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Simple Summary: Unfortunately, not all patients with urothelial cancer benefit from checkpoint
inhibitors (ICIs). Currently, the first radiological response evaluation is not performed until after
9 to 12 weeks of ICI therapy. Early response biomarkers might enable an early switch to more
effective therapies in patients that do not respond. In this study, we aimed to identify early response
biomarkers in the blood of patients treated with ICIs. In whole blood of patients with clinical benefit,
genes involved in DNA replication and cell cycle regulation were upregulated after 2 to 6 weeks
of treatment. This appeared to be a result of T cell proliferation and was not observed in patients
without clinical benefit. Our results suggest that whole blood RNA sequencing can contribute to
early response prediction in patients treated with ICIs and warrants further research.

Abstract: Although immune checkpoint inhibitors improve median overall survival in patients
with metastatic urothelial cancer (mUC), only a minority of patients benefit from it. Early blood-
based response biomarkers may provide a reliable way to assess response weeks before imaging is
available, enabling an early switch to other therapies. We conducted an exploratory study aimed at
the identification of early markers of response to anti-PD-1 in patients with mUC. Whole blood RNA
sequencing and phenotyping of peripheral blood mononuclear cells were performed on samples of
26 patients obtained before and after 2 to 6 weeks of anti-PD-1. Between baseline and on-treatment
samples of patients with clinical benefit, 51 differentially expressed genes (DEGs) were identified,
of which 37 were upregulated during treatment. Among the upregulated genes was PDCD1, the
gene encoding PD-1. STRING network analysis revealed a cluster of five interconnected DEGs which
were all involved in DNA replication or cell cycle regulation. We hypothesized that the upregulation
of DNA replication/cell cycle genes is a result of T cell proliferation and we were able to detect
an increase in Ki-67+ CD8+ T cells in patients with clinical benefit (median increase: 1.65%, range
−0.63 to 7.06%, p = 0.012). In patients without clinical benefit, no DEGs were identified and no
increase in Ki-67+ CD8+ T cells was observed. In conclusion, whole blood transcriptome profiling
identified early changes in DNA replication and cell cycle regulation genes as markers of clinical
benefit to anti-PD-1 in patients with urothelial cancer. Although promising, our findings require
further validation before implementation in the clinic.
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1. Introduction

Immune checkpoint inhibitors (ICIs) have become an integral part of therapy for
patients with metastatic urothelial cancer (mUC). Since a few years, ICIs targeting the
programmed cell death protein 1 (PD-1)/ programmed cell death ligand 1 (PD-L1) axis are
used to treat cisplatin-ineligible patients with a PD-L1 positive tumor as well as patients that
have progressed on first-line platinum-based chemotherapy. Additionally, maintenance
therapy with PD-L1 inhibitor avelumab was recently approved for the treatment of patients
who achieved a response or stable disease with first-line chemotherapy [1]. Although anti-
PD-(L)1 prolongs median overall survival (OS), only a minority of patients benefit from
it [1,2]. In a phase III clinical trial, second-line treatment with PD-1 inhibitor pembrolizumab
induced responses in 21.1% and disease control in 38.5% of mUC patients [2].

Biomarkers that can predict the clinical outcome to anti-PD-(L)1 are urgently needed.
Application of biomarkers limits the use of PD-(L)1 inhibitors in patients that do not benefit
from it, thereby preventing immune-related toxicity and enabling the rapid introduction
of other, potentially more effective therapies. Several promising treatment strategies have
emerged and are either in late-stage clinical trials or already approved by the Food and
Drug Administration for the treatment of mUC [3–6]. Recently approved drugs include
enfortumab vedotin [3,4] and erdafitinib [5]. Additionally, dual checkpoint inhibition is
currently being studied in various disease settings and might be beneficial in some patients
that do not benefit from anti-PD-(L)1 monotherapy [6,7].

So far, efforts have focused on the identification of predictive biomarkers that can be ob-
tained prior to treatment initiation. Although tumor mutational burden, PD-L1 expression
and CD8+ T cell infiltration at baseline appear to enrich for response to ICIs [8–12], these
biomarkers are not accurate enough to be used as stand-alone biomarkers. Early response
biomarkers may also have clinical utility but have been underexplored. In current practice,
the first radiological response evaluation is usually not performed until after 12 weeks of
ICI therapy and is sometimes equivocal. Clinically stable patients with suspected progres-
sion may continue treatment after the first scan according to iRECIST to avert treatment
discontinuation in patients with delayed responses or pseudo-progression [13–15]. Early
blood-based response biomarkers may provide a reliable way to determine whether ICIs
are effective before imaging is available and can be particularly useful for those with
equivocal imaging.

Translational studies in patients with various tumor types indicate that clinical benefit
to ICIs is accompanied by systemic immunological changes during the first weeks of
treatment. In patients with melanoma or lung cancer, decreases in IL-6 and IL-8 during
the first weeks of therapy have been associated with an improved outcome to ICIs [16,17].
Additionally, a study in patients with melanoma or Merkle cell carcinoma demonstrated
that a high frequency of circulating PD-1+ TIGIT+ CD8+ T cells after 1 month of anti-PD-1
was associated with an increased response rate and longer OS [18]. Furthermore, studies in
lung cancer and melanoma have described an association between T cell proliferation and
response to therapy [19,20]. However, data on ICI-induced changes in peripheral blood of
mUC patients are lacking.

Although flow cytometry and single-cell RNA sequencing may provide insights into
the biological mechanisms underlying the response to ICIs, these analyses are laborious
and/or costly, limiting its potential for early response evaluation in the clinic. Interestingly,
in melanoma patients treated with cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
inhibitor tremelimumab, an association was observed between immune-related toxicity
and whole blood RNA expression after 30 days of treatment [21]. This raises the ques-
tion of whether early changes in whole blood RNA transcripts can also be used for the
identification of responders, a test that would be relatively easy to implement in the clinic.
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We conducted an exploratory study aimed at the identification of early markers of
response to anti-PD-1 in patients with mUC. By performing a comprehensive, unbiased
whole blood transcriptome analysis, we reveal that DNA replication/cell cycle genes and
PDCD1, the gene encoding for PD-1, are upregulated in patients with clinical benefit to
ICIs but not in patients who progress within 6 months. We show that the upregulation
of DNA replication/cell cycle genes is paralleled by an increase in Ki-67+ CD8+ T cells,
suggesting that this upregulation is partly due to the proliferation of CD8+ T cells.

2. Materials and Methods
2.1. Patients

This retrospective study included 32 patients with mUC who were treated with anti-
PD-1 in the Radboud University Medical Center between 2017 and 2019. Patients were
treated with nivolumab 3 mg/kg every 2 weeks or pembrolizumab 200 mg every 3 weeks.
During treatment, patients were evaluated according to RECIST1.1 [22]. Patients were
considered to have clinical benefit if they had a radiological and clinical progression-free
survival (PFS) of at least 6 months.

All patients provided informed consent for the use of biomaterials as approved by
the medical ethics committee of the Radboud University Medical Center (project num-
ber NL60249.091.16). This study was performed in accordance with relevant guidelines
and regulations.

2.2. Blood Collection and Processing

Blood was drawn prior to the first three cycles of anti-PD-1 therapy (i.e., at 0, 2 and
4 weeks for nivolumab and at 0, 3 and 6 weeks for pembrolizumab). At these timepoints,
a complete blood cell count was performed as part of routine clinical care. In addition,
blood was collected in one PAXgene Blood RNA tube (BD Biosciences, San Jose, CA, USA)
and three 10 mL EDTA tubes. PAXgene tubes were stored at −80 ◦C until RNA purifi-
cation. Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll gradient
centrifugation. After adding Ficoll (LymphoprepTM, Axis-Shield, Dundee, UK), samples
were centrifuged at 750 g for 20 min at room temperature without brake. The PBMC layer
was transferred to a new tube and washed with phosphate-buffered saline (PBS). Viable
cells were counted using a LUNA FL dual fluorescence cell-counter (Logos Biosystems).
Cells were resuspended in freezing medium (10% DMSO, 90% fetal bovine serum), at a
concentration of 5× 106 viable cells per ml and stored in liquid nitrogen. A baseline sample
and the earliest on-treatment sample available were used for subsequent analyses.

2.3. Whole Blood RNA Sequencing

Total RNA was extracted from whole blood using the PAXgene blood miRNA kit
(Qiagen, Venlo, Netherlands). RNA quantity was determined using Qubit (Thermo Fisher
Scientific, Waltham, MA, USA). RNA quality was assessed on a Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). Samples with a RIN below six were excluded from
the analysis. Per sample, at least 500 ng of total RNA was used for library preparation.

RNA samples were treated for globin and ribosomal RNA depletion with the Illumina
Globin-Zero Gold kit (Illumina, San Diego, CA, USA). Library preparation was performed
with the Illumina TruSeq RNA Library Prep Kit v2. Sequencing was performed on Illumina
NovaSeq 6,000 (non-stranded, paired-end 2 × 150 bp) with an estimated average output of
20–30 million reads/sample.

Sequence adapters (Illumina TruSeq) were trimmed using Atropos (1.1.21), with the
following base quality threshold and adapters: -- quality-base 33 -a ′AACACTCTTTCCCT′

-a ′AGATCGGAAGAGCG′ -a ′AGGGAAAGAGTGTT′ -a ′CGCTCTTCCGATCT′ --overlap
8. The trimmed paired-end reads were used as input for gene expression analysis on
the LITOSeek® platform (Novigenix SA, Epalinges, Switzerland). Reads were aligned
to the human reference hg38 with HISAT2 (version 2.1.0), and the Salmon algorithm
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(version 0.13.1) was used to quantify transcript expression. A preliminary quality check
was performed using the MultiQC tool (version 1.8).

The quantified transcript expression data was used to identify early markers of re-
sponse. Differential expression analyses (DEA) were performed using DESeq2 to identify
differentially expressed genes between paired baseline and on-treatment samples in pa-
tients with and without clinical benefit. A multi-factor design was used to account for
differences between patients while estimating the effect of anti-PD-1 therapy. Log fold
changes and adjusted p-values (padj) were determined for all genes using a Wald test
with Benjamini–Hochberg correction. Functional enrichment analysis was performed with
EnrichR, using the Reactome 2016 database [23,24]. Network analyses were performed
using STRING [25]. In both DEAs and functional analyses, an adjusted p-value ≤ 0.05 was
considered significant. Correlations between changes in different genes were analyzed
with the corrplot package from GitHub (version 0.84) using the Pearson’s correlation coef-
ficient [26]. Kaplan–Meier curves were generated to display differences in PFS between
patients with an above-median versus below-median increase in genes of interest.

2.4. Flow Cytometry

Flow cytometry was used to analyze the expression of CD3, CD4, CD8, CTLA-4
(CD152), LAG-3 (CD223), PD-L1 (CD274), PD-1 (CD279), TIM-3 (CD366), HLA-DR, and
Ki-67 on PBMCs. For antibody details, we refer to Table S1.

PBMCs were thawed rapidly in a 37 ◦C water bath and diluted in RPMI 1,640 medium.
Cell number and viability were determined with a hemocytometer using trypan blue. The
cells were then kept with fixable viability dye efluor 780 (eBioscience, San Diego, CA, USA)
diluted in PBS for 30 min at 4 ◦C. Subsequently, the antibodies for cell surface staining were
added (all antibodies except anti-Ki-67). These were diluted in brilliant staining buffer
(BD Biosciences, San Jose, CA, USA). The cells were incubated with the antibody mix for
30 min at 4 ◦C in the dark. For the intracellular staining of Ki-67, cells were then fixed
with Fix/Perm (eBioscience) for 2 h at 4 ◦C. After washing, the cells were resuspended in
permeabilization buffer containing the Ki-67 antibody and incubated for 30 min at 4 ◦C.

The staining intensity was measured with the FACSLyric (BD Biosciences). Instrument
settings were verified and adjusted before each acquisition using single stainings. Data
were analyzed with FlowJo Software (Tree Star Inc., Ashland, OR, USA). Positive and
negative cell populations for each marker were determined using fluorescence minus one
(FMO) controls. The gating strategy is shown in Figure S1. Markers expressed on <1% of
the cell of interest were excluded from the analyses.

A Wilcoxon test was used to compare early changes in Ki-67+ CD8+ and Ki-67+ CD4+

cells between baseline and on-treatment samples in patients with and patients without
clinical benefit. A p-value ≤ 0.05 was considered significant. Correlations between changes
in gene expression and changes in Ki-67+ CD8+ T cells were analyzed using Pearson’s
correlation coefficient. Descriptive statistics were used to describe checkpoint molecule
and HLA-DR expression on these cell subsets.

3. Results
3.1. Patient Cohort

In total, 32 patients with mUC were included. Most patients were treated with
pembrolizumab (78.1%) and received anti-PD-1 as second-line treatment (65.6%). Patient
characteristics are summarized in Table 1.
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Table 1. Patient Characteristics.

Total—n (%) 32 (100)

Male—n (%) 25 (78.1)

Age—median (range) 68 (38–80)

ECOG performance score—n (%)
0 3 (9.4)
1 22 (68.8)
2 7 (21.8)

Treatment—n (%)
Nivolumab 7 (21.9)
Pembrolizumab 25 (78.1)

Previous platinum-based chemotherapy – n (%) 21 (65.6)

Location of metastases—n (%)
Lymph node only 9 (28.1)
Visceral metastases 17 (53.1)
Liver metastases 8 (25.0)

Clinical outcome—n (%) *
PFS < 6 months 13 (40.6)
PFS ≥ 6 months 19 (59.4)

Complete response 5 (15.6)
Partial response 12 (37.5)
Stable disease 1 (3.1)
Not evaluable 1 (3.1)

* according to RECIST1.1

Nineteen patients experienced clinical benefit (59.4%). Five of them had a complete
response, 12 a partial response, and one had stable disease according to RECIST1.1 [22].
Additionally, one patient was non-evaluable according to RECIST1.1 criteria but showed a
decrease in FDG uptake on PET imaging. The median PFS in the group with clinical benefit
was 25 months (range: 10 to > 42). The median OS could not be determined because only
two patients had died at the last follow-up (median follow-up: 33 months). By contrast,
thirteen patients (40.6%) did not experience clinical benefit. None of these patients had an
initial response. In these patients, median PFS and OS were 2 (range: 1 to 3) and 6 months
(range: 1 to 30), respectively.

In most patients, the on-treatment sample was collected after one cycle of anti-PD-1
(75%). In total, high-quality RNA-sequencing data of baseline and on-treatment samples
was available for 26 of 32 patients (14 with clinical benefit, 12 without clinical benefit). In
five patients, either the baseline or on-treatment sample did not pass the quality check. In
one patient, no PAXgene tube was available. PBMCs were available of 30 patients (18 with
clinical benefit, 12 without clinical benefit).

3.2. Whole Blood Transcriptome Changes in Patients with and without Clinical Benefit

First, a DEA between baseline and on-treatment samples was performed in 14 patients
with clinical benefit to anti-PD-1. Fifty-one differentially expressed genes (DEGs) were
identified, of which 37 were upregulated and 14 downregulated (Figure 1A). The average
fold change of these DEGs was 2.0. For biological interpretation of the identified DEGs, we
first generated a protein-protein interaction network using STRING to explore interactions
between the identified protein-coding DEGs. Among the 51 DEGs were 43 protein-coding
genes. STRING network analysis revealed a cluster of five interconnected DEGs which were
all involved in DNA replication or cell cycle regulation (Figure 1B). Four of these genes were
upregulated, i.e., DLGAP5, TOP2A, CDCA2, and E2F8. Changes in the expression of these
genes were highly correlated (Figure 1C and Figure S2). SMC1A, on the other hand, which
is known for its role in chromosome cohesion during the cell cycle, was downregulated
and changes in SMC1A poorly correlated with changes in the other DNA replication/cell
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cycle genes in our cohort. Pathway enrichment analysis did not identify any significantly
enriched pathways (padj ≤ 0.05). As no enriched pathways were identified, we looked
further into the function of individual DEGs. Interestingly, we observed that PDCD1,
the gene that encodes PD-1, was upregulated in patients with clinical benefit. Except for
PDCD1, the identified DEGs did not have an established role in immunology. All identified
DEGs together with their log fold changes and p-values are listed in the Supplemental file.

Cancers 2021, 13, x FOR PEER REVIEW 6 of 14 
 

 

DEGs which were all involved in DNA replication or cell cycle regulation (Figure 1B). 
Four of these genes were upregulated, i.e., DLGAP5, TOP2A, CDCA2, and E2F8. Changes 
in the expression of these genes were highly correlated (Figures 1C and S2). SMC1A, on 
the other hand, which is known for its role in chromosome cohesion during the cell cycle, 
was downregulated and changes in SMC1A poorly correlated with changes in the other 
DNA replication/cell cycle genes in our cohort. Pathway enrichment analysis did not iden-
tify any significantly enriched pathways (padj ≤ 0.05). As no enriched pathways were 
identified, we looked further into the function of individual DEGs. Interestingly, we ob-
served that PDCD1, the gene that encodes PD-1, was upregulated in patients with clinical 
benefit. Except for PDCD1, the identified DEGs did not have an established role in immu-
nology. All identified DEGs together with their log fold changes and p-values are listed in 
the supplemental file. 

Subsequently, we performed a similar analysis in the 12 patients without clinical ben-
efit. In contrast to the patients with clinical benefit, no DEGs were identified in these pa-
tients (Figure 1A). Particularly, no net increase or decrease was observed in any of the 
DNA replication/cell cycle genes that were differentially expressed in the patients with 
clinical benefit, nor in PDCD1 expression (Figure S3). 

 
Figure 1. Differentially expressed genes (DEGs) between baseline and on-treatment samples. (A) Vol-
cano plot of DEGs in patients with (orange) and without clinical benefit (green). The dashed line
indicates the significance threshold (padj = 0.05). In patients with clinical benefit, 51 DEGs were
identified. No significant genes were found in patients without clinical benefit. (B) STRING protein-
protein interaction analysis on the DEGs identified in patients with clinical benefit. Yellow lines
indicate text mining evidence, black lines co-expression evidence, green lines neighborhood evidence,
blue line co-occurrence evidence, purple line experimental evidence and light blue lines database
evidence. (C) Correlation heatmap summarizing the correlations between expression levels of the
identified cell cycle/proliferation genes. Baseline and on-treatment samples of both patients with
and without clinical benefit were included in this analysis. Colors refer to the Pearson’s correlation
coefficient. Asterisks indicate a p-value ≤ 0.05.

Subsequently, we performed a similar analysis in the 12 patients without clinical
benefit. In contrast to the patients with clinical benefit, no DEGs were identified in these
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patients (Figure 1A). Particularly, no net increase or decrease was observed in any of the
DNA replication/cell cycle genes that were differentially expressed in the patients with
clinical benefit, nor in PDCD1 expression (Figure S3).

To illustrate how well these DEGs discriminate between patients with and without
clinical benefit, PFS curves were generated. For the DNA replication and cell cycle genes,
patients were dichotomized based on whether or not there was an above-median increase in
at least three of the four DNA replication/cell cycle genes that were found to be upregulated
in patients with clinical benefit. The genes were combined as there was a strong correlation
between the four genes. An above-median increase in at least three genes (instead of
one, two, or four) was chosen as the cut-off because clinical benefit was observed in
approximately half of the cohort and this approach split the cohort into two equally sized
groups. Six-month PFS was better in patients with an above-median increase in at least
three of the DNA replication/cell cycle genes (83.3% versus 28.6%; p = 0.14, Figure 2A). The
difference in PFS between patients with and without an above-median increase in PDCD1
was less pronounced (69.2% versus 38.5%, p = 0.042, Figure 2B). All six patients with both
an above-median increase of at least three DNA replication/cell cycle genes and PDCD1
were progression-free at 6 months (Figure 2C).
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 Figure 2. Kaplan-Meier curves. (A) Progression-free survival in patients with versus without an

above-median increase in three of the four DNA replication/cell cycle genes that were upregulated
in the patients with clinical benefit (PGs; DLGAP5, TOP2A, CDCA2, and E2F8). (B) Progression-free
survival in patients with versus without an above-median increase in PDCD1. (C) Progression-free
survival in patients with versus without an above-median increase in three proliferation genes
and PDCD1.

3.3. Cell Specificity of the Identified DEGs

Based on the mechanism of action of anti-PD-1 and previously published data describ-
ing T-cell reinvigoration in responders to ICI, we hypothesized that the upregulation of
DNA replication genes/cell cycle genes in patients with clinical benefit may be partly due
to the proliferation of peripheral T cells. To evaluate the cell specificity of the identified
DNA replication/cell cycle genes, we used a publicly available dataset consisting of RNA-
sequencing data of flow cytometry-sorted PBMCs (GSE107011 [27]). We observed enhanced
expression of DLGAP5, TOP2A, CDCA2, and E2F8 in T cells compared to unsorted PBMCs.
Expression was particularly high in CD8+ effector memory cells, T-helper 1 cells, follicular
helper T cells, and regulatory T cells. SMC1A, on the other hand, was highly expressed
in nearly all immune cells subsets (Figure S4), showing no specificity for any particular
immune cell subset.

3.4. Changes in Lymphocyte Proliferation

We then used complete blood cell counts and flow cytometry to study changes in
lymphocytes counts and proliferation during anti-PD-1 therapy. No changes were seen
in absolute lymphocyte counts nor in the percentage of CD3+, CD8+ or CD4+ T cells in
peripheral blood of patients with clinical benefit (Figure S5). Nevertheless, the percentage
of CD8+ T cells that expressed proliferation marker Ki-67 increased during the first weeks
of treatment in patients with clinical benefit (median increase: 1.65%, range −0.63–7.06%,
p = 0.012). An increase in Ki-67+ CD8+ T cells was not observed in patients without clinical
benefit (p = 0.71). When we directly compared the changes between patients with and
without clinical benefit, we also found a significant difference (Figure 3, p = 0.010). This
was still the case when an outlier in the group without clinical benefit (7.06% decrease in
Ki-67+ CD8+ T cells) was removed (p = 0.021). No significant change in the percentage of
Ki-67+ CD4+ T cells was observed. As shown in Figure S6, median PFS was numerically
longer in the group with an above-median increase in Ki-67+ CD8+ T cells.
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Figure 3. Changes in Ki-67 expression on CD8+ T cells during anti-PD-1 therapy. A significant
difference was found between patients with (orange) versus patients without clinical benefit (green,
p = 0.010). Asterisks indicate patients with a complete response.

We then correlated the changes in Ki-67+ CD8+ T cells with the changes in DNA
replication and cell cycle genes in the 24 patients for which we had both data available.
There was a positive correlation between changes in Ki-67+ CD8+ T cells and changes in
CDCA2 (R = 0.42, p = 0.04) or DLGAP5 (R = 0.56, p = 0.004). A trend for a positive correlation
was observed between changes in Ki-67+ CD8+ T cells and changes in E2F8 (R = 0.34,
p = 0.10) and TOP2A (R = 0.34, p = 0.10), but these correlations were not statistically
significant (Figure S7).

3.5. Phenotyping of Ki-67+ CD8+ T Cells

As there are currently no PD-1 antibodies available that can reliably stain PD-1 on T
cells after treatment with pembrolizumab or nivolumab, we could not use flow cytometry
to confirm an increase in PD-1+ T cells in patients with clinical benefit [28]. To further
explore the activity of the Ki-67+ CD8+ T cells in patients with clinical benefit, we assessed
the expression of activation markers on Ki-67+ CD8+ T cells. We observed that the majority
of Ki-67+ CD8+ T cells were positive for HLA-DR in contrast with Ki-67− CD8+ T cells,
which were mostly negative for HLA-DR. TIM-3 expression was also higher on Ki-67+

CD8+ T cells, but no clear difference was observed in PD-L1 expression (Figure 4). As
CTLA-4 and LAG-3 were expressed on less than 1% of CD4+ and CD8+ T cells, differences
between Ki-67+ CD8+ T cells and Ki-67− CD8+ T cells for these checkpoint molecules could
not be assessed. Importantly, the difference in HLA-DR and TIM-3 between Ki-67+ CD8+ T
cells and Ki-67− CD8+ T cells did not appear to be treatment-related, as there was no clear
difference between baseline expression and on-treatment expression of these markers.
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4. Discussion

In this pilot study, we performed a genome-wide analysis of whole blood RNA expres-
sion to identify early markers of response to anti-PD-1 in patients with mUC. In patients
deriving clinical benefit from anti-PD-1, upregulation of several DNA replication/cell cycle
genes and PDCD1 was observed during the first weeks of ICI therapy. These changes
did not occur in patients with initial disease progression. Using flow cytometry, we sub-
sequently demonstrated an early increase in Ki-67+ CD8+ T cell in peripheral blood of
patients with clinical benefit, suggesting that the upregulation of DNA replication/cell
cycle genes is partly due to the proliferation of CD8+ T cells.

Whereas our study is the first to evaluate ICI-induced changes in peripheral blood
of mUC patients, upregulation of cell cycle genes and increases in Ki-67+ CD8+ T cells
during anti-PD-1 therapy have previously been described in other tumor types. A study in
melanoma patients reported upregulation of cell cycle genes in peripheral CD8+ T cells
after 21 days of ICI therapy [29]. Among these were the four genes that were significantly
upregulated in patients with clinical benefit in our study (DLGAP5, TOP2A, CDCA2 and
E2F8). Furthermore, previous studies have shown that an early increase in peripheral
Ki-67+ CD8+ T cells is associated with response to anti-PD-1 in patients with lung cancer or
melanoma [19,20].

As we analyzed the whole blood transcriptome, we cannot ascertain which cells
are responsible for the observed upregulation of DNA replication/cell cycle genes in
patients with clinical benefit. We postulated that proliferating T cells are responsible for the
increase in DNA replication/cell cycle genes and performed flow cytometry experiments to
confirm that T cell proliferation increases in patients with clinical benefit. Although MKI67
RNA expression was not upregulated in our cohort, i.e., the transcript encoding the Ki-67
protein, we decided to use Ki-67 as a marker for T cell proliferation. Ki-67 is an established
proliferation marker and the absence of MKI67 upregulation might be explained by the
fact that Ki-67 protein expression is partly regulated by proteasomal degradation [30]. We
were able to detect an increase in Ki-67+ CD8+ T cells in patients with clinical benefit,
supporting the idea that proliferating T cells are accountable for the observed changes in
DNA replication/cell cycle genes. Our findings that the expression of DLGAP5, TOP2A,
CDCA2 and E2F8 is enhanced in T cells, along with the observed correlation between
changes in DNA replication/cell cycle genes and changes in Ki-67+ CD8+ T cells further
endorses this. Naturally, CD8+ T cells account for only a small part of the total RNA pool of
whole blood. This could explain why there was only a weak correlation between changes
in Ki-67+ CD8+ T cells and changes in E2F8 or TOP2A expression. It could also explain why
individual DNA replication/cell cycle genes were upregulated in patients with clinical
benefit but no significant enrichment for DNA replication or cell cycle pathways was found.
Taken together, it is promising that we were able to detect signs of proliferation in the blood
of patients with clinical benefit as early as 2 to 6 weeks into treatment.
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Besides the changes in proliferation markers, we also observed a significant increase
in PDCD1 RNA expression in patients with clinical benefit. This finding is in line with
previous studies showing that anti-PD-1 primarily induces proliferation of progenitor
exhausted T cells, i.e., cells that express PD-1 [31,32]. Unfortunately, we could not use flow
cytometry to confirm an increase in PD-1+ T cells in patients with clinical benefit due to
competitive binding/steric hindrance of the flow cytometry antibody with pembrolizumab
and nivolumab binding sites [28]. Nevertheless, the selective upregulation of PDCD1
expression in patients with clinical benefit suggests that this gene might function as an early
biomarker of response to anti-PD-1, together with the identified DNA proliferation/cell
cycle genes.

To the best of our knowledge, this is the first study to evaluate early response biomark-
ers for ICI therapy in mUC. We were able to detect signs of proliferation in the peripheral
blood of patients with clinical benefit using two different assays, focused on different
biological levels, i.e., RNA and protein expression. Nevertheless, this study has some
limitations. Firstly, we decided to analyze whole blood transcripts because this is much
easier to implement in the clinic compared to RNA sequencing of isolated cell subsets. The
latter, however, might have provided more insight into the activity of individual peripheral
blood cell subsets. Secondly, our study population was small. Further research is needed
to validate our results and to determine whether whole blood expression of a selected set
of genes can be used in the clinic as an early response biomarker in mUC.

Our findings indicate that early changes in proliferation genes and PDCD1 might
function as early response biomarkers in mUC. Early response biomarkers enable an
early switch to other, potentially more effective therapies, thereby preventing further
deterioration of performance status before subsequent therapy can be initiated. Our
findings may be especially promising in light of the recent approval of the anti-PD-L1
inhibitor avelumab for maintenance treatment after chemotherapy [1]. It can be difficult
to determine whether these patients benefit from checkpoint inhibitors using standard
imaging as chemotherapy will already have induced a response or stable disease in most
patients. Therefore, early response biomarkers would be particularly interesting for this
patient group.

5. Conclusions

This pilot study indicates that T cell proliferation in peripheral blood during the
first weeks of anti-PD-1 is indicative of favorable clinical outcomes in patients with mUC
and highlights the value of whole blood transcriptomics for the identification of new
biomarkers. Our findings require further validation before implementation in the clinic
and will be validated in a prospective, multicenter follow-up study.
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