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ABSTRACT Introgression of alleles from wild relatives has often been adaptive in plant breeding. However, the significance of historical
hybridization events in modern breeding is often not clear. Cassava (Manihot esculenta) is among the most important staple foods in
the world, sustaining hundreds of millions of people in the tropics, especially in sub-Saharan Africa. Widespread genotyping makes
cassava a model for clonally propagated root and tuber crops in the developing world, and provides an opportunity to study the
modern benefits and consequences of historical introgression. We detected large introgressed Manihot glaziovii genome-segments in
a collection of 2742 modern cassava landraces and elite germplasm, the legacy of a 1930s era breeding to combat disease epidemics.
African landraces and improved varieties were, on average, 3.8% (max 13.6%) introgressed. Introgressions accounted for a significant
(mean 20%, max 56%) portion of the heritability of tested traits.M. glaziovii alleles on the distal 10 Mb of chr. 1 increased dry matter
and root number. On chr. 4, introgressions in a 20 Mb region improved harvest index and brown streak disease tolerance. We
observed the introgression frequency on chr. 1 double over three cycles of selection, and that later stage trials selectively excluded
homozygotes from consideration as varieties. This indicates a heterozygous advantage of introgressions. However, we also found that
maintaining large recombination-suppressed introgressions in the heterozygous state allowed the accumulation of deleterious muta-
tions. We conclude that targeted recombination of introgressions would increase the efficiency of cassava breeding by allowing
simultaneous fixation of beneficial alleles and purging of genetic load.
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INTERSPECIFIC hybridization has provided an important
source of adaptive genetic variation during evolution in

many organisms including humans (Harris and Nielsen
2016; Juric et al. 2016), cattle (Wu et al. 2018) and maize
(Hufford et al. 2013). Indeed introgression between many
crops and their undomesticated relatives has occurred in both
directions Ellstrand et al. (2013), naturally in farmers fields
and deliberately by plant breeders (Jarvis and Hodgkin 1999;
Zamir 2001; Hajjar and Hodgkin 2007; Warschefsky et al.
2014). Introgression can have serious population genetic
consequences including genomic inversions and other struc-
tural variations, suppression of recombination and segrega-
tion distortion, inbreeding depression, and hybrid sterility
(Haldane 1957; Rieseberg et al. 2000; Fijarczyk and Babik
2015). Despite many individual examples, the consequences
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of historical introgressions, both positive and negative, espe-
cially at the quantitative genetic level, is rarely simulta-
neously understood.

Cassava (Manihot esculenta) is among the most important
staple foods in the world, sustaining hundreds of millions
of people in the tropics, especially in sub-Saharan Africa
(http://faostat.fao.org). Cassava is a clonally propagated sta-
ple food crop, grown throughout the tropics for its starchy
storage roots. In recent years, cassava has emerged from or-
phan-crop status as a model for plant breeding in the devel-
oping world, especially among outbreeding noncereals and
vegetatively propagated root and tuber crops (Ceballos et al.
2012; Prochnik et al. 2012; International Cassava Genetic
Map Consortium (ICGMC) 2014; Wolfe et al. 2017).

The history of cassava breeding includes periodic tapping
of wild congeneric relatives as sources of useful genetic
variation (Jennings and Iglesias 2001; Hajjar and Hodgkin
2007). In the early twentieth century, cassava production in
Africa faced a grave threat in the form of mosaic disease,
caused by an insect-vectored gemini virus. Records indicate
that an initial worldwide search for resistant cultivated cas-
sava was conducted (Storey and Nichols 1938; Nichols 1947;
Jennings 1957; Fauquet 1990). Failing to find native resis-
tance, breeders at the Amani research station in Tanzania
introgressed resistance from the Ceara rubber tree (Manihot
glaziovii Muell. Arg.) (Storey and Nichols 1938; Nichols
1947; Jennings 1957; Hahn et al. 1980b; Fauquet 1990).

Three backcrosses of hybrids to M. esculenta produced
acceptable levels of resistance and storage root yield
(Jennings 1957; Hahn et al. 1980b), leading to the distribu-
tion of mosaic-tolerant varieties to farmers in the local area of
Amani (Jennings 1957; Legg and Thresh 2000), and the
eventual end of the first mosaic disease epidemics by the
1940s (Jennings 1957; Legg and Thresh 2000). Descendants
of these original hybrids became key founders of modern
breeding germplasm (Ekandem 1970; Hahn et al. 1980b;
Fauquet 1990). The Amani-derived lines have been identified
as important sources of resistance against cassava mosaic
disease (CMD) (Fregene et al. 2000; Lokko et al. 2006),
brown streak disease (CBSD) (Hillocks and Jennings
2003), and bacterial blight (Hahn et al. 1980a).

Large genome-segments derived from M. glaziovii were
recently discovered in a sample of African genotypes, sug-
gesting that historical introgressions remain important today
(Bredeson et al. 2016). Several other studies have identified
quantitative trait loci (QTL) in these regions, leading us to
hypothesize that M. glaziovii alleles confer CBSD resistance
(Bredeson et al. 2016; Nzuki et al. 2017; Kayondo et al.
2018), and possibly increased storage root dry matter con-
tent (Rabbi et al. 2017).

Widespread genotyping for genomic selection (GS) in
African cassava breeding (http://www.nextgencassava.org)
makes cassava a model for root and tuber crops in the
developing world, and provides an opportunity to study
the modern benefits and consequences of historical
introgression. We leveraged publicly available data

(http://www.cassavabase.org) from .2742 breeding lines,
land races, and local varieties, with both field phenotypes
and genome-widemarker records (Wolfe et al. 2017) as well
as whole-genome sequences (WGS) (Ramu et al. 2017).
First, we investigated the legacy of M. glaziovii introgres-
sion by determining its extent in the germplasm and the
associated population structure.We employed a combination of
genetic variance partitioning, genome-wide association anal-
ysis and genomic prediction to quantify the location, effects
and overall importance of introgressed alleles for key cas-
sava traits, and, thus, for cassava breeding. Finally, we
study three generations of genomic selection progenies to
understand the role of introgressions in modern cassava
breeding.

Methods

GBS and WGS datasets

The HapMapII dataset is a collection of 303WGS, which has
been previously described (Ramu et al. 2017). HapMapII
contains 238 accessions including 8 M. glaziovii, 11 M. escu-
lenta x M. glaziovii hybrids, 16 M. flabellifolia (wild progen-
itor of cassava), a few other wild relatives, and 200 cultivated
M. esculenta samples genotyped at �28 M SNPs. HapMapII
was the basis for identifying introgression diagnostic markers
(IDMs), which could be used to detect M. glaziovii introgres-
sions in the genome of additional samples. The rest of the
germplasmswe analyzedwere genotyped using the genotyping-
by-sequencing (GBS) approach (Elshire et al. 2011; Hamblin
and Rabbi 2014). The overall GBS pipeline we employed for
quality control and genotype imputation have been described
previously (Hamblin and Rabbi 2014; Wolfe et al. 2017;
Ozimati et al. 2018).

We have included GBS genotypes and phenotypes from
three cassava breeding programs: National Root Crops Re-
search Institute (NRCRI, Umudike, Nigeria), International
Institute of Tropical Agriculture (IITA, Ibadan, Nigeria),
and National Crops Resources Research Institute (NaCRRI,
Namulonge, Uganda).

The genomic selection (GS) training populations for the
three programs, IITA, NRCRI (NR), and NaCRRI (UG), have
all been previously described (Ly et al. 2013; Wolfe et al.
2016a,b, 2017; Okeke et al. 2017; Rabbi et al. 2017; Elias
et al. 2018; Kayondo et al. 2018; Ozimati et al. 2018). Addi-
tional samples were sourced from IITA’s Genetic Gain (GG)
(Okechukwu and Dixon 2008) and Local Germplasm (LG)
populations. The LG is a collection of landraces and local
varieties originating mostly, but not exclusively, in west
Africa. IITA also contributed GBS data from a panel of Latin
American accessions obtained through its collaboration with
the International Center for Tropical Agriculture (CIAT). Fi-
nally, we included GBS data from three consecutive IITA
progeny generations (herein C1, C2, and C3), with C1 being
descended from selected GG parents, C2 being descended
from crosses among selected C1 parents, and so on (Wolfe
et al. 2017).
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Except for the CIAT collection, our GBS samples were
derived from the following pipeline: a reference panel of
4629 accessions, consisting of all African germplasmavailable
that were not classified as GS progenies (i.e., three training
populations plus assorted landraces) was assembled. Sites
were removed if.80% had zero reads. Imputation was done
with Beagle v4.0. The imputed data were filtered, keeping
sites with allelic R-square (INFO/AR2 field of the VCF)$0.3.
The imputed and filtered reference set was then used to im-
pute the remaining IITA GS progeny.

The CIAT lines were part of a separate study and thus were
processed and imputed along with additional samples (not
published). For those data, before imputation, genotype calls
were allowed only if a minimum of one read and a maximum
of 50 reads were present for each individual at each site. We
removed loci with .80% missing and an average mean
depth .120. We also thinned markers within 5 bp of each
other. These quality control procedures were implemented
using the VCFtools (v0.1.14) software package (Danecek
et al. 2011). We then imputed missing data using Beagle
(v4.1) using the gl mode, window = 2250, overlap = 225,
and niterations = 10 (Browning and Browning 2007, 2016).
Postimputation, we removed markers based on the allelic
R2 (AR2 , 0.3) (Browning and Browning 2009).

Introgression diagnostic markers

Weused an ancestry informativemarker approach, similar to
that of Bredeson et al. (2016) in order to detect introgressed
M. glaziovii genome segments. Our approach relies on the
comparison of a set of pure (i.e., nonintrogressed) M. escu-
lenta (Me reference) to a collection of M. glaziovii (Mg ref-
erence). From comparison of these two reference panels, we
identified introgression diagnostic markers (IDM) that can
be used for detecting M. glaziovii segments in an admixed
sample. We used two criteria to classify a single nucleotide
polymorphism (SNP) as an introgression diagnostic. Either
the SNP is fixed for different alleles in the two (Me and Mg)
reference panels (“Strict” IDMs), or the SNP must be fixed
in the Me reference but polymorphic in the Mg sample
(“GlazPoly” IDMs). The rationale for “GlazPoly” IDMs is
that, if we identify alleles that are only present in the M.
glaziovii panel and not in the pure M. esculenta, then find-
ing the M. glaziovii alleles at those sites in an introgressed
individual would be diagnostic, or at least contribute to
our confidence, that an M. glaziovii genome segment was
present.

For our M. glaziovii reference panel, we selected seven
samples (GLA59008, GLA59008-1, MAN00401, MGLAZIO-
VII, Mglaziovii, MglazioviiR, MglazioviiS) that were marked
as M. glaziovii in HapMapII (Table S1 of Ramu et al. (2017)
and included one additional sample (IRWA02712), because
in admixture and clustering analyses (not shown) IRWA02712,
though it was marked as M. irwinii, it was indistinguishable
from M. glaziovii.

Thefirst step toward identifying a set of IDMswas to define
panels of M. glaziovii and M. esculenta. HapMapII includes

16 samples of the wild progenitor of cassava,M. flabellifolia.
We exclude these samples from our study.

Defining a reference panel of “pure”M. esculenta required
greater care than for M. glaziovii since we know our sample
potentially includes admixed individuals but do not yet know
which. To start, we excluded the hybrid, M. flabellifolia and
wild relative samples from consideration. In Bredeson et al.
(2016), an analysis using the software frappe (Tang et al.
2005) was the primary basis for defining “pure” cassava. In
order to ensure that, on a segment-to-segment basis, our
cassava reference set truly did not contain M. glaziovii seg-
ments, we defined Me reference panels on a per-window
basis. For every 1000 SNPs, we calculated the pairwise
Hamming distance [as implemented by the –distance flag in
plink1.9beta3.3, http://www.cog-genomics.org/plink/1.9/,
Chang et al. (2015)] between all HapMapII samples. Tomake
this procedure more computationally tractable, we first link-
age disequilibrium (LD) pruned the 28 M SNP set using
the plink1.9 –indep-pairwise flag with a window size of 50
SNPs, step size of 10, and an LD r2 threshold of 0.3. After
LD-pruning, the HapMapII dataset had 4,952,655 SNPs left.
For each 1000 SNP window, we calculated the mean Ham-
ming distance between the Mg reference panel and each
cultivated cassava sample (MeanGlazDist for short).

Before making decisions about which cassava clones were
genetically distant enough from M. glaziovii to use as a win-
dow-specific reference panel, we plotted summary statistics
(Supplemental Material, Figure S1). Specifically, we calcu-
lated the mean, median, maximum, and SD of MeanGlazDist
variable for each window (Figure S2). We noted some outlier
windows at the end of chromosomes, where all sum-
mary statistics are very close to zero. We exclude these
windows from further consideration by filtering cases
with MeanGlazDist ,200. We then select as Me reference
for eachwindow, the 10 clones with greatestMeanGlazDist in
that window.

In order to apply IDMs for detecting introgressions in the
GBSdata,we restrict our downstreamanalyses to the 149,098
GBS sites intersecting both GBS and WGS datasets.

Principal components analysis

We conducted a principal components analysis (PCA) on
three marker sets: all markers (IDM+non-IDM), IDM markers,
and non-IDM markers. For this analysis, non-IDM markers
that were later determined to be in strong LD with the set of
IDM (see “Introgression tagging variants” below), were in-
cluded only in the “all markers” analysis. Only the popula-
tions UG, GG, NR, and LG (N = 2742) and SNPs with minor
allele frequency (MAF) .0.01 were included in the PCAs.
PCAwas conducted using the prcomp() R function, with cen-
ter and scale arguments set as TRUE.

The PCA and many other downstream analyses were con-
ducted on allelic dosage matrices, where the genotypes for
each individual (rows)andeachSNP(columns) is represented
as 0, 1, 2. Note that our dataset contains noninteger values
between 0 and 2, representing the uncertainty of imputation.
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For thenon-IDMand tag-IDM, the counted allele is the default
for the plink “–recode” function.We coded the IDMdosages so
the counted allele is the M. glaziovii diagnostic allele (plink
“–recode-allele”). Doing this enables us to interpret eigenvec-
tor coefficients (PC loadings) and SNP effects [see section on
genome-wide association analysis (GWAS) below] for those
markers relative to introgressions. For example, a positive
loading for an IDM SNP means individuals at the high end
of that principal component are more likely to have a M.
glaziovii diagnostic allele at that site than individuals at the
low end.

Mapping introgressions in windows

GBS (Elshire et al. 2011; Hamblin and Rabbi 2014) produces
genotype data with a high proportion of missing sites and a
low average read depth, which necessitates imputation
(Browning and Browning 2007; Chan et al. 2016) for most
applications (see above). Individual IDM genotype calls may
be incorrect. This means the use of IDM to detect introgres-
sions have some probability of both false positives and nega-
tives. One step we took to reduce the potential noise from
individual IDMs was to follow a window-based approach
similar to Bredeson et al. (2016). We computed the average
M. glaziovii dosage across IDMs in 250 kb, nonoverlapping
windows across the genome (referred to also as DoseGlaz).
The window-based dosages were used to generate genome-
wide maps of introgression status for each sample and for
GWAS (see below).

Interpolating marker genetic distances

Marker genetic distances were interpolated using the consen-
sus genetic map from the International Cassava Genetic Map
Consortium (ICGMC) (2014) based on the cassava reference
genome v4 (Prochnik et al. 2012). The 22,404 ICGMC
Markers flanking sequences (105 bp) were filtered on bial-
lelic variation, and subjected to a nucleotide BLASTN pro-
cedure (Camacho et al. 2009) against the cassava reference
genome version 6 (Bredeson et al. 2016) to obtain their new
physical positions. Using a custom python script and these
inferred ICGMC v6 positions, we interpolated all GBS mark-
ers in our data.

Comparing introgressions among populations

There were eight data sets (GG, LG, NR, UG, C1, C2, C3, and
CIAT) for which we wanted to compare introgression status.
We computed both the M. glaziovii allele frequency and ho-
mozygosity rate. For each population, these summaries were
made both on a per IDM and a per individual basis. Further,
we examined differences between populations on a genome-
wide basis as well as in focal introgression regions on
chr. 1 (from 25 Mb+) and chr. 4 (5–25 Mb).

HAPMIX in HapMapII

In order to provide additional confidence in the introgressions
we detect using IDMs, we applied an alternative approach
to the HapMapII dataset. We used HAPMIX (Price et al.

2009)—a haplotype-based method for local ancestry infer-
ence in populations formed by two-way admixture to esti-
mate a probability of introgression at each site. HAPMIX
assumes that the admixed population of interest arose from
a single admixture event between two ancestral populations.
In our case, the two ancestral populations areM. glaziovii and
M. esculenta. Before running HAPMIX, we used HapCUT
(Bansal and Bafna 2008) on already Beagle-imputed and
phased HapMapII dataset in order to improve local phasing.

Defining the two reference populations and the admixed
sample: We needed two reference populations: reference
population 1, consisting of individuals related to the true
M. glaziovii ancestral population, and reference population
2, consisting of individuals related to the true M. esculenta
ancestral population. We used the same eight M. glaziovii
individuals that were used to define IDMs. To define refer-
ence population 2, we selected the 10 M. esculenta individu-
als in HapMapII (out of the 217M. esculenta) that were most
genetically distant from the eight M. glaziovii samples based
on IDMs analysis. To define them, we simply summed the
MeanGlazDist values across each individual’s genome and
selected the top 10. They were: CW45617, CPCR15B91,
CPCR27B7, CPCR27B17, MBRA685, UG08S0P003, CR4442,
CPCR24B3, BRA8565, and UG08S0P005. The remaining
207 M. esculenta served as our admixed sample.

Specification of HAPMIX parameters: HAPMIX requires
specification of nine model parameters: (1) the average
number of generations since admixture, T; (2–3) the rates
at which there is copying of ancestry segments from the
“wrong” population, p1 and p2; (4–6) “mutation” parameters
u1, u2, and u3; (7) the probability that a given segment of an
admixed haplotype originates from ancestry population
1 and population 2, m1 and m2; and (8–9) the “recombina-
tion” rate between haplotypes within reference population
1 and 2, r1 and r2. We selected parameter values via a pro-
cess of trial and error, runningHAPMIX on the 11M. esculenta x
M. glaziovii hybrids in HapMapII (results not shown). For
each hybrid, when tuned properly, HAPMIX should infer the
presence of one M. glaziovii allele at each site (or at least, a
large proportion of sites).We selected the following parameter
settings for HAPMIX: T ¼ 4, p1 ¼ 0:05, p2 ¼ 0:05, u1 ¼ 0:2,
u2 ¼ 0:2, u3 ¼ 0:01, m1 ¼ 0:2 (and m2 ¼ 12m1), r1 ¼ 700,
and r2 ¼ 900. We ran HAPMIX using the HAPMIX_
MODE=“DIPLOID”, OUTPUT_DETAIL=“HAPLOID_FILES”, and
THRESHOLD = 0.9.

Introgression tagging variants

Our next major objective was to quantify the phenotypic
impact of segregating M. glaziovii genome segments on the
germplasm. We used genomic mixed models to estimate the
amount of genetic variance attributable to introgression re-
gions relative to the rest-of-the-genome (de los Campos et al.
2015; Speed and Balding 2015; Pino Del Carpio et al. 2018).
If unaddressed, LD between IDM and non-IDM SNP sets will
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lead to nonindependent estimates of genetic variance (Speed
et al. 2012; Bulik-Sullivan et al. 2015; Finucane et al. 2015;
Pino Del Carpio et al. 2018). The variance arising from in-
trogression regions might then be captured by the nonintrog-
ression regions and vice versa.

It is impossible to entirely eliminate this problem: long
distance LD exists in populations of clones driven by popula-
tion structure and familial relatedness. However, to reduce
nonindependence, for every SNP not previously identified as
IDM, we calculated two statistics. Both are based on pairwise
LD r2LD statistics as computed in R as the squared correlation
among allelic dosages. From these r2LD values, we first deter-
mined the maximum LD (maxLD) observed between each
non-IDM SNP and the set of IDMs. Our rationale here was
that non-IDM SNPs in very high LD with even one IDM SNP
could explain genetic variance attributable to the same causal
variants. Second, we calculated the total LD (totalLD) be-
tween each non-IDM and the entire set of IDMs. This metric
is essentially the same as the LDscore, which is calculated on
a window-basis (Speed et al. 2012; Bulik-Sullivan et al. 2015;
Finucane et al. 2015; Pino Del Carpio et al. 2018). The
totalLD, we reasoned, might provide an even better idea
(compared to maxLD) of the degree to which an non-IDM
SNP “tagged” the introgressed regions of the genome.

We needed an at least semi-objective approach to choose a
threshold for declaring SNPs as “tagging” IDMs or not. We
tested a range of LDscore (300–1500, interval 200) and
maxLD (0.1–1, interval 0.2). For each threshold, we parti-
tioned the SNPs into IDM, non-IDM, and tag-IDM, accord-
ingly. We then constructed four kinship matrices using the
A.mat function from the rrBLUP R package (Endelman
2011): tag-IDM, IDM, non-IDM, and IDM+tag-IDM.We used
the correlations between the upper off-diagonals as a proxy
for the independence of genetic variance components that
might result. Our objective was therefore to partition the
SNPs using LDscore and/or maxLD such that we maximize
the cor(tag-IDM, IDM) and minimize both cor(tag-IDM, non-
IDM) and cor(IDM+tag-IDM, non-IDM). The correlation be-
tween the kinships using the original partition of IDM and
non-IDM (0.37) was the baseline to improve upon.

We chose to use a LDscore threshold of 500, because they
were more similar in the kinship they measured to the IDM
than to the non-IDM (Figures S5–S7 and Tables S1 and S4).
By redesignating these originally non-IDM SNP as tag-IDM
and including them in the kinship matrix with IDMs, we re-
duced the correlation of IDM and non-IDM kinships to 0.30.
We included tag-IDM in the IDM kinship matrices used in all
subsequent analyses. With this procedure, we hoped to im-
prove our ability to distinguish introgression-associated (IDM +
tag-IDM) from the rest of the genetic variance (non-IDM) in
key cassava traits.

Field trials

Trials chosen: For this study, we compiled data from 68 field
trials (42 IITA, 5 NaCRRI, 21 NRCRI), which were scored for
nine traits. NaCRRI, NRCRI, and IITA (see section Datasets

above) have GS programs as part of a project called Next
Generation Cassava Breeding (www.nextgencassava.org).
For the NR and UG populations, the trials included in our
analyses comprise the GS training populations (TPs). For
IITA, trials from both the GG (original TP) and LG (landrace
and local germplasm) populations were included. There
were a total of 2742 phenotyped clones in the dataset.

With the exception of the LG dataset, versions of most of
these data have been analyzed in other publications (Wolfe
et al. 2016a,b, 2017; Rabbi et al. 2017; Kayondo et al. 2018).
Versions of these trials are available from the online database
www.cassavabase.org. In addition, we summarize the trials
in terms of the number of observations (Nobs), clones
(Nclone), reps (Nrep), and the ratio of Nobs/Nclone
(ObsToCloneRatio) per-Institute-per-Trial (Table S6).

Traits scored: Cassava faces a number of pest and disease
problems in Africa (Legg et al. 2014). We analyzed severity
scores, which are on a standard scale of 1 (no symptoms) to
5 (very severe symptoms), for three diseases: cassava brown
streak disease root necrosis (CBSDRS) and foliar (MCBSDS),
season-wide mean cassava mosaic disease (MCMDS), and
cassava bacterial blight (MCBBS).

We also scored five yield-related traits: dry matter con-
tent (DM), fresh root weight (RTWT), fresh shoot weight
(SHTWT), root number per plot (RTNO), and harvest index
(HI). MCMDS and MCBSDS are the mean of measurements
taken at up to three time points throughout the season: 1, 3,
and 6 months after planting (MAP). Dry matter content is the
percentage of dry root weight relative to fresh root weight
(RTWT). At IITA, DM was measured by drying 100 g of fresh
roots in an oven whereas at NRCRI and NaCRRI, the specific
gravity method (Kawano et al. 1987) was used. Both RTWT
and SHTWT were expressed in kilograms per plot. The HI
was the ratio of RTWT to RTWT plus SHTWT. RTNO was the
number of roots harvested from each plot. For all analyses
below, RTNO, RTWT, and SHTWT were natural-log trans-
formed to improve homoscedasticity of residuals.

Refer to theCassavaTraitOntology (http://www.cropontology.
org/ontology/CO_334) and our previous publications for addi-
tional details (e.g., Wolfe et al. (2017) and Ozimati et al.
(2018)).

There were as many as 68 trials scored for MCMDS, and as
few as five for CBSDRS/MCBSDS (NaCRRI only) (Table S6).

Genetic variance from introgressions

We fit linear mixed-models to the field trial data described
above (Henderson 1975; Gianola and Rosa 2015). The geno-
typic effect was modeled as random, with the covariances
among levels assumed as proportional to a known coancestry
coefficient. The variance component associated with this
term in the model is an estimate of the additive genetic var-
iance (allowing us to compute the heritability, h2) (Yang et al.
2010; de los Campos et al. 2015; Pino Del Carpio et al. 2018).
We started with the basic mixed model of form described
above:
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y ¼ Xbþ Zgþ e

In this model, y is a nðobservationsÞx1 vector of phenotypic
records, X is the n x p design matrix relating observations to
corresponding p levels of the fixed-effects. The p x 1 vector b
contains the fixed-effect estimates. The n x q design matrix Z
related the records in y to the q levels of the random effects
vector g, in this case g is the genotype (unique cassava clone)
effect. The nx1 random vector e is the residual or error term.

We assume the following about the random effects vector:

�
g
e

�
� N 0;

s2
gKg 0
0 s2

e I

" # !

Both random effects have a mean of 0. The genomic relation-
ship matrix Kg is a square symmetric covariance matrix,
which we constructed using genome-wide SNP markers
and the first method from VanRaden (2008) as implemented
in the A.mat() function in the rrBLUP R package (Endelman
2011). I is the identity matrix, which specifies the usual in-
dependent and identically distributed constraint on the re-
siduals. Given Kg, s2

g is an estimate of the additive genetic
variance, and g (the best linear unbiased predictors, BLUPs)
are, in this case, often called genomic-estimated breeding
values (GEBVs).

We want to partition the total heritability ðh2gÞ into a com-
ponent due to the regions with introgressed M. glaziovii al-
leles ðh2IDMÞ and a component attributed to regions without
introgressions ðh2nonIDMÞ. We do this by constructing two
GRMs, one with markers from IDMs plus tag-IDMs ðKIDMÞ
and the other with the rest of the markers ðKnonIDMÞ. We fit
the following, expansion on the mixed-model above:

y ¼ Xbþ ZgIDM þ ZgnonIDM þ e

 gIDM
gnonIDM

e

!
� N 0;

s2
IDMKIDM 0 0

0 s2
nonIDMKnonIDM 0

0 0 s2
e I

2
4

3
5

0
@

1
A

Here, Z is the design matrix for both gIDM and gnonIDM; as long
as the order of the rows/columns of the two corresponding
kinship matrices is the same.

For simplicity, we will sometimes refer to the two models
described above as the ALL and the PARTITIONED models,
respectively.

Per-trial analysis: Our first analysis was on a per-trial basis,
where a “trial” is defined as a unique experiment planted in a
single location-year.

In addition to the two genetic models described above, for
each trial, we fit three additional models:

IID:

y ¼ Xbþ ZgIID þ e

gIID � N
�
0;s2

IID I
�

IDM:

y ¼ Xbþ ZgIDM þ e

gIDM � N
�
0;s2

IDMKIDM
�

IDMnull:

y ¼ Xbþ ZgnonIDM þ e

gnonIDM � N
�
0;s2

nonIDMKnonIDM
�

Wealsofit aNULL,with no genetic component. In some cases,
for the NULL model, when no nongenetic effects were rele-
vant, we fit an intercept, or an intercept + NOHAV fixed-
effects model, using the lm function in R (v3.4.3). For the rest
of the models described above, we fit them with the mmer
mixed-model solver function in the sommer (v3.1) R package
(Ly et al. 2013; Covarrubias-Pazaran 2016).

Since a trial is a single location-year, the only fixed-effect
was the number of plant stands harvested (NOHAV), fit for
RTWT, RTNO, and SHTWT (Ly et al. 2013). Nongenetic ran-
dom effects were added, where relevant, on a trial and breed-
ing program-specific basis. Replication effects were fit to
replicated trials for all three breeding programs. For NRCRI
and NaCRRI, two random effects, one for complete blocks
(replication effects) and another for incomplete blocks
nested within replications. All nongenetic components were
assumed to be i.i.d. (covariance equal to I).

For model comparisons, described below, we manually
calculated the Akaike Information Criterion (AIC) as
AIC ¼ 2*npar2 2*log  Lik; where npar is the number of fixe-
d+random parameters fitted, and logLik is the log-likelihood
from sommer’s solution.

In the case of nested model comparisons described be-
low, we conducted likelihood ratio tests (LRT) to determine
the significance of individual random effects. Using the like-
lihoods from the models describe above, we compared
2*ðlogLikfull 2 logLiknullÞ to a chi-square distribution with
df ¼ nparfull 2nparnull. Here the nullmodel refers to a model
“nested”within the fullmodel, i.e., with one ormore random-
effect dropped.

Each genetic model was compared to the NULL (nonge-
netic) model ðLRTnullÞ.
Multi-trial analysis: Using the results of the trial-by-trial
modeling, we first flagged any trait-trial for which there
was not at least one genetic model with significant
ðpLRTnull , 0:05Þ and removed them. Next, among the remain-
ing trials, we removed any that did not have at least one
of the non-IID (genomic) models significant (again
pLRTnull , 0:05). The test LRTnull only indicates that the two
models being compared are different, not which one is actu-
ally better. Therefore, among the remaining trials, we used
AIC to determine in which case any of the genomic models
were at least as good as the IID model. If AICIID was $ 2
units smaller than AICgenomic; we considered the nongenomic
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model to be better fitting than the genomic one, and subse-
quently removed those trials.

We used the individual results from per-trial analyses, as
described above, to identify and filter out data with very low
genetic signal (Table S6). Having curated our dataset as
described above, we combined data across trials (within
institutes) to achieve larger sample sizes and more replica-
tions per clone.

For each Trait-Institute data set, we fit the genetic models
ALL, PARTITIONED and non-IDM described above for per-
trial analysis. Since the grouped datasets have multiple loca-
tions, years, and replications, we added i.i.d. random effects
for location-year-trial (LocYrTrial: trial nested in location-
year) and location-year-trial-rep (LocYrTrialRep: replication
nested in trials).

In addition to LRTnull as described above, we added a test
of the significance of the introgression variance ðLRTpartitionÞ
by comparing the partitioned model to the non-IDM-only
(IDM-null) model.

Random partitions: There were 38K IDMs. Any partition of
the genome with this number of SNPs is likely to explain a
significant portion of the genetic variance based on that fact
alone. We compared the variance explained by the partition
according to IDM status to three random sets of SNPs of the
same sample size (Tables S7 andS8).

LD-adjusted GRMs: Several previous studies have shown that
theprimary introgression regionsonchromosomes1and4are
characterized by strong, relatively long-range LD (Bredeson
et al. 2016; Rabbi et al. 2017). Excessive (or deficient) tag-
ging of some causal polymorphisms relative to others, for a
given trait, is known to bias genetic variance estimates
(Speed et al. 2012; de los Campos et al. 2015). One approach
to reduce this bias is to downweight the effect on kinship
estimates of SNPs in regions with very high LD, and upweight
those in lower LD (Speed et al. 2012). We used the software
LDAK (version 4.9) to calculate LD-adjustment weights (Ta-
ble S9), and, subsequently, to construct LD-adjusted GRMs.

We fit the ALL, PARTITIONED, and non-IDM-only models
again, this time with the LDAK GRMs in order to observe the
impact of LD on the partitioned of variance between IDM and
non-IDM.

GWAS

We conducted two types of GWAS in order to identify QTL
attributable to M. glaziovii introgressions.

The first GWAS was on the individual SNP markers (both
IDM and non-IDM), excluding those with MAF,5%. We ran
the mixed-linear model association (–mlma) analysis imple-
mented in gcta (v1.25.2) (Yang et al. 2011). Population
structure was accounted by a genetic random effect,
gnonIDM � Nð0;s2

gnonIDMKnonIDMÞ. For GWAS with gcta, popula-
tion structure was accounted for by KnonIDM, which, in this
case, was constructed using gcta –make-grm-bin on non-IDM
SNP passing –maf 0.01 instead of the rrBLUP::A.mat()

version used elsewhere. In the first GWAS, we are able to
interpret significant IDM SNPs relative to theM.g. diagnostic
allele. We further complemented this with a second GWAS,
conducted on the introgression-segment dosage matrix
ðDoseGlazÞ based on the 15-IDM windows described above.
We conducted this GWAS in R, fitting a mixed-model in
which each 15-IDM window was sequentially tested as a
fixed-effect, and a random effect with the same covariance
ðKnonIDMÞ as in the gcta analysis. From the estimated marker
effects b̂ and their corresponding SE seb̂

2, we calculated a
Wald test statistic:

WaldStat ¼ b̂
2
.
seb̂

2

We obtained a P-value by computing the probability of ob-
served Wald-statistic under the upper tail of a x2-distribution
with one degree of freedom.

As phenotypic responses for both GWAS, we supplied
BLUPs for each clone. Using the lmer function in the lme4 R
package, we fit an IID genetic model ðgIIDÞ as described for the
per-trial analyses. We analyzed the same curated data and
modeled the same design-related random effects (LocYrTrial
and LocYrTrialRep) as in the multi-trial analysis.

Genomic prediction

We measured the importance of introgression regions for
breeding value prediction with fivefold cross-validation. We
fit the nonpartitioned (ALL), PARTITIONED, and IDMnull
models again usingmmer in sommer. We also fit 15 randomly
selected partitions of nnonIDM including the three using in the
multi-trial analysis. Because we used a two-stage genomic
prediction approach for cross-validation, computation was
much faster, making it possible for us to test more random
partitions. The first stage is fitting the models described
above for use as response data in GWAS. The second stage
is the genomic prediction step, but we first deregressed the
BLUPs used for GWAS and weight error variances according
to a nonlinear function of the reliability ðr2Þ and the herita-
bility ðh2Þ. The procedure is described in multiple previous
publications (Wolfe et al. 2016a,b, 2017) and is based on that
described in Garrick et al. (2009).

The cross-validation was set-up such that each of the
trait-institute data set were divided up into 10 different
random partitions of five approximately equal parts. For
each model on each fivefold partition of the data, five
predictions were made, in which four-fifths of the clones’
phenotypes were included, and one-fifth were left out as a
test-set. Prediction accuracy was measured as the correla-
tion among the test-set individuals of their BLUP (as used in
GWAS) and their GEBV. For the PARTITIONED model, ac-
curacy was measured for the total GEBV (IDM+non-IDM
BLUPs).

Field plot records of GS progeny

We downloaded records from http://www.cassavabase.
org of the number of field plots planted as of 22 January
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2019 for each of the GS progeny (Table S2). We
reserve phenotypic records for these field plots for a future
study.

Deleterious mutations in introgression regions

We extracted the dosage of deleterious alleles at 9779 of the
22,495 putative deleterious mutations identified by Ramu
et al. (2017) from a dataset consisting of the LG, GG, and
C1, where 5.37 million HapMapII SNPs were imputed. GBS
data for the LG, GG, and C1 were imputed in a single step
using IMPUTE2 (Howie et al. 2009), with the HapMapII serv-
ing as a reference panel. IMPUTE2 parameters were set to
values similar to those previously used in Lozano et al.
(2017). Briefly, the number of haplotypes used as a custom
reference panel was set to 400, the imputation window was
set to 5 Mb and the genetic position for each of the HapMapII
markers were interpolated from the composite map published
by the International Cassava Genetic Map Consortium
(ICGMC) (2014).

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. Raw unimputed and imputed genotype
datasets, downstream analytical results, and high resolu-
tion maps of introgressions are publically available on
the Cassavabase FTP: ftp://ftp.cassavabase.org/manuscripts/
Wolfe_et_al_2019/. Supplemental Figures and Tables files
are available at figshare: https://doi.org/10.25386/genetics.
9897749.

Results

Introgression-associated population structure

In order to detect introgressedM. glaziovii genome segments
in cultivated cassava samples, we defined IDMs across the
genome. When we computed genetic distances from M. gla-
ziovii, in order to determine the panel of nonintrogressed M.
esculenta, we observed elevated variability among HapMapII
clones in their genetic distance from M. glaziovii on chromo-
some 1 from Mb 25 to the end of the chromosome (Figure
S2). This area corresponds to a region shown previously to be
segregating for M. glaziovii introgressions (Bredeson et al.
2016). Ultimately, we considered only the 120,990 sites
intersecting between the HapMapII and the broader GBS
dataset, we intended to analyze. From this set, we identified
38,000 IDMs that were either fixed for opposite alleles
(N = 20,681) or fixed in the M. esculenta reference panel,
but polymorphic among the M. glaziovii (N = 17,319). At
each IDM locus, therefore, we could identify an allele that
was putatively derived from M. glaziovii and would be diag-
nostic of introgression if found in a cultivated cassava
genome (Table S1). The IDMs were distributed similarly
across the genome compared to the rest of the markers in
our dataset (Figure S3).

PCA on the IDMmarkers revealed a pattern of relatedness
in introgression regions (Figure 1A) that is distinct from both
the rest-of-the-genome (non-IDM only, Figure 1B) and the
overall (all SNPs, Figure 1C) analyses. We encoded the dos-
ages for the IDMs to count the M. glaziovii diagnostic allele.
The resulting loadings (eigenvector coefficients) for markers
on PC1 (21% variance explained) are strongest for IDMs on
the last 10 Mb of chr. 1, while the strongest loadings on
PC2 (9%) are at IDMs spanning the majority of chr. 4
(Figure 1D).

Introgression frequency divergence among populations:
The largest introgressions detected were apparently contig-
uous segments of chr. 1 �25 Mb to the end (�10 Mb total)
and chr. 4 from 5 to 25 Mb (Figure 2A). The genome-wide
proportion ofM. glaziovii alleles per clone ranged from 1.3 to
13.6% (mean 3.8%) among the African breeding germplasm
as awhole (GG+LG+NR+UG; Figure 2B, Tables S2, and S3).
On a genome-wide basis, there are no large differences
among populations in the mean frequency of introgressed
alleles. The breeding populations GG (4.2%), NR, and UG
(4.1%), have similar levels of introgression, while the L.
American collection was the least introgressed (1.8%) and
the local germplasm (LG, 3%) was intermediate. We note
that in the CIAT collection, the Brazilian accession BRA534
appears to be an outlier, with 34% M. glaziovii alleles. We
excluded BRA534 when comparing CIAT to other
populations.

Whenwe isolate the introgressions on chrs. 1 and 4, which
appear to be the same as previously identified by Bredeson
et al. (2016), we observe more striking differences (Figure
2A). The frequency of the chr. 1 segment was, on average,
greater in the W. African breeding germplasm GG (0.2) and
NR (0.21) than in the E. African population UG (0.14). In
contrast, the introgression on chr. 4 wasmore common in UG
(0.23) compared to GG (0.15) or NR (0.11). Samples from
the IITA local germplasm collection (LG) were less likely to
contain introgressions on either chrs. 1 (0.10) or 4 (0.08),
and the L. American samples from CIAT showed almost no
evidence of introgression (,0.02) on both chrs. 1 and 4 (Fig-
ure 2B, Tables S2, and S3).

Ongoing selection for M. glaziovii alleles

We compared the introgressions detected in local germplasm
and landraces of cassava (LG) to IITA improved varieties (GG)
and three successive generations of genomic selection prog-
eny (C1, C2, and C3), which descend from parents selected
initially from the GG. The most notable changes we observed
were on chrs. 1 and 4 (Figure 3A). Genome-wide, the aver-
age proportion ofM. glaziovii alleles per individual increased
from 0.03 in LG to 0.042 in GG, and then more than doubled
in the GS progeny, with C1 at 0.095, C2, and C3 at 0.12
(Figure 3B, Table S2, and S3). Most of this change was due
to increases on chr. 1, which rose from 0.1 in the LG to 0.2 in
the GG and maxed out at 0.34 in the C3. In contrast, the
chr. 4 region appears to have stayed steady �15% from GG
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through C2 and even slightly decreases from C2 to C3 (Figure
3B, Tables S2, and S3).

Most introgressed LG and GG were heterozygous for M.
glaziovii haplotypes, with a mean homozygosity rate of only
1% genome-wide (Figure 3C, see also Figure 2A). Genomic
selection appears to have steadily increased the homozygos-
ity rate on chr. 1 from 4% in the GG to 16% in C3 (Figure 3, A
and C and Tables S2 and S3). The near absence of homozy-
gotes in the elite germplasm (GG) and the gradual increase
due to selection that we observed, led us to investigate
further.

We hypothesized that postgenotyping performance-based
selection and advancement through the variety testing pro-
cess might exclude homozygous clones. We used the cumu-
lative number of field plots planted (according to http://
www.cassavabase.org, January 2019) as a metric of the level
of advancement each progeny had attained. We found that
while heterozygosity for introgressions was acceptable (Fig-
ure 3D, left), homozygous clones were almost completely
excluded from later stages (Figure 3D, right). Of the 30 clones
with.50 field plots only one of them appeared to be notably
homozygous. For that one clone, both chrs. 1 and 4 were
nearly completely homozygous (Figure 3D and Table S2).

One potential consequence of increasing the frequency of
such a large haplotype and maintaining it in a heterozygous
state might be the accumulation of deleterious mutations
(Ramu et al. 2017). Using a dataset consisting of the LG,

GG, and C1 with 5.367 million HapMapII SNPs imputed
we were able to genotype 9779 putative deleterious muta-
tions of the 22,495 identified by Ramu et al. (2017). From LG
to GG, we observed increases in the average per individual
genetic load that were larger (34% on chr. 1, 20% on chr. 4)
in introgression regions compared to genome-wide (8.7%).
Similarly, from GG to C1, genetic load increased, less than
between LG and GG, but more in introgression regions (9%
for chr. 1 and 4.9% on chr. 4) than genome-wide (2.5%).
There was nearly no mean difference between LG and GG in
terms of homozygous genetic load. However, there was an
increase from GG to C1 and it was also larger in the intro-
gression regions (59% on chr. 1, 15% on chr. 4) than
genome-wide (10%) (Tables S2 and S3).

Local admixture as confirmation of detected
introgressions in HapMapII

We also used HAPMIX (Price et al. 2009), a haplotype-based
method for local ancestry inference, to detect M. glaziovii
introgressions in phased WGS HapMapII samples. We found
that the HAPMIX and IDM-based methods largely agree (Fig-
ure S4). Although, we note that M. glaziovii segments on
Chr. 1 tend to appear smaller in the HAPMIX results.

Heritability accounted for by introgressions

We quantified the proportion of the total genetic variance
that is explainable by introgressions segregating in modern

Figure 1 Introgression regions capture distinct population structure. Shown are scatterplots of the PC scores for PC1 and PC2 from three PCAs using
three sets of markers: IDM only [(A) excludes “tag” –IDM], non-IDM only (B) and all together [(C) includes “tag” –IDM]. (D) The loadings or eigenvector
coefficients from the IDM-only PCA are shown plotted against their genomic coordinates for the first two principal components (vertical panels).
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cassava germplasm, for nine traits. We compiled data from
68 field trials (42 IITA, 5 NaCRRI, 21 NRCRI) conducted on
2742 genotyped clones in our study populations (Table S5).
To these data, we fit linear mixed-models with two random-
genetic effects, kinship measured using IDM markers and
kinship by non-IDMmarkers. The estimated genetic variances
partitioned the heritability into two components: one due to
introgression regions ðh2IDMÞ and another for the rest-of-the-
genome ðh2nonIDMÞ. Before fitting these models, we performed
two major preliminary analyses.

LD between introgressed regions and the rest of
the genome

We first investigated the amount of LD between introgressed
and nonintrogressed regions. Using the procedure described
in the methods, we reclassified 1413 SNPs, primarily located
on chr. 1 and 4 (Figure S7), that were more similar in the
kinship they measured to the IDM than to the non-IDM (Fig-
ures S5–S7, Tables S1, and S4). Redesignating these SNPs as
tag-IDM reduced the correlation of IDM and non-IDM kin-
ships from 0.37 to 0.30.We therefore included tag-IDM in the
IDM kinship matrices used in all subsequent analyses.

Per-trial analyses: The second preliminary analysis we did
was toanalyzeeach trial separately, inpart to check thequality
of the data before combining into a larger, multi-trial anal-
ysis. Based on a likelihood ratio test, we chose to remove
31 trait-trials that did not show evidence of significant ge-
netic variance ðpLRTnull . 0:05Þ. We removed an additional
six trait-trials without any significant genetic variance from
marker-estimated covariances. Lastly, 53more trait-trials were
excluded because, based upon the AIC) the genomic model fit
the data worse than the IID model (Tables S6 and S10).

Multi-trial analyses: We combined the remaining trials for
each trait (within Institute) to achieve large overall sample
sizes (max per Institute: 25924 IITA, 2881 NaCRRI,
6641NRCRI) and increase the average number of replications
per clone (max per Institute: 16.76 IITA, 6.89 NaCRRI, 8.11
NRCRI; Table S11). We fit the three models for each trait and
analyzed each breeding program’s data separately. Out of
19 Trait-Institute analyses, 10 had significant genetic vari-
ance from introgressions. In fact, introgression regions
appear important for every trait except cassava bacterial
blight and mosaic disease severity. In all of these cases, the

Figure 2 Comparison of introgression among populations. The mean M. glaziovii allele dosage at IDMs in 250 kb windows across the genome is
depicted on the left (A). Physical position on each chromosome is depicted in megabases (Mb) along the x-axis. Colors range from orange (0 M.g.
alleles), to green (1 M.g. allele), to dark blue (2 M.g. alleles). The per individual proportion of M. glaziovii alleles at IDM is summarized on the right (B).
Proportions were calculated as the sum (per clone) of the dosages at IDMs divided by two times the number of IDMs. The proportions in (B) were
computed either with all IDMs (GenomeWide, left column), at IDMs on chr. 1 .25 Mb (middle column), at IDMs on chr. 4 from 5 to 25 Mb (right
column). The populations can be compared in (B) by looking down the columns and using the vertical lines, which represent the mean values for that
group and region, as a visual aid. For both (A and B) each row (y-axis) is an individual cassava clone and the vertical panels represent five populations:
IITA local germplasm (LG), IITA Genetic Gain (GG), NRCRI (NR), NaCRRI (UG) and the L. American collection (CIAT). Rows (clones) are aligned across (A
and B) and sorted within population based on the genome-wide proportion M. glaziovii [left column of (B)].
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PARTITIONED model had an AIC .2 units smaller than
the nonpartitioned one. The proportion of the heritability
accounted for by significant introgressions was as high as
56% (mean 20%, median 15%, min 3%; Figure 4, Tables
S12, and S13).

Comparison to random samples: One-third of the SNPs in
our study were classified as IDMs (including tag-IDMs). We
compared the variance explained by our IDM-defined parti-
tion, to three random genome partitions of the same size
(Table S7). For the random samples, the correlation of GRMs
was .0.99, but was only 0.30 for the IDM-defined partition
(Table S8). The IDM-defined partition explained an average
of 20% of the total genetic variance, in comparison to 37% for
the random partitions, which is closer to proportional with
the total number of markers (Figure S8, Table S12–S14).

Most of the cases with significant s2
IDM did not have sig-

nificant variance associated with the random samples of
equivalent size. In contrast, all three random samples had
significant variance for MCMDS in the IITA dataset, while
the equivalent IDM-defined variance was insignificant. For
the most part, AIC values indicate the IDM-defined partitions
fit at least as well, if not better, than the random ones. For

only two cases did a random sample appear to fit better than
IDM-defined (MCMDS IITA Sample 1, RTNO IITA, Sample
2). In the NaCRRI dataset, IDM-defined partitions fit better
than all three random samples for MCMDS andMCBSDS. For
the better fitting (compared to random) NaCRRI MCMDS
analysis, the variance from the IDM regions was actually
zero.

Importance of LD: We know from previous studies in cassava,
and confirm here (Figure S9 and Table S21), that the in-
trogression regions on chromosomes 1 and 4 are character-
ized by strong, relatively long-range LD (Bredeson et al.
2016; Rabbi et al. 2017). We computed the cumulative ge-
netic size in centimorgans in 1-Mb windows along each chro-
mosome (Table S21). We found that recombination was
14 and 71% less than the rest of the genome in the introgres-
sions on chrs. 1 (25 Mb+) and 4 (5–25 Mb), respectively.
We used the LDAK method (Speed et al. 2012) to weight SNPs
contributions to kinship matrices (GRMs) in order to correct
for variability in tagging of causal mutations due to LD
(Speed et al. 2012; de los Campos et al. 2015) (Figures
S10, S11, and Table S9). The key result of LD adjustment
was a mean decrease of 7.4% of the proportion h2IDM=h

2
Total

Figure 3 The effects of (genomic) selection on M. glaziovii introgressions. The mean M. glaziovii allele dosage at IDMs in 250 kb windows on
chromosomes 1 and 4 is depicted on the top left (A). Physical position on each chromosome is depicted in megabases (Mb) along the x-axis. Colors
range from orange (0 M.g. alleles), to green (1 M.g. allele), to dark blue (2 M.g. alleles). The top middle panel (B) shows the per individual proportion
and the top right panel (C) shows the rate of homozygosity for M. glaziovii alleles at IDM. Proportions for (B) were calculated as the sum (per clone) of
the dosages at IDMs divided by two times the number of IDMs. The proportions for (C) were simply the proportion (per clone) out of the total number of
IDMs with a dosage equal to two. The proportions in (B and C) were computed either with all IDMs (GenomeWide, left column), at IDMs on chr.
1 .25 Mb (middle column), at IDMs on chr. 4 from 5 to 25 Mb (right column). The populations can be compared in (B and C) by looking down the
columns and using the vertical lines, which represent the mean values for that group and region, as a visual aid. For (A–C), each row (y-axis) is an
individual cassava clone and the vertical panels represent five populations: IITA Genetic Gain (GG) and three successive generations of genomic selection
progeny (C1, C2 and C3), descended originally from GG. Rows (clones) are aligned across (A–C) and sorted within population based on the genome-
wide proportionM. glaziovii [left column of (B)]. At the bottom, (D) shows how the introgression frequency and homozygosity rate per individual (y-axis)
for the C1, C2, and C3 relates to the cumulative number of field plots planted (as of January 2019) per clone (x-axis). The number of field plots per clone
is meant as a proxy representing the level of advancement through variety development stages of the breeding process. For illustrative purposes, we
highlight C1, C2, and C3 clones with .50 field plots in (B and C) with black diamonds. For (D) as in (B and C), we break down the proportions in (D) by
region and use the same color coding: genome-wide (orange), chr. 1 region (dark red), chr. 4 region (dark blue).
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(max decrease 241.6% for CBSDRS, max increase 6.6% for
RTNO), among cases where at least one of the models had
significant LRTIDM (Figures S12, S13, and Table S17). We
noted that the off-diagonals of the LDAK adjusted IDM and
non-IDM GRMs were more correlated to each other (0.65)
than the unadjusted pair (0.3; Table S16). The IDM matrix
was altered most by LDAK adjustment, with off-diagonal cor-
relation to the unadjusted IDM matrix of 0.45 compared to
0.89 for the non-IDMs (Table S15). In all, 12 s2

IDM were signif-
icant, either before, after, or both before and after
LD-adjustment. Of these 12, there were two where
LD-adjustment made the LRTIDM significant and three where it
became insignificant.

M. glaziovii-associated QTL

We identified QTL attributable to M. glaziovii alleles using
mixed-linear model GWAS on two types of predictors. The
first GWAS was on the SNP markers themselves, and the
second was on the mean dosage of M. glaziovii alleles in
250-kb windows (DoseGlaz), described in more detail in
Methods. There were Bonferroni-significant IDM and/or
DoseGlaz for all traits except bacterial blight (MCBBS) (Fig-
ure 5, Figures S14, and S16–S25).

On chr. 1 between 24.0 and 31.9 Mb, significant IDM and
DoseGlaz were detected for DM (mean effect of M. glaziovii
alleles in percent DM: 1.05 IDM, 1.49 DoseGlaz) and RTNO
[mean effect in ln(kg/plot): 0.08 IDM, 0.09 DoseGlaz] (Table
S18). For MCBSDS, the Chr. 4 QTL includes DoseGlaz and
IDM, covering most of the introgression region, from 12.6
to 23.4 Mb. For SHTWT and HI however, the region spanned
only from 22.35 to 25.1 Mb and therewas a single significant
marker for RTNO and RTWT nearby at 17.9 Mb. Effects on
chr. 4 of M. glaziovii alleles for brown streak disease appear
protective [mean effect on disease severity (1–5)
score:20.17 MCBSDS,20.33 CBSDRS]. For SHTWT [units:

ln(kg/plot)] andHI (units: proportion 0–1)meanM. glaziovii
effects were 20.085 and 0.023, respectively. In addition,
there was one DoseGlaz significant for MCBSDS on chr. 5
and one on chr. 12. The sig. DoseGlaz on chr. 12 was esti-
mated to increase disease susceptibility with an effect-size of
1.22 (trait scale 1–5). Note that RTNO and SHTWT effects
are on the natural log scale.

Impact of introgressions on genomic prediction

GS is becoming an important part ofmodern cassava breeding
(Ly et al. 2013;Wolfe et al. 2017).We investigated the impact
of introgression regions on genomic prediction accuracy,
which is directly proportional to their contribution to breed-
ing gains during GS, all other things being equal. We did
10 replications of fivefold cross-validation for each trait-
institute dataset. We tested five prediction models: nonparti-
tioned (ALL markers), genome-partitioned, and IDM-null
models. For the “genome-partitioned” and “IDM-null” mod-
els, we divided markers into two kinship matrices, either
randomly or based on whether a SNP was an IDM or not.

The accuracy of partitionedmodels was almost identical to
the nonpartitioned model for both the IDM-based and the
random genome-partitions. However, removing the IDM-
based component from the model tended to reduce accuracy,
especially in the NaCRRI data, on average 0.004 (max 0.04)
relative to thePARTITIONEDand0.005 (max0.03) relative to
the ALL models (Figure 6A). These comparisons provide a
means to measure the importance of introgression regions
in ongoing GS. In contrast to the IDM-based genome parti-
tion, removing the equivalent random components decreased
accuracy an average 0.001 (compared to ALL) and 20.001
(compared to PARTITIONED) (Figure S15, Tables S19, and
S20).

Finally, we observed that the size of the impact on pre-
diction accuracy (measured fromcomparingALL and IDMnull

Figure 4 Heritability accounted for by
introgressions. The heritability (y-axis)
of introgression regions for each trait
(x-axis) measured in each breeding pro-
gram (horizontal panels). Heritability was
estimated from partitioned genomic
mixed-models and the portion of heri-
tability attributable to introgression re-
gions (purple) vs. the rest of the genome
(dark red) is shown. Stars atop bars rep-
resent the level of significance in a likeli-
hood ratio test for the significance of the
introgression-component (***P , 0.0001,
**P , 0.001, *P , 0.05).
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models) scaledwith the h2IDM with a correlation of 0.41 for the
IDM-based genome partition and 20.09 for the random par-
tition (Figure 6B).

Discussion

Beneficial effects of introgressed alleles are consistent
with divergence in their frequencies across the
African continent

The original impetus for interspecific hybridization at Amani
(circa 1930s) was to combat CMD (Nichols 1947; Jennings
1957; Hahn et al. 1980b; Legg and Thresh 2000; Jennings
and Iglesias 2001). We observed consistent and beneficialM.
glaziovii allelic effects; however, we found neither a benefi-
cial effect nor a significant genetic variance for CMD. In a
previous article, focused on GWAS for CMD, we noted an
absence of major effect QTL other than CMD2, a dominant,
possibly multi-allelic locus (Wolfe et al. 2016b). We verify
here that the protection derived from the CMD2 locus did
not arise from introgression, as the only associated GWAS
result on Chr. 12 indicated the M. glaziovii-allele increased
susceptibility (Figure S16 and Table S18). Introgression-
derived CMD resistance has previously been suggested to
be weak (relative to CMD2), “recessive” and “polygenic”
(Fregene et al. 2000; Lokko et al. 2006); our results seem to
be in agreement with this assessment.

Introgression alleles we did detect at QTL are adaptive and
consistent with the population structure we observed (Figure
1A), arising primarily due to segregation of the two very large
segments detected on Chr. 1 from 25 Mb to the end and
Chr. 4 from 5 to 25 Mb, as well as a segment on Chr. 14

(Figure 1B, Figure 2, and Figure 3). M. glaziovii segments
are common in African breeding germplasm (Figure 2), less
common among African landraces, and nearly absent from
Latin American cassava. Dry matter alleles from M. glaziovii
at a previously identified QTL on chr. 1 [Figure 5; Rabbi et al.
(2017)] seem to explain the higher frequency of those intro-
gression segments in W. Africa, given the breeding emphasis
placed there on that trait as well as yield. The chr. 4 segment,
in contrast, is more common in east Africa, which also aligns
with the focus there on CBSD resistance breeding (Hillocks
and Jennings 2003; Kawuki et al. 2016) and the protectiveM.
glaziovii alleles there for that disease (Figure 5) (Nzuki et al.
2017; Kayondo et al. 2018). The breeding focus on DM and
yield in W. Africa also explain the differential change over
IITA GS cycles in introgression frequency on chr. 1 compared
to chr. 4. We note that, in line with a recent study of cross-
continent prediction of CBSD resistance (Ozimati et al.
2018), the existence in West Africa of the potentially protec-
tive chr. 4 segment is promising for the possibility to preven-
tatively breed for CBSD resistance in W. Africa. This leads to
the reciprocal suggestion that any beneficial DM alleles being
targeted in W. Africa are likely to be present and thus poten-
tially useful in E. Africa.

By comparison of African to Latin America clones, we
believe our evidence supports the origin of the chr. 1 and
4 M. glaziovii introgressions African, in line with historical
and recent genomic evidence (Bredeson et al. 2016). We do
note five CIAT clones with signatures of introgression; one is
BRA534, which at 34% M. glaziovii genome-wide, likely has
recent (non-African) wild ancestors; the four others were
heterozygous for the same segments on chrs. 1 and 4 that

Figure 5 Significant introgression-trait associations. Manhattan plots summarizing genome-wide associations for traits with significant introgression-
trait associates on chromosomes 1 and 4. Two mixed-linear model association analyses are shown, overlaid. In the first, GWAS was conducted on IDM
(purple) and non-IDM (gray) SNP markers. For the second, GWAS 250 kb window-based mean M. glaziovii allele dosages at IDMs (DoseGlaz; orange
squares). The horizontal lines represent the Bonferroni-significance threshold for the DoseGlaz (orange line) and SNP GWAS (purple line). In the bottom
left quadrant is a boxplot of all Bonferroni-significant marker-effects pooled by trait and chromosome.
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the African germplasm have. To date, we have not been able
to trace the pedigree or otherwise ascertain the origin of
these clones.

Inbreeding depression due to linkage drag accumulating
genetic load in introgression regions may explain
homozygote deficit among landraces and elite cultivars

The suppression of recombination, often due to structural
variants like inversions, is often a consequence of hybridiza-
tion between crops and their wild relatives (Rieseberg et al.
2000; Fijarczyk and Babik 2015; Llaurens et al. 2017).
Though we do not know whether an inversion or other struc-
tural variant underlies M. glaziovii introgressions in cassava,
we estimated that recombination is reduced in the intro-
gressed regions on chr. 1 and 4 by 14 and 71% respectively,
compared to the rest of the genome [Figures S6, S9, and
Table S21; Bredeson et al. (2016); Rabbi et al. (2017)]. Fur-
ther, adjusting for LD using LDAK almost uniformly reduced
the heritability accounted for by introgressions (Figures S12
and S13). Also, though the introgressions were clearly im-
portant for genomic prediction, their overall effect on accu-
racy was small (Figure 6 and Figure S15). This suggests that
while introgressions are clearly still important, having uni-
formly beneficial effects at QTL (Figure 5) and nearly dou-
bling in frequency during three cycles of GS (Figure 3), their
physical size is disproportionate to their true economic value.

One theoretical predictionabout introgressedallelesunder
selection with suppressed recombination is that they can
result in the accumulation of genetic load due to linkage drag
(Haldane 1957; Fijarczyk and Babik 2015). This is especially
a concern for vegetatively propagated noninbred crops like
cassava (Ramu et al. 2017). We observed that putatively

deleterious alleles in introgression regions accumulated rel-
atively faster (both LG to GG and GG to C1) compared to the
rest of the genome. We further observed balancing selection
in the form of anM. glaziovii homozygote deficit from variety
trials.

In clonally propagated crops, selection for advancement
during variety trials is using total genetic merit rather than
breeding value based on performance in a series of field trials
with progressively more replicates, locations, and increasing
plot size. The GS progeny that we analyzed (and thus the
sample inwhichwe observed an initial increase inM. glaziovii
homozygosity) represent those that successfully germinated
and were vigorous enough early on to warrant genotyping.
We discovered that M. glaziovii homozygotes were excluded
from later stage field trials early in the process (Figure 3D).
This indicates there may be phenotypically expressed nega-
tive effects of these introgressions, which may be related to
the accumulation of homozygous deleterious mutations we
observed. Linkage drag in adaptive introgression regions has
been proposed to explain balancing polymorphism regions in
cases including human-Neanderthal hybridization (Harris
and Nielsen 2016) and wing mimicry inHeliconius butterflies
(Joron et al. 2011; Le Poul et al. 2014).

Introgression-associated inbreeding depression is thus a
critical topic for future investigation. At present, cassava
breeders are maintaining introgression heterozygosity at
great cost, through a multi-stage selection process. First,
favored crosses between heterozygous parents generates
many unsuitable offspring, which are homozygous for intro-
gressions and suffer some as yet unquantified inbreeding
depression. Subsequently, field evaluations are required to
identify andpurge these individuals.Wepropose that targeted

Figure 6 The importance of introgressions for genomic prediction. (A) The difference in prediction accuracy between a model with vs. without the
introgression regions is expressed in horizontal boxplots. Ten replications of fivefold cross-validation was conducted for each Trait-Institute combination.
For each trait-institute dataset, we used the same 10 random partitions of training-test for each model tested. Two measures are shown on the x-axis:
the total accuracy of the partitioned model minus the IDM-null model [(A), left], the accuracy of the nonpartitioned model minus the IDM null model
[(A), right]. Two methods of partitioning the genome were compared: the IDM-based partition (purple boxplots), and 15 different random partitions,
pooled in the (orange) boxplots. (B) The mean difference in prediction accuracy between the partitioned model and the IDM-null is plotted (y-axis)
against the introgression-associated heritability (x-axis) from the multi-trial analyses. Results are shown for the IDM-based partition of the genome
(purple, left panel) and three tested random partitions (orange, right panel).
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recombination of introgression segments would increase the
rate of gain and sustainability of cassava breeding by allowing
simultaneous fixation of beneficial alleles and purging of
genetic load.

Taken together, our results point to the continued impor-
tance of wild alleles in cassava, one of the most important
staple foods in the developing world, and a model for other
clonally propagated root and tuber crops. We present an
example of both the benefits and consequences of historical
introgression formodern crop breeding. Ourmethods and the
breeding implications we highlight will therefore provide a
valuable example for other crops.
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