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Abstract: Dinoflagellates are an important group of phytoplanktons, characterized by two dissimilar
flagella and distinctive features of both plants and animals. Dinoflagellate-generated harmful algal
blooms (HABs) and associated damage frequently occur in coastal areas, which are concomitant with
increasing eutrophication and climate change derived from anthropogenic waste and atmospheric
carbon dioxide, respectively. The severe damage and harmful effects of dinoflagellate phycotoxins
in the fishing industry have been recognized over the past few decades, and the management
and monitoring of HABs have attracted much attention, leaving aside the industrial application of
their valuable toxins. Specific modes of action of the organisms’ toxins can effectively be utilized
for producing beneficial materials, such as Botox and other therapeutic agents. This review aims
to explore the potential industrial applications of marine dinoflagellate phycotoxins; furthermore,
this review focuses on their modes of action and summarizes the available knowledge on them.
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1. Introduction

Microalgae are photosynthetic microorganisms belonging to diverse phyla [1]. Over the past
few decades, several green microalgae, such as Chlorella spp., Scenedesmus spp., and Dunaliella
spp., have been recognized as useful bioresources for producing commercial materials, namely
cosmetics, pharmaceuticals, dietary supplements, biofuels, and biofertilizers [2–7]. In contrast,
phycotoxin-producing cyanobacteria, dinoflagellates, and raphidophytes are known to generate
frequent harmful algal blooms (HABs), thereby causing severe losses to the fishing industry
and aquatic ecosystem [8–11]. For instance, Lake Erie in the United States is a well-recognized
recreational place, but the ecosystem services are under threat owing to cyanobacterial-generated HABs.
The annual economic loss of fishing expenditures in Lake Erie was estimated to be approximately USD
2.25–5.58 million during bloom formation [12]. Additionally, massive HABs caused by the dinoflagellate
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Karenia mikimotoi resulted in a mass mortality of abalones, with a loss of over USD 290 million in
China [11].

Several factors that cause the death of aquatic organisms have been reported, including direct
reactive oxygen species production, phycotoxins, and bioactive fatty acids generation [13]. For instance,
the raphidophyte Chattonella marina produces superoxide anion via an NAD(P)H oxidase-related
mechanism [14], and cyanobacterial species, including Anabaena spp. and Microcystis spp., produce
cellular microcystin, which has previously demonstrated human hepatotoxicity via bioaccumulation
in the food chain [15]. Among the algal taxa, dinoflagellate is considered a major HAB-forming
group, which causes red tide in coastal areas. Many dinoflagellate species show a mixotrophic nature,
practicing both photosynthesis and prey ingestion simultaneously [16]. Furthermore, many species
produce phycotoxins, such as saxitoxins (STXs), hemolysins (HL), and yessotoxins (YTX), which exhibit
intrinsic modes of action. Although managing and monitoring dinoflagellates has been under
the spotlight for the past few decades, industrial applications of phycotoxins have not garnered
much attention. Therefore, to improve knowledge of their industrial applications and to focus on
application-based research, we have summarized the current findings, specific modes of action,
and biotechnological potential of the diverse dinoflagellate phycotoxins in this review.

2. Effects of HABs Produced by Dinoflagellates

Dinoflagellates are unicellular eukaryotes belonging to phylum Dinoflagellata. Many of its
species cause red tide in coastal areas, which significantly damages aquatic life and causes paralytic
shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), diarrhetic shellfish poisoning (DSP),
and ciguatera in humans worldwide [10,11,17–20]. There are more than 2000 identified dinoflagellate
species, and they exhibit distinct characteristics, including those of the autotrophs, heterotrophs,
and mixotrophs [21]. Morphological characteristics of dinoflagellates include two dissimilar flagella
arising from the ventral cell side. These organisms are capable of producing diverse phycotoxins
and render HAB-derived damage [22]. During the 1990s, Cochlodinium spp. (mostly C. polykrikoides
and C. fulvescens) caused damage to the fishing industry with an estimated annual loss of more
than USD 100 million in South Korea [23,24]. Out of these, C. polykrikoides caused an economic
loss of approximately USD 69.5 million in 1995. Moreover, a massive bloom of the dinoflagellate
Karlodinium digitatum caused approximately USD 32 million damage to the fishing industry of Hong
Kong [11]. Additionally, K. mikimotoi caused a massive economic detriment of more than USD 290
million to the fishing industry in China in 2012 [11].

Harmful effects of dinoflagellate-generated HABs associated with other organisms have been
extensively investigated over the past few decades. For instance, Chen et al. reported that a polar
lipid-soluble component derived from K. mikimotoi extract inhibited proliferation, disrupted cell
membrane, and increased lipid peroxidation (increased malondialdehyde content) in mammalian
cells [25]. Further, the addition of K. concordia extract induced anesthesia in brine shrimp [26] and the
PSP (e.g., STX)-producing Alexandrium fundyense consumed by copepods was lethal to fish [27].

However, biotoxins derived from diverse organisms have potential applications. In particular,
botulinum toxin produced by the bacterium Clostridium botulinum is widely used for the treatment of
migraine headaches, muscle spasticity, and other muscle disorders [28–30]. Additionally, pufferfish-derived
tetrodotoxin is therapeutically used to manage acute heroin withdrawal syndrome and alleviate
cancer pain [31,32]. These biotoxins have specific modes of action, and they have potential and
extensive industrial applications. Although a lot of phycotoxins derived from dinoflagellates have been
extensively studied, their industrial application based on their specific modes of action is still poorly
understood. Therefore, we describe the modes of action of the diverse dinoflagellate phycotoxins in
the following section.
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3. Dinoflagellate Phycotoxins and Their Modes of Action

Table 1 summarizes the reported dinoflagellate-produced phycotoxins. Alexandrium spp. are
considered PSP-producing harmful organisms. The causative paralytic toxins of Alexandrium spp.
include STX, gonyautoxin (GTX), neosaxitoxin (NSTX), and HL [33–36]. Among these, STXs are
well-known marine algal toxins that block the cellular sodium channel. STX is included in the
guanidinium neurotoxin group, sharing the common chemical feature of guanidinium moieties and
interacting with voltage-gated sodium channels with high binding affinity and ion flux blockage
capacity. This blockage induces the reduced influx of Na+ ions into a cell and causes inhibition of the
propagation of action potentials in excitable membranes. This process ultimately induces neuromuscular
paralysis [37]. The symptoms of PSP induced by STX and its analogue, NSTX, include numbness
of the lips and gastrointestinal disorders [35]. Lefebvre et al. [34] reported that measurable levels
of STX were detected in both field and cultured Alexandrium spp. using a receptor-binding assay
and enzyme-linked immunosorbent assay. The structure and analogues of STX were previously
well-described by Wiese et al. [38]. Gymnodinium catenatum and Pyrodinium bahamense produce
STXs as well [39,40]. Landsberg et al. [40] reported that the source of STXs detected in pufferfish
skin, muscle, and viscera was putatively derived from P. bahamense. In addition, Sako et al. [39]
purified and characterized sulfotransferase-specific STX analogues from the cytosolic fraction of
G. catenatum. GTXs influence the mammalian nervous system by binding to site 1 of the α-subunit of
the voltage-dependent sodium channel in the postsynaptic membrane, thereby preventing synaptic
function [41].

Altered hemolytic activity of A. peruvianum under different nutrient ratios indicated the presence
of cellular HL [42]. Although the modes of action of dinoflagellate HL are poorly understood and algal
species-specific, a possible mechanism could be the hydrolysis of phospholipids and subsequent pore
formation in phospholipid bilayers, a mechanism similar to other hemolytic toxins [43,44]. Modes of
action of HLs detected in Amphidinium carterae, C. polykrikoides, Heterocapsa circularisquama, K. mikimotoi,
and Gonyaulax monilata are described briefly in Table 1 [36,45–48].

Azadinium spinosum produces azaspiracids (AZA), a group of toxic lipophilic polyether compounds.
This toxin caused human intoxication symptoms, such as nausea, vomiting, severe diarrhea,
and stomach cramps in a study conducted in the Netherlands [49,50]. AZA was originally believed to
be a toxic compound produced by Protoperidinium crassipes [51]. However, it was later demonstrated
that the toxins in P. crassipes were a consequence of its feeding on the dinoflagellate A. spinosum,
which was in turn reported to be the source of the AZA [52]. This toxin causes damage to the intestinal
epithelium, lamina propria, liver, and villi as an acute toxic effect, and causes lung tumors and
malignant lymphomas at high concentrations with long-term exposure [53–55]. AZAs include more
than 30 analogues, and among these, only AZA1, AZA2, and AZA3 are currently regulated in edible
shellfish by the European Union through their toxic equivalency factors (TEFs) [56]. It exhibited its
action by blocking the human ether-a-go-go-related gene (hERG) potassium channel [57]. AZA interacts
with the channel’s central pore (F656) within the S6 transmembrane domain and physically blocks
the potassium-conductance pathway of the hERG1 channels [57]. Pelin et al. [58] previously reported
that the exposure of immortalized human hepatocyte (IHH) cell line to AZA analogues induced
mitochondrial electron transport chain complex-dependent mitochondrial dehydrogenases activity
(MDA) in a concentration-dependent manner. The MDA was suppressed in the K+, Cl−, and Na+

free media, and by specific inhibitors of KATP (glibenclamide), hERG potassium channels (cisapride),
Na+/K+, ATPase (ouabain), and cystic fibrosis transmembrane conductance regulator (CFTR) chloride
channels (CFTR(inh)-172). These results revealed that the AZA-induced MDA is derived from an
imbalance of intracellular levels of K+ and Cl− ions [58]. The toxic effects, structure, and analogues of
AZA were well-described in previous studies [50,59–63].
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Table 1. List of phycotoxins derived from diverse dinoflagellates and their modes of action.

Dinoflagellate Toxins Mode of Action References

Alexandrium spp.

Saxitoxin (STX) Inhibits sodium channel [34,35]

Gonyautoxin (GTX) Inhibits sodium channel [33,35,36]

Neosaxitoxin (NSTX) Inhibits sodium channel [35,36]

Haemolysin (HL) Hydrolyses phospholipids in the bilayer [36,42]
Form pores in phospholipid bilayers

Amphidinium carterae Haemolysin (HL) Hydrolyses phospholipids in the bilayer [33,36,45]
Forms pores in phospholipid bilayers

Azadinium spinosum Azaspiracids (AZA) Blocks hERG (human ether-a-go-go related gene) potassium channel by binding to it [49]

Cochlodinium polykrikoides Haemolysin (HL) Hydrolyses phospholipids in the bilayer [36,47,64]
Forms pores in phospholipid bilayers

Coolia spp.
Cooliatoxin (CTX) Blocks unmyelinated nerves [36,65]

Yessotoxin (YTX) Activates calcium channel [66–69]
Decreases cytosolic 3′,5′-cyclic adenosine monophosphate (cAMP) levels

Dinophysis spp.

Okadaic acid (OA) Inhibits protein phosphatases (serine/threonine phosphatases) [70–74]

Dinophysistoxin (DPX) Inhibits protein phosphatases (serine/threonine phosphatases) [75]

Pectenotoxin (PTX)
Inhibits protein phosphatases (serine/threonine phosphatases)

[35,76–78]Depolymerizes actin filaments
Disrupts actin cytoskeleton

Gambierdiscus toxicus Maitotoxin (MTX) Activates calcium channel [79]

Gonyaulax spp.
Haemolysin (HL) Hydrolyses phospholipids in the bilayer [46]

Forms pores in phospholipid bilayers

Yessotoxin (YTX) Activates calcium channel [68,69,80]
Decreases cytosolic 3′,5′-cyclic adenosine monophosphate (cAMP) levels

Gymnodinium catenatum Saxitoxin (STX) Inhibits sodium channel [39]

Heterocapsa circularisquama Haemolysin (HL) Hydrolyses phospholipids in the bilayer [48]
Forms pores in phospholipid bilayers

Karlodinium spp.
Karmitoxin (KTX) Unknown (Ichthyotoxic) [81,82]

Karlotoxin (KmTx) Disrupts cell membrane by specific binding to cholesterol [82,83]
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Table 1. Cont.

Dinoflagellate Toxins Mode of Action References

Karenia mikimotoi

Brevetoxin (PbTx) Activates voltage-gated sodium channels [20,84,85]

Gymnocin (GC) Unknown [86,87]

Haemolysin (HL) Hydrolyses phospholipids in the bilayer [88]
Forms pores in phospholipid bilayers

Lingulodinium polyedrum Yessotoxin (YTX) Activates calcium channel [68,69,89]
Decreases cytosolic 3′,5′-cyclic adenosine monophosphate (cAMP) levels

Ostreopsis spp. Palytoxin (PLTX) Turns Na+/K+ pump into a shape that allows the passive transport of sodium and
potassium ions [36,90,91]

Prorocentrum spp.

Okadaic acid (OA)
Inhibits protein phosphatases (serine/threonine phosphatases)

[35,36,92]Depolymerizes actin filaments
Induces apoptosis through suppression of the nuclear factor
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Another dinoflagellate genus, Coolia, produces cooliatoxin (CTX) and YTX [65,66].
Holmes et al. [65] purified a novel toxin from C. monotis isolated from Australia and named it CTX.
This toxin is considered a monosulfate polyether analogue of YTX and caused initial blockage of
unmyelinated nerves in vitro, as reported by Holmes et al. [65]. Additionally, sulfated polyether
analogues of YTX have been detected in C. malayensis through chemical analysis using NanoLiquid
chromatography–mass spectrometry [66]. YTX is a diarrhea-causing toxin and exhibits its toxicity by
activating nifedipine and the SKF-96365 sensitive calcium channel [68], and by decreasing cytosolic
3′,5′-cyclic adenosine monophosphate (cAMP) levels [69]. YTX-producing dinoflagellates include
Gonyaulax spinifera, Lingulodinium polyedrum, and Protoceratium reticulatum [80,89]. The structure and
analogues of YTX were previously well-described by Paz et al. [96].

Karlodinium armiger produces karmitoxin (KTX), which is an amine-containing polyhydroxy-polyene
toxin [82]. Although its specific mode of action is not yet identified, ichthyotoxic effects of this toxin
toward fish larvae and juveniles have been demonstrated recently [97]. The structure of KTX was
previously reported by Rasmussen et al. [82]. Additionally, Karlodinium spp. produces karlotoxin
(KmTx), which is structurally similar to amphidinols and is the causative toxin for membrane
permeabilization [83]. KmTx is produced by K. armiger and K. veneficum, and its mode of mechanism
is the disruption of the cell membrane by specifically binding to cholesterol [82]. The structure and
several analogues of KmTx were reported by Van Wagoner et al. [98].

Dinophysis is a medium-sized dinoflagellate that produces DSP toxins, including okadaic acid (OA),
pectenotoxin (PTX), and dinophysistoxin (DPX) [36,73]. OA is a polyether fatty acid, and its structure
is highly similar to that of acanthifolicin [71]. DPXs are considered analogues of OA, whereas PTXs
are a type of polyether lactones [99,100]. The mode of action of OA and DPXs is an inhibition of the
serine/threonine (Ser/Thr) phosphatases that further induces tumor growth promotion and neuronal
cell death [71,72,101,102]. The structures and analogues of OA and DPX were previously reported
by Uchida et al. [103] and Fernandez et al. [104]. PTXs demonstrate diverse physiological functions,
including inhibiting Ser/Thr phosphatases, depolymerizing actin filaments, and disrupting the actin
cytoskeleton [35,36,76–78]. According to Espiña et al. [105], marked depolymerization of F-actin,
associated with an improved G-actin level in hepatocyte cell line by PTX-1, PTX-2, and PTX-11
(1–1000 nM) treatments, was observed via confocal image analysis. However, no activity was observed
by treatment with PTX-2 seco acid (PTX-2 SA), which is an enzymatically digested derivative of
PTX-2 [105]. PTXs were initially classified into the DSP-producing group; however, mice toxicity tests
confirmed that this toxin does not induce diarrheic symptoms but causes severe hepatotoxicity [106].
Specifically, Miles et al. [107] previously developed an effective method to isolate pectenotoxins from
dinoflagellate cells, and they showed isolated PTX-2 caused acute toxicity in mice, whereas its derivative,
PTX-2 SA, had no effect at 5000 µg/kg. Additionally, no diarrhea was observed in mice receiving either
PTX-2 or PTX-2 SA treatments [107]. The structures and analogues of PTXs were previously described by
Allingham et al. [76] and Wilkins et al. [108]. OA can be produced by dinoflagellates D. acuta, D. acuminate,
D. fortii, Prorocentrum concavum, P. rhathymum, P. belizeanum, P. lima, and P. arenarium [109–112]. DPXs are
produced by D. acuta, D. acuminate, P. foraminosum, and P. lima [93,113–115], whereas PTXs are produced
by D. fortii, D. acuta, D. acuminate, and D. caudata [109,116,117].

Gambierdiscus toxicus produces ciguatera-inducing maitotoxin (MTX) [118]. Holmes and Lewisk
purified G. toxicus-derived distinct MTXs using high-pressure liquid chromatography and reported
that these compounds caused contractile responses of the muscle [108]. MTX is considered one
of the largest natural products (3422 Da) that can activate cellular calcium channels [79,119].
Takahashi et al. [79] showed the association of increased calcium influx and calcium-dependent release
of [3H] norepinephrine in a pheochromocytoma cell line. Their findings indicated that MTX’s mode of
action is the activation of cellular calcium channels. The structures and analogues were previously
described by Reyes et al. [120].

Karenia spp. dinoflagellates, including K. brevis and K. mikimotoi, are well-recognized as harmful
algae in Japan and the USA [113,114]; these species produce brevetoxin (PbTx) and gymnocin (GC),
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respectively [85–87]. PbTx activates mammalian voltage-gated sodium channels, thereby causing
NSP [20,84,121]. Further, aerosolized PbTx in sea spray causes reduced respiratory function and
asthma [116]. The structures, analogues, and toxicity of PbTx were previously well-elucidated by
European Food Safety Authority (EFSA) panels [122]. GCs are polyether toxins that include GC-A and
GC-B [86,87]. Although their modes of action are still poorly understood, GCs are carboxylic acids
and show moderate cytotoxicity activity against mouse lymphoid P388 cells [86,87]. The structures
of GC-A and gymnocin-B were determined by Satake et al. [86,123]. Additionally, Tanaka et al. [87]
determined the structures of GC analogues, including GC-A carboxylic acid and GC-A2.

Ostreopsis spp. are well-recognized, harmful algae worldwide due to their spread to many
tropical and temperate regions. They produce aerosolized palytoxin (PLTX) along with its analogues,
which have caused myalgia, respiratory problems, impairment of the neuromuscular apparatus,
and abnormalities in cardiac function [124,125]. PLTX is considered one of the most lethal marine
toxins, and its mode of action is unique wherein it causes the Na+/K+ pump to turn into a shape that
allows the passive transport of sodium and potassium ions [35,91]. PLTXs and their analogues can be
produced by the dinoflagellates O. siamensis, O. ovata, and O. mascarenensis [126–128]. The structure,
analogues, and toxicity of PLTXs were previously represented by Ramos and Vasconcelos [129].

Prorocentrum spp. produce species-specific diverse phycotoxins, such as OA, DPX, prorocentrolides
(PC), and borbotoxin (BTX) (Table 1). PCs are a member of the cyclic imine phycotoxins family produced
by P. lima and P. maculosum, and they act on both muscle and neuronal nicotinic acetylcholine receptors
(nAChRs) [94,130,131]. P. borbonicum produces BTX-A that was purified by Ten-Hage et al. [95] and
has a similar mode of action on nAChRs. The general structure, analogues, and modes of action of PCs
and BTX were reported by Amar et al. [94] and Ten-Hage et al. [95].

4. Potential Biotechnological Applications of Phycotoxins Based on Their Modes of Action

As shown in Table 2, the aforementioned diverse phycotoxins have extensive biotechnological
applications in industry, especially for therapeutics and drug development. As described in the previous
section, AZAs block the hERG potassium channel [57]. A variety of potassium channel inhibitors are
used for the treatment of cardiac arrhythmias with irregular heartbeat [132]. Therefore, AZAs are
potential candidates for the development of antiarrhythmic drugs. BTX and PCs demonstrated nAChRs
blocking activity; thus, this mechanism can be a potent target for anticholinergic drugs, including
nicotinic antagonists [133]. PbTx is being used for research purposes; this toxin is an activator of the
voltage-gated sodium channel and can be further evaluated for the development of post-stroke recovery
drugs [134]. Sequeira et al. [134] reported that PbTx treatment in mice decreased the percentage of foot
faults with a two-fold increase in dendritic arbor complexity. Additionally, they reported that PbTx-2
enhanced the dendritic arborization and synapse density of the cortical layer V pyramidal neurons in
the peri-infarct cortex and improved motor recovery [135]. These results demonstrate that PbTx could
be a potential candidate for the development of post-stroke recovery drugs. CTX exhibits inhibition of
unmyelinated nerves that are related to pain; hence, it can be potentially used in the development
of potent analgesics [65]. Sodium channels are highly associated with pain and depressive disorder
symptoms [136,137]. For instance, Manríquez et al. [138] previously performed clinical treatment on
five bladder pain syndrome (BPS) patients using NSTX, and all five patients successfully responded to
the treatment. Furthermore, the analgesic effect of NSTX lasted for 90 days without adverse effects.
Therefore, the sodium channel blockers, namely STX, GTX, and NSTX, can be potential candidates for
the development of analgesic and antidepressant drugs.
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Table 2. Industrial use and biotechnological potential of diverse dinoflagellate phycotoxins.

Toxins Industrial Use Potential Applications References

azaspiracids Unknown Antiarrhythmic drugs [57]

borbotoxin Unknown Anticholinergic drugs [95]

brevetoxin Research Post-stroke recovery drugs [134]

cooliatoxin Unknown
Unmyelinated nerve fiber-related research [65]

Analgesics

dinophysistoxin Research Tumor promoter [102]

gonyautoxin Treatment against acute or
chronic anal fissures, research

Analgesics, anesthetics, and [139,140]
antidepressant drugs

hemolysins Unknown
Anticancer drugs [141–143]

Microalgae-harvesting agents

karlotoxin Unknown
Copepod-killing agent

[141,142,144]Anticancer drugs
Microalgae-harvesting agents

karmitoxin Unknown
Piscicide [82]

Copepod-killing agent

maitotoxin Research

As a tool for the analyses of ion channels and
insulin secretion [120]

Interleukin-1β inducer
Sperm acrosome reaction inducer

neosaxitoxin Research
Analgesics, anesthetics, and antidepressant drugs [138,139,145]
Long-acting pain blocker in bladder pain syndrome

okadaic acid Research
Probe for discovery of neurodegeneration drugs [72,146,147]

Tumor promoter

palytoxin Research
Tumor promoter [148,149]
Anticancer drugs

pectenotoxin Research
Anticancer drugs [150,151]
Anti-actin drugs

prorocentrolides Unknown
Anticancer drugs [152]

Anticholinergic drugs

saxitoxin Chemical weapon, research Analgesics, anesthetics, and antidepressant drugs [139,153,154]

yessotoxin Research
Anticancer drugs [155]
Antiallergic drugs

DPX, OA, and PLTXs are considered tumor promoters. Fujiki et al. [102] previously reported
that DPX-1 and OA showed tumor-promoting activities through different pathways in a two-stage
carcinogenesis experiment in mouse skin. PLTX is considered a novel tumor promoter in mouse
skin, which can be used for studying signaling mechanisms involved in carcinogenesis [149].
Although dinoflagellate-derived HL is not a well-defined phycotoxin, the potential use of HLs
as anticancer agents has been previously reported in the case of α-HL produced by the bacterium
Staphylococcus aureus [143]. Furthermore, Cho et al. [142] reported that the co-culture of dinoflagellate
H. circularisquama with green microalga Dunaliella salina showed effective flocculation activity, which is
applicable for harvesting industrially available microalgae in biodiesel production. These results
indicated that HLs are potential bioflocculation agents. KmTx is regarded as an allopathic compound;
it is a type of HL generated by Karlodinium spp., and it exhibited copepod-killing activity [144].
Since KmTx causes cell membrane disruption by binding specifically to cholesterol, this toxin can be a
useful component for anticancer or microalgae-harvesting agents, similar to the dinoflagellate HLs,
as described above [142,143]. In addition, KTX affects the copepod Acartia tonsa, a natural grazer of
Karlodinium spp. Although the mode of action of KTX has not been studied specifically, this toxin showed
massive potential as a piscicide and copepod-killing agent owing to its ichthyotoxicity and toxicity
in copepods, respectively. MTX has attracted much attention due to its bioactivity, which involves
disruption of cellular calcium homeostasis [120]. Reyes et al. [120] previously described in detail the
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biomedical applications of MTXs, wherein they proposed MTXs as a tool for analyzing ion channels
and insulin secretion, interleukin-1β secretagogue and oncotic death induction, and sperm acrosome
reaction induction [120]. OA is a selective inhibitor of the protein phosphatases PP1 and PP2A; thus,
it can be used as a powerful probe for the study of regulatory mechanisms and neurotoxicity. Therefore,
OA cannot only be used as a tumor promoter, but it can also be instrumental in neurodegeneration
studies, including Alzheimer’s disease [72,146,147]. PLTX can be used in research for anticancer drugs.
Görögh et al. [148] previously found that PLTX possesses preferential toxicity for head and neck
carcinoma cells, with extensive destruction of xenografted tumors within 24 days. Thus, it seems that
PLTX plays contrary dual roles in tumor promotion and suppression. In addition, other phycotoxins
including PTX, PCs, and YTXs demonstrated potential anticancer activity. According to a previous
review conducted by Kim et al. [150], PTX-2 showed significant cytotoxicity in human cancer cells
via downregulation of antiapoptotic Bcl-2, IAP-related proteins, upregulation of Bax protein and
ligand (TRAIL)-receptor 1/receptor 2 (DR4/DR5), mitochondrial dysfunction, and apoptosis through
suppression of the nuclear factor κB pathway. Additionally, in their recent study, Lee et al. [152]
reported that prorocentrolide C from cultured dinoflagellate P. lima could induce human cancer cell
death via apoptosis and cell cycle arrest. Furthermore, YTXs represented anticancer activity in a B16F10
melanoma preclinical mouse model, along with antiallergic activity [155].

As described above, many studies have revealed the potential application of the phycotoxins
as therapeutic agents. However, more mechanistic and clinical studies are required for their safe
use in humans. Although the review does not encompass all the phycotoxins, we expect that this
comprehensive summary will provide useful information and garner much attention for the industrial
applications of phycotoxins.

5. Conclusions

Over the past few decades, HAB-forming dinoflagellates have been recognized as an environmental,
economic, and health problem owing to their adverse effects on the aquatic ecosystem, fishing industry,
and human health. In this review, we described the biotechnological potential of diverse dinoflagellate
phycotoxins based on the toxins’ intrinsic modes of action. Many studies have reported the potential
application of these toxins, especially in medicine. Since algal cells can be easily cultivated in large
photobioreactors or open pond systems that sequestrate atmospheric carbon dioxide, the bioproduction
of value-added phycotoxins is economically feasible and beneficial to humans and the environment.
However, further mechanistic and clinical studies are required for determining the application of
dinoflagellate phycotoxins in therapeutics and other fields.
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