme.
Training and validation (model selection) are performed on a com-
mon subset, while performance estimation uses an independent test
set, which replicates the procedure outlined in Seo et al. (2018). This
possibly resulted in too pessimistic assignment performance esti-
mates due to selecting models of suboptimal generalization power.
However, this procedure is required for replicating DeepFam experi-
ments and a fair comparison to DeepNOG.

For eggNOG experiments, we refrained from cross-validation
given the large database size. Models were trained and selected on
training/validation splits. Assignment performance was estimated on
an independent test set. All splits were stratified according to class
labels, with a split ratio of 81%, 9% and 10% of all sequences, for
training, validation and test sets, respectively.
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This procedure might report optimistic error rates for biological
sequences, if highly similar sequences are present in both training or
validation and test set. For this reason, we trained and evaluated
additional models on eggNOG 5 sequences (root and bacteria levels)
clustered according to UniRef50 and UniRef90 (release 2019_11,
Suzek et al., 2015) to estimate possible biases of this type.

3 Implementation

The Python tool deepnog provides fast protein orthology assign-
ments with PyTorch deep networks (Paszke et al., 2019). At the
time of writing, it supports the DeepNOG architecture as described
in Section 2.2 trained on the root (tax 1) and bacteria (tax 2) levels
of the eggNOG 5 database out of the box. The tool is agnostic to-
ward specific network architectures and orthology databases.
Additional networks for arbitrary orthology databases can be regis-
tered easily. This requires only the PyTorch model definition, and
the corresponding trained weights. The deepnog train command
allows users to train custom models for additional taxonomic levels
of eggNOG, or even different databases, such as OMA. For deepnog
usage details the reader is referred to the user & developer guide
available online (User & developer guide: https://deepnog.rtfd.io).
deepnog can be installed from the Python Package Inventory by
$pip install deepnog on all major operating systems. Source code,
issue tracker and additional links are available on https://github.
com/univieCUBE/deepnog. Further information about software de-
velopment principles, tests, continuous integration or documenta-
tion is available in Supplementary Section SA. Refer to
Supplementary Section SB for notes on data availability.

DeepFam was originally implemented using the TensorFlow
framework. For fair comparison, we re-implemented the network in
PyTorch, and reproduce the findings reported by Seo et al. (2018)
for the COG database in Section 4.2, where we also compare
DeepNOG with alignment-based methods.

4 Results

DeepNOG was first evaluated on both COG and eggNOG 5, and
compared with DeepFam, HMMER and DIAMOND.

We then proceeded to the larger eggNOG 5 database, for which
we report fast and accurate assignments with DeepNOG in Section
4.3. For an application example, we consider the search for type VI
secretion systems in metagenomic data in Section 4.4. Additional
experiments on related classification tasks (protein fold, and GPCR
family assignments) are presented in Supplementary Sections SD.3
and SD.4, respectively.

4.1 Addressing imbalanced orthologous group

populations
Both COG and eggNOG 5 constitute highly imbalanced datasets
with respect to group membership. Learning to correctly assign
orthologous groups with population sizes below a certain threshold
is challenging. For example, in the extreme case of singletons, it is
impossible to perform train-test splits. Generalization performance
cannot be estimated in such cases. Therefore, Seo et al. (2018) intro-
duced three minimum population thresholds for OGs (100, 250 and
500) and investigated, how the method scales with the number of
OGs and level of imbalance. We consider the minimum population
thresholds of 100 and 500 for comparison between DeepNOG and
DeepFam.

Imbalanced datasets also require a careful choice of performance
measures. For direct comparison with previous results, we report
classification accuracy, which is the fraction of correct assignments
in all assignments. This measure is biased toward the performance
of the largest groups. In order to investigate assignment performance
for orthologous groups with few members, we also report macro-
averaged precision and recall. That is, precision and recall are com-
puted for each group and averaged over all groups. Each ortholo-
gous group, therefore, contributes equally to the overall

performance. Accuracy higher than both macro-averaged measures

suggests that the model performs better on large groups than on
small groups.

4.2 DeepNOG versus state-of-the-art methods on COG
DeepFam processes sequences to a maximum length of 1000.
Applying the length threshold to COG removes 1.3% of the protein

sequences (see Supplementary Table S2). Additionally requiring a
minimum population of 100 removes 6.5% of sequences.

Figure 2 reports classification performance of DeepNOG and
competing assignment methods on two COG subsets. The results
were obtained by averaging three-fold cross-validation results.

Datasets and splits are identical to those used by Seo et al. (2018) to
allow for a fair comparison. Profile hidden Markov models

(pHMMs) generated with HMMER, and DIAMOND provided the
baseline for alignment-based orthologous group assignment. We
investigated a lightweight version (‘DeepFam light’) in addition to

the best parametrization of DeepFam, which was not trainable on
the available resources for eggNOG (see Section 2.2.6).

The alignment-based methods achieved best assignment quality,
with pHMMs profiting from high recall (sensitivity). Accuracy of

DeepFam was in very good agreement with previously published
values (Seo et al., 2018). Note that we obtained 4%-pts higher ac-
curacy for pHMMs compared to the values provided in the same

source. The alignment-free methods also yielded highly accurate
assignments in COG-500 but showed reduced performance in the

larger COG-100 dataset. DeepNOG scaled better to larger datasets
than both DeepFam variants. Section 4.3 shows that this effect is
amplified in the larger eggNOG database.

Inference speed is an important constraint for applications of
orthologous group assignment. Again, the deep learning based meth-

ods were compared with alignment-based methods. For fair com-
parison, all timings were performed on the same machine on a single
CPU core [1000 proteins, AMD Opteron(tm) Processor 6320 @

1.80 GHz]. DeepNOG was slightly faster than DeepFam, and up to

an order of magnitude faster than the alignment-based methods (see

Table 2).
We conclude that DeepNOG (i) provides high assignment per-

formance, (ii) scales better to higher numbers of groups and more
imbalanced datasets and (iii) is faster than its alignment-free com-
petitor on COG.

4.3 Evaluation of eggNOG assignment
The much larger eggNOG 5 database is our primary interest.

Similar to our experiments on COG, we applied the minimum
orthologous group population threshold 100 to eggNOG, yielding

datasets NOG5
1-100 and NOG5

2-100, where superscripts and sub-
scripts indicate eggNOG version and taxonomic level, respectively
(1, root; 2, bacteria). Since DeepNOG was designed to handle

sequences of arbitrary length, we did not apply any sequence length
restrictions to eggNOG. See Supplementary Table S2 for details on
the resulting datasets used for the experiments in this section.

Fig. 2. Assignment accuracy for COG (minimum member threshold 500 and 100)
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4.3.1 Amino acid embedding

The word embedding layer used for encoding the input amino acids
is one important feature of the DeepNOG architecture. Figure 3 vis-
ualizes the amino acid embeddings of the DeepNOG eggNOG 5
(bacteria) model before and after training. Amino acids were initial-
ly positioned randomly in R10. Consequently, no meaningful cluster
structures were visible before training. After training, the learned
embeddings exhibited biologically plausible clusters matching well
with biochemical properties. Furthermore, a finer topology could be
identified. For example, the aromatic amino acids Phenylalanine (F),
Tryptophan (W) and Tyrosine (Y) were distinctly grouped together.
In addition, amino acids with unique features, such as disulphide-
bond forming Cytosine (C), or the structural disruptor Prolin (P),
were located on cluster borders (Note that inter-cluster distances
typically hold no meaning in t-SNE visualizations, which optimize
distance distributions between neighbors only.). The embeddings in
R10 were reduced to R2 by t-SNE (Maaten and Hinton, 2008).

4.3.2 Assignment quality

Figure 4 reports assignment performance of DeepNOG for eggNOG
5 datasets. In order to control possible biases stemming from similar
sequences in training and test sets, we performed experiments on dif-
ferent datasets with sequences clustered to 50%, 90% and 100%
identity (that is, UniRef50, UniRef90 and UniRef100, respectively).
Supplementary Table S3 details the resulting datasets. We compared
our method with DeepFam light, since these eggNOG 5 datasets
contain more classes (orthologous groups) than COG, so that the
best DeepFam parametrization exceeded the available memory (see
Section 2.2.6).

DeepNOG showed very high assignment accuracy on the
eggNOG 5 root and bacteria datasets on all three clustering levels.

While the number of orthologous groups was more than doubled
(bacteria) and quadrupled (root) compared to COG, performance
measures were nearly stable, with accuracy slightly below COG
results. We observed only minute differences between accuracy, pre-
cision and recall on the unclustered (UniRef100) datasets, clearly
demonstrating DeepNOG’s excellent scaling to larger numbers of
classes and population imbalance. Stricter clustering impaired macro
averaged recall, indicating more difficult assignments to small clus-
ters in remote homology regimes. DeepNOG was slightly more pre-
cise than sensitive, similar to other alignment-free methods.

DeepNOG outperformed DeepFam light with at least ten
percent-points difference in accuracy, and striking differences in
macro averaged precision and recall on NOG5

2-100. This indicates
substantial difficulties to predict rare orthologous groups correctly
with DeepFam. The performance drop in NOG5

2-100-UniRef100
and NOG5

1-100-UniRef50, 90and 100 was in agreement with
DeepFam’s suboptimal scaling to larger datasets.

Profile hidden Markov model performance was on par with
DeepNOG. They were less affected by sequence similarity effects
(UniRef clustering), and provided higher sensitivity. DIAMOND
again achieveed the highest overall assignment quality. As to be
expected, both alignment-based methods excelled in terms of accur-
acy. However, this came at high computational cost, as discussed
below.

4.3.3 Assignment speed

Table 2 provides execution times on the eggNOG 5 bacteria data-
sets. The experiment setup was identical to the setup for COG (see
Section 4.2). The timings for both alignment-based methods were in

Table 2. Inference time (seconds/1000 sequences) for COG and

eggNOG 5 (bacteria level)

COG-500 COG-100 NOG5
2-500 NOG5

2-100

DIAMOND 161.7 214.5 781.6 810.0

pHMMs 96.3 207.0 218.9 253.7

DeepFam 49.0 50.2 n/a n/a

DeepFam light 32.7 35.0 34.9 38.7

DeepNOG (CPU) 24.3 26.0 26.4 28.9

pHMMs (parallel) 4.8 5.1 9.5 14.4

DeepNOG (GPU) 0.6 0.6 0.6 0.6

Note:Fastest method bold (single core). Averages over three replicates.

Parallel pHMMs used 29x16 CPU cores.

Fig. 4. Assignment accuracy for NOG5
1-100 (tax 1) and NOG5

2-100 (tax 2) and three

clustering regimes. Note: * DeepFam not trainable on 24 G GPU for eggNOG

datasets

Fig. 3. Amino acid representations in the encoding layer of DeepNOG. Random ini-

tialization before training (left), and tuned representations after DeepNOG training

on NOG5
2-100 (right). Amino acids are colored based on biochemical properties.

Ambiguous codes that were not present in the dataset are excluded from the plots
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agreement with the initial hypothesis, that they are becoming a com-
putational bottleneck. Inference time using profile HMMs or
DIAMOND scaled unfavorably to larger databases. While pHMMs
scaled approximately linearly with the number of classes,
DIAMOND scaled proportionally to the number of sequences in the
database (see Supplementary Section SD.2 for details). The deep
learning-based alignment-free methods were faster overall, and
scaled decisively better to many classes and sequences. Note, that
deepnog supports GPUs, which increase throughput significantly.
DeepNOG (GPU) outperformed a massively parallel setup of
HMMER using the hmmpgmd daemon (see Table 2, lower part)
(Note that suboptimal scaling to large numbers of parallel threads is
a known limitation of HMMER3.3, see http://eddylab.org/software/
hmmer/Userguide.pdf (Introduction, p. 14).). At the same time,
DeepNOG models had a smaller memory footprint than alignment-
based methods. The network weights for NOG5

1-100 and NOG5
2-

100 amounted to 72.4 M and 31.5 M, respectively. The correspond-
ing pHMMs required 7.2 G and 1.9 G, and DIAMOND databases
used 6.5 G and 3.9 G of memory.

In summary, DeepNOG scaled well from smaller databases like
COG to larger databases like eggNOG. DeepNOG showed power-
ful performance on eggNOG 5 in terms of assignment accuracy, exe-
cution speed and memory footprint. It clearly outperformed
DeepFam in all of the evaluated metrics, and provided accuracy on
par with pHMMs at a fraction of their computational cost.

4.3.4 Assignment confidence threshold

Classifiers typically partition data: Every object is assigned to one of
the known classes. This is not always desirable, especially, when
there are additional classes that are not part of a model. Any objects
from these classes would be labeled incorrectly. For example, human
protein sequences fed into a bacteria-level model would be assigned
to inappropriate orthologous groups. Instead, one might not want
to assign any OG labels in these cases.

Deep networks with a softmax classification layer provide out-
put that represents a probability distribution over the available
classes. The output at a single neuron can, therefore, be interpreted
as the network’s confidence, that the input belongs to the corre-
sponding class among the available classes. DeepNOG supports set-
ting an assignment confidence threshold to decide, whether an input
protein can be associated with any OG included in the model. We
investigated the threshold empirically on the NOG5

2-100 dataset by
comparing the probability distribution of sequences from in-model
OGs to the distribution of sequences from out-model OGs. 100 000
proteins were randomly sampled from the NOG5

2-100 test set. These
were members of orthologous groups included in the model but had
not been seen during training. Furthermore, 100 000 proteins were
randomly sampled from orthologous groups in eggNOG 5 (bacteria)
that were not included in NOG5

2-100. Their true corresponding OGs
were not included in the model. All proteins were classified with
DeepNOG and the probabilities of the assigned groups were investi-
gated. Figure 5 depicts the overlayed histograms. In-model sequen-
ces showed a distinct distribution, well separable from the
distribution of out-model sequences. That is, the network was typic-
ally highly confident for proteins of known OGs, while in most cases
it was much less confident about proteins from OGs unknown to
the model.

A sensible confidence threshold can be set to a value on the
Pareto boundary of minimizing false positives and false negatives,
depending on the specific requirements of downstream experiments.
We set the default threshold to 99%. In Figure 5, there are 1450
out-model sequences and 1382 in-model sequences at this level. Bins
below are clearly dominated by unknown OGs, while the bin above
contains a vast majority of all in-model sequences. This is a rather
strict threshold avoiding false positives. deepnog allows to set this
threshold individually per experiment.

4.4 T6SS in metagenomic data
The collection of metagenome-assembled genomes (MAGs) from
human infant gut samples was annotated with DeepNOG,

eggNOG-mapper (version 2.0.0, using the DIAMOND backend)
and HMMER (pHMMs). Figure 6 shows the assignment overlap of
the three different methods for eleven T6SS-related COGs (Ho et al.,
2014). Supplementary Table S7 maps COG identifiers to the re-
spective T6SS components. Assignment patterns were nearly identi-
cal for all methods in five COGs. In three COGs, DeepNOG and
HMMER yielded highly similar annotations, while eggNOG-
mapper/DIAMOND detected fewer T6SS components. There was
more disagreement on the remaining COGs, but DeepNOG assign-
ments were always highly similar to assignments by HMMER.
Overall, DeepNOG retrieved T6SS components from MAGs yield-
ing large overlap with alignment-based methods, indicating the
methods’ applicability to real metagenomic data.

5 Discussion and outlook

We introduce DeepNOG, a deep convolutional network for protein
orthologous group assignment. It was shown to achieve high accur-
acy for both the COG and eggNOG databases, superior to the state-
of-the-art alignment-free method DeepFam. Highest assignment ac-
curacy is still achieved by alignment-based tools (DIAMOND,
HMMER), which predominantly stems from their higher sensitivity
(recall) compared to alignment-free methods. DeepNOG is compu-
tationally more efficient than alignment-based methods, providing
higher throughput of protein sequences on CPUs and particularly on
GPUs. We believe that this feature will help researchers to keep up
with the never-ending stream of newly sequenced genomes and
metagenomes. In addition, we showed that the network extracts bio-
logically meaningful information from sequences, and automatically

Fig. 5. Assignment confidences (bin size 0.01)

Fig. 6. T6SS assignment overlap of different methods
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clusters amino acids in a way that matches biochemical properties.
The Python program deepnog allows users to effortlessly apply the
introduced methods, and classify their sequences for eggNOG 5
groups.

Some limitations of DeepNOG remain to be tackled in future
work. We currently provide models only for eggNOG 5 root and bac-
teria levels. Training models for additional levels is in principle
straight-forward but requires non-negligible compute resources. We
will provide additional models on demand. As an alternative, deepnog
enables users to train further models themselves. Second, orthologous
groups with very few members still pose a challenge for deep net-
works, as the number of parameters increases with the number of
groups, and few examples are available per class. To this end, we will
investigate softmax approximations, such as, for example, presented
by Grave et al. (2017). At the moment, deepnog may be used in com-
bination with another tool, such as eggNOG-mapper. DeepNOG typ-
ically assigns a large fraction of sequences. By applying an assignment
confidence threshold, users can feed the remaining unassigned sequen-
ces to the other tool at the cost of slightly increased computation time
for full coverage of rare orthologous groups. Third, DeepNOG is cur-
rently limited to single-label classification, that is, it cannot assign sev-
eral orthologous groups to a single sequence. DeepNOG can be
extended to the multi-label setting by applying few changes to the
architecture and training procedure. However, highly imbalanced
datasets typically pose a challenge to multi-label classification. Future
experiments will show, whether extended DeepNOG networks can
provide reliable multi-label orthologous group assignments.

Finally, we follow recent advances in bioinformatics based on
deep learning with great interest, especially the advent of transfer
learning. It is widely believed, that transfer learning played a major
role in machine learning breakthroughs in computer vision with
convolutional networks pretrained on ImageNet (Deng et al., 2009),
or in natural language processing with recurrent networks or trans-
former networks pretrained on large text corpora (e.g. Devlin et al.,
2018; Lan et al., 2019). Recently, Rives et al. (2019) and Strodthoff
et al. (2020) reported on unsupervised pretraining of protein se-
quence representations. While preliminary experiments with
UDSMProt finetuned for OG assignment did not yet yield improved
results, we believe this direction of research to be highly promising.

Furthermore, the related but distinct problem of constructing
orthologous groups could be tackled by modern unsupervised or re-
inforcement deep learning approaches. Orthology databases have long
applied unsupervised learning, such as clustering (Li, 2003). Clustering
proteins via sequence vector representations would allow for
alignment-free orthology construction, using representations as
described above, or learned in alternative schemes, such as twin or trip-
let deep networks (Chen et al., 2020; Zheng et al., 2019). A plethora of
general and deep learning-based clustering methods are available
(Aljalbout et al., 2018; Karim et al., 2020). Reinforcement learning has
attained less but increasing attention in the field (Mahmud et al.,
2018). It will be interesting to see, whether playing the ‘game’ of se-
quence evolution can help in deriving orthologous relationships.
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