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Abstract

Hibernators have a distinctive ability to adapt to seasonal changes of body temperature in a

range between 37˚C and near freezing, exhibiting, among other features, a unique revers-

ibility of cardiac contractility. The adaptation of myocardial contractility in hibernation state

relies on alterations of excitation contraction coupling, which becomes less-dependent from

extracellular Ca2+ entry and is predominantly controlled by Ca2+ release from sarcoplasmic

reticulum, replenished by the Ca2+-ATPase (SERCA). We found that the specific SERCA

inhibitor cyclopiazonic acid (CPA), in contrast to its effect in papillary muscles (PM) from rat

hearts, did not reduce but rather potentiated contractility of PM from hibernating ground

squirrels (GS). In GS ventricles we identified drastically elevated, compared to rats, expres-

sion of Orai1, Stim1 and Trpc1/3/4/5/6/7 mRNAs, putative components of store operated

Ca2+ channels (SOC). Trpc3 protein levels were found increased in winter compared to

summer GS, yet levels of Trpc5, Trpc6 or Trpc7 remained unchanged. Under suppressed

voltage-dependent K+, Na+ and Ca2+ currents, the SOC inhibitor 2-aminoethyl diphenylbori-

nate (2-APB) diminished whole-cell membrane currents in isolated cardiomyocytes from

hibernating GS, but not from rats. During cooling-reheating cycles (30˚C–7˚C–30˚C) of

ground squirrel PM, 2-APB did not affect typical CPA-sensitive elevation of contractile force

at low temperatures, but precluded the contractility at 30˚C before and after the cooling.

Wash-out of 2-APB reversed PM contractility to control values. Thus, we suggest that SOC

play a pivotal role in governing the ability of hibernator hearts to maintain their function dur-

ing the transition in and out of hibernating states.

Introduction

Adequate cardiac function relies on versatile regulation of intracellular Ca2+ levels ([Ca2+]i) to

ensure coordination of multiple Ca2+-dependent processes in response to various environ-

mental factors [1]. Indeed, dysregulation of such high fidelity mechanism in cardiac cells
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under conditions of stress, food restriction, hypoxia, changes in body temperature, etc. may

induce arrhythmia and ventricular fibrillation, myocardial ultrastructural damages along

with necrosis or apoptosis [2–5], which all can be life threatening. Survivorship under severe

environmental pressures evolutionarily fixed the superior regulation of intracellular Ca2+

concentrations in hibernating animals compared to non-hibernating species. Therefore, an

assessment of the Ca2+ regulation plasticity in hibernators would be tantamount not only to

understanding their surviving mechanisms but also to identifying more effective therapeutic

strategies against cardiac diseases [6,7].

During winter, hibernating animals are capable of enduring a deep hypothermia with an

extremely diminished metabolic activity and recover to normal levels after arousal [8–10]. At a

body temperature close to 0˚C, hibernators survive through prolonged periods of lowered

hemodynamics, and following rewarming can restore normal circulation without detrimental

consequences for the whole organism [11–13]. Heart rates of a prototypic hibernating species,

the ground squirrel (Spermophilus undulatus), increase during arousal from 2–3 to 350–600

beats/min along with rising thermogenesis and decrease to 130–160 beats/min at the normal

active state [14–16]. Thus, during hibernation—arousal transitions, hibernators have to outlive

a set of cardiovascular traits that would be fatal to humans and other non-hibernating mam-

mals, e.g. violent swings in body temperature [8,17], extreme sympathetic drive during arousal

[18–20], blood viscosity [21], oxidative stress [22,23], lethal ventricular fibrillation and cardiac

arrhytmias [24], etc. While such deleterious conditions in cells from non-hibernating animals

would normally deregulate the control of Ca2+-dependent processes, cardiomyocytes from

mammalian hibernators exhibit a remarkable ability to adapt intracellular Ca2+ maintenance

and, thereby, contractile function [6,25,26]. Indeed, in contrast to cardiomyocytes from non-

hibernators that at 5–10˚C are characterized by a more than two-fold increase of resting

[Ca2+]i and reduced contractile function, ventricular myocytes from ground squirrels at low

temperatures are capable of supporting nominal resting [Ca2+]i [6]. It has been established that

the rate of excitation-induced [Ca2+]i-transient decays, as a measure of SERCA activity, was

more resistant to temperature drops in ground squirrel compared to rat cardiac muscles

[25,27]. Moreover, hibernating ground squirrels apparently are capable of increasing their

capacity to accumulate Ca2+ in SR compared to non-hibernating animals [28], which may be a

reason for the elevated excitation-induced amplitude of [Ca2+]i dynamics [6,7]. This paradoxi-

cal increase in cytosolic Ca2+ load appears to be critical to retain forceful contraction at the

decreased Ca2+ sensitivity of myofilaments identified at low temperatures in hibernator myofi-

brils [29,30]. Actually, at low temperatures, cardiac muscles from hibernating ground squirrels

are characterized by even higher contraction force compared to contractility measured at nor-

mal body temperatures [27,31].

During hibernation, influx of extracellular Ca2+ to cardiomyocytes is significantly reduced

due to downregulation of voltage-gated L-type Ca2+ channels and suppression of sympathetic

tone [19,32] that would otherwise maintain Ca2+ channels operative via PKA-dependent phos-

phorylation linked to the targeting of β-adrenoceptors by catecholamines [1]. While involve-

ment of L-type Ca2+ current into excitation-contraction coupling in hibernators cannot be

completely ruled out, the main contributors to [Ca2+]i, necessary for myocardial contraction,

are deemed to be Ca2+ influx through the Na+-Ca2+ exchanger (NCX) and intracellular Ca2+

release mechanisms [33,34]. However, it remains unclear why, at low temperatures, enzymatic

reactions with higher Arrhenius activation energy compared to ion diffusion via channels

down its electrochemical gradient would preponderate in cells of hibernators. It is possible

that near the freezing point the voltage-sensing conformational rearrangements within the

Ca2+ channel complex may become malfunctioning to drive openings of remaining opera-

tional Ca2+ channels. If so, voltage-gated L-type Ca2+ channels, although potentially can
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provide a passive Ca2+ ion influx, may not be a reliable Ca2+ transporting system, for example

during the transition from deep torpor to arousal when the demand for increased circulation

precedes rewarming of cardiac tissue [19].

Alternatively, hibernators may evolutionary conserve another mechanism capable of

increasing cytoplasmic [Ca2+]i that phylogenetically is more basic than ion transport via volt-

age-gated Ca2+ channels or NCX, namely, the store-operated Ca2+ channel entry (SOCE).

Indeed, in contrast to voltage-gated Ca2+ channels that are typical for excitable tissues, SOCE

are widely spread in all eukaryotes from yeast to humans and, thereby, represent the primor-

dial Ca2+ entry pathway [35]. Discovery of the stromal interaction molecule 1 (STIM1) as an

ER Ca2+ sensor, and Orai1 as a functional membrane component of store-operated channels

(SOC), was a key step in defining the mechanism of SOCE [36,37]. Additional functional

units for SOC, albeit still under debate, are the transient receptor potential (TRP) channels

[38–41]. In particular, the canonical TRP family (TRPC), which includes 7 isoforms of non-

selective cation channels (TRPC1-7), has been identified in cardyomyocytes under patholog-

ical conditions [42–45]. However, the expression and activity of SOC in ventricular cardiac

muscles of hibernating mammals are unknown. Herein, we assess the contribution of SOC

in contractile adaptation of papillary muscle from hibernating ground squirrels, compared

to non-hibernating rats, under conditions involving depletion/replenishment of intracellular

Ca2+ stores and within the temperature range characterizing transitions between torpid and

active states.

Materials and methods

Experimental animals and ethics statement

This study did not involve endangered or protected species and all animal procedures per-

formed with male Sprague-Dawley rats (obtained from laboratory of experimental animals,

Pushchino, Russia) and ground squirrels, Spermophilus undulatus, were approved by the Bio-

logical Safety and Ethics Committee (Institute of Cellular Biophysics) in accord with Directive

2010/63/EU of the European Parliament. Ground squirrels were live trapped during August—

September in Yakutia, where this species is abandoned and unprotected, by trained personnel

of the laboratory of Ecology and Ecosystem Resilience of North (Institute of Biology, Yakutsk

Branch of Russian Academy of Sciences). Animals were shipped by air to Pushchino, the Mos-

cow region, housed in a specially equipped vivarium and fed ad libitum. In October, prior to

the beginning of endogenous hibernating cycle. the temperature in the vivarium was kept at

~4˚C with no light to prepare animals for hibernation. This study implemented two experi-

mental groups of active ground squirrels: 1) active winter animals (January–the first half of

March) included animals taken between bouts of hibernation (interbout), during 12–24 h after

spontaneous arousing; 2) summer group (June–July) included animals that were removed

from the cold room in April and kept at room temperature. The averaged rectal temperature

of animals in the both experimental groups was 36.5 ± 0.5˚C. All surgery was performed

under sodium pentobarbital anesthesia (50 mg/kg i.p.), and all efforts were made to minimize

suffering.

Contractility of papillary muscles

Isolations of right ventricle papillary muscles were performed from hearts of anesthetized

animals. Measurements of the isometric force of contraction of rat and ground squirrel pap-

illary muscles were performed in oxygenated (95% O2/5% CO2) Tyrode solution containing

(in mM): NaCl, 135; KCl, 4; MgCl2, 1; CaCl2, 1.8; NaHCO3, 13.2; KH2PO4, 1.8; glucose, 11;

(pH 7.4) as previously described [46]. In brief, isolated papillary muscles (length 2–3
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mm, cross-sectional area 0.45 ± 0.07 mm2) were mounted horizontally in a temperature con-

trolled chamber (30˚C), and stretched to a length at which tension of contraction is maximal.

Isometric force of contraction was measured using a SI-H KG series force transducer (WPI

Germany GmbH). Stimuli were applied using bipolar Ag-AgCl electrodes by square-wave

pulses of 5 ms duration and amplitude set at 25% above the excitation threshold. Prior to

each experiment, muscle preparations were stimulated at 0.3 Hz for 1 h until complete

mechanical stabilization. All experiments were performed using a customized heating/cool-

ing temperature controller engineered based on a Peltier thermocouple with feedback con-

trol to the targeted temperature.

RNA isolation and RT-qPCR

Total RNA was extracted from papillary muscles of rats and winter active (interbout) ground

squirrels using ExtractRNA reagent (Evrogen, Moscow, Russia). Treatment of RNA samples

with DNAase was followed by chloroform extraction and subsequent precipitation in 96% eth-

anol. RNA pellets were washed three times with 70% ethanol and dissolved in RNase-free

water. Synthesis of cDNA was carried out with the commercially available reverse transcrip-

tion MMLV RT kit (Evrogen, Moscow, Russia) using an oliogo(dT)18 primer. qPCR for

Cav1.2, Orai1, Stim1 and Trpc isoforms was performed with the ABI 7500 Real-Time System

(Thermo Fisher Scientific Inc., MA, USA) using a qPCRmix-HS SYBR+LowRox kit (Evrogen)

with the forward (F) and reverse (R) primers indicated in Table 1. At least one primer in each

pair corresponds to an exon junction in all genes studied. The amplification efficiency for all

implemented genes were experimentally confirmed to be 90–105% based on a standard cali-

bration procedure by titrating corresponding cDNA samples from the species compared. The

sizes of all amplicons were close to each other and not exceeding 70–100 base pairs. The reac-

tion was initially incubated at 95˚C for 20 s and then for 40 cycles consisting of denaturation

at 95˚C for 20 s and annealing/extension at 60˚C for 40 s. The threshold cycle (CT) was

Table 1. Primer sequences for PCR amplification.

RAT GROUND SQUIRREL

Stim1 (F) GTCGCCCTTGTCCATGCAG
(R) ATGGGTCAAATCCCTCTGAGATCC

(F) CAGTTCTCATGGCCCGAGTT
(R) GTGGGGAATGCGTGTGTTTC

Orai1 (F) CGCAAGCTCTACTTGAGCCG
(R) CATCGCTACCATGGCGAAGC

(F) GCATCGCCACATCGAGCTA
(R) AGAACTTGACCCAGCAGAGC

Trpc1 (F) GCAGAACAGCTTGAAGGAGTG
(R) CACTAGGCAGCACATCACCT

(F) ACAGATCAGGCAACTGTGGAA
(R) GAAGTCCGAAAGCCAAGCAA

Trpc3 (F) AGGTGAACGAAGGTGAACTGA
(R) TCCGTCGCTTGGCTCTTATC

(F) GCCTTCGGTATGAGCTTTTGG
(R) GCTTCTCGCTGAGTTTGTGG

Trpc4 (F) GGTTGTCCTCCTGAACATGC
(R) ATATCTGCGTGGTCGGCAAT

(F) AGCAGATTCAGACGAAAAGAGTG
(R) TGCTGCTGACCTTGGATGAA

Trpc5 (F) TCTGTCCCAAGAGAGACCCC
(R) CAGCATGACGTTCTGTGAAGC

(F) GCTTTTCCACAAGCAGCACT
(R) GAGACGCTCTTGGATTTGGC

Trpc6 (F) AAAGATACGTACTGCAGGCCC
(R) ATTTCCTTCAGCTCCCCTTCG

(F) TCAAGTCTCCGTTATGAACTCCT
(R) CCTCTTGATTTGGCTCCAAGG

Trpc7 (F) AGGCCAAACGCTGTGAAAAC
(R) CCTGGTAGCGAGTCTTCCTG

(F) GAAGTCCCAAGCTACTGGCG
(R) CACCCTCAGGTGGTCTTTGTT

Gapdh (F) TCTCTGCTCCTCCCTGTTCTA
(R) GCCAAATCCGTTCACACCG

(F) CAACGCTGGCATATCCCTCA
(R) CCACCACCCGATGACTGTAG

Cav1.2 (F) GGGCAGTTTGCTCAAGATCC
(R) CGCGTTCTCCATCTCCTCTAT

https://doi.org/10.1371/journal.pone.0177469.t001

SOC in hibernator hearts

PLOS ONE | https://doi.org/10.1371/journal.pone.0177469 May 22, 2017 4 / 20

https://doi.org/10.1371/journal.pone.0177469.t001
https://doi.org/10.1371/journal.pone.0177469


determined by the 7000 System SDS software (ver. 1.3.1; Applied Biosystems). Transcript lev-

els were quantified by the 2-ΔΔCT method taking into consideration the identified amplification

efficiencies implementing REST 2005 software (Corbett Life Science, Munich, Germany) spe-

cialized for these purposes [47,48].

Immunoblotting

Isolated papillary muscles from interbout and summer ground squirrels were lysed in hypo-

tonic buffer containing NaCl 20 mM, Tris-HCl 20 mM (pH 7.4) and 1% Triton X-100, sup-

plemented with proteinase inhibitors and centrifuged at 2,500�g for 5 minutes. Proteins were

separated by denaturing 10% polyacrylamide gel electrophoresis (SDS-PAGE) and trans-

ferred to a nitrocellulose membrane (0.45 μm; Santa-Cruz, sc-3724). Primary rabbit poly-

clonal antibodies (Abcam) against Trpc3 (ab51560) and Trpc5 (ab63151), mouse polyclonal

antibodies against Trpc6 (ab63038) and Trpc7 (ab93618) and goat primary antibody against

actin (Santa Cruz, sc-1616) were diluted at 1:1000 and used to probe immunoreactive pro-

teins. Counterstain was performed with horseradish peroxidase (HRP)-conjugated anti-

rabbit (Santa Cruz, sc-2004, 1:300 dilution), anti-mouse (Abcam, ab131368, 1:300 dilution)

or anti-goat (Santa Cruz, sc-2020) secondary antibodies, respectively. HRP signals were

detected using 3,3’-diaminobenzidine tetrahydrochloride (DAB) substrate (Amresco, E733)

and film-captured.

Isolation of cardiac myocytes and patch-clamp measurements

Hearts were dissected from anesthetized animals, and retrogradely perfused with “low-Ca2+

medium” containing (in mM): NaCl, 80; KCl, 10; KH2PO4, 1.2; MgSO4, 5; glucose, 20; taurine,

50; L-arginine, 1; HEPES, 10 (pH 7.2), as described previously [32]. Cardiomyocytes were iso-

lated as described [32] and stored in low-Ca2+ medium supplemented with 200 μM CaCl2.

Only rod-shaped cardiomyocytes with clear striations were used. Membrane currents in iso-

lated cardiac myocytes were measured using the perforated mode of the whole-cell patch

clamp technique, as described [32]. Membrane patch perforation was induced by amphoteri-

cin B (200–250 μg/mL) added to the pipette (4–5 MO) containing (in mM): CsCl, 130; MgCl,

5; HEPES, 10 (pH 7.25). The bath solution contained (in mM): Choline-Cl, 80; CsCl, 10;

MgCl2, 2; CaCl2, 1.8; TEA-Cl, 20; Glucose 1g/L; TRIS 10, pH 7.25 with HCl. In pipette and

bath solutions cesium and TEA ions were used to diminish K+ currents. L-type Ca2+ currents

were suppressed by 10 μM of nifedipine. Currents were measured using an Axopatch 200B

amplifier (Molecular Devices, USA). Cellular membrane resistance along with cell capacitance

were defined online based on analysis of capacitive transient currents using the custom Bio-

Quest software [32] and a L-154 AD/DA converter (L-card, Moscow, Russia). Series resistance,

compensated by 50–60%, and uncompensated cell capacitances were continuously monitored

for the quality of the whole-cell recording configuration throughout experiments. Measure-

ments were performed at 20–22˚C.

Data analysis and statistics

Student’s t-test was used to compare continuous variables. P value of 0.05 was predetermined

as determining statistically significant differences. All data are presented as mean ± standard

error (S.E.). Results from RT-qPCR were presented using Whisker-Box plots, where the

box area encompasses 50% of all observations, the dotted line represents the sample median

and the whiskers shows 95% confidential intervals.
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Results

Contractility of papillary muscles of ground squirrels versus rats during

cooling-reheating cycle

Initial contractions at 30˚C in both cardiac papillary muscles (PM) from interbout ground

squirrels and rats were designated as zero, baseline values, and isometric contraction forces

were measured at reduced ambient temperatures in response to 0.1 Hz stimulus (Fig 1A). Dur-

ing cooling, PM of winter interbout ground squirrel exhibited significantly increased contrac-

tility, which remained above control values until reaching 7˚C (Fig 1A and 1B). PM of rat

Fig 1. Temperature-dependent adaptation of papillary muscle contractility in ground squirrel and rat hearts. (A) representative relative

isometric contractile forces measured at 0.1 Hz stimulation frequency in isolated papillary muscles from ground squirrel (solid lines) and rat (dotted

lines) hearts at different temperatures (as indicated). Contractile forces in both species were plotted relative to the values obtained at 30˚C. (B)

Summary statistics for the contractility of papillary muscle under conditions indicated in (A); *, denotes statistically significant differences (P<0.05, n

shown in parenthesis) estimated using the single group t-test compared to maximal force of contraction before cooling (100%). (C and D) FFR

constructed at 30˚C before cooling to 10˚C and after reheating; point values were obtained by normalizing measured maximal contraction forces to the

averaged value at 0.1 Hz before cooling; *, denotes statistically significant differences between values before cooling and after reheating (P<0.05;

n = 7 in ground squirrels, and n = 4 in rats).

https://doi.org/10.1371/journal.pone.0177469.g001
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hearts were also characterized by potentiation of peak developed forces during cooling until

15˚C, which was however followed by gradual elevation of diastolic tension and significant

reduction of peak contractile values upon continuation of the cooling process (Fig 1A and 1B).

Remarkably, PM contractility returned to control values after rewarming back to 30˚C in

ground squirrels, but not in rats (Fig 1B), emphasizing a superior adaptive plasticity of cardiac

muscle function in hibernators. Of note, PM of summer ground squirrel, although did not

demonstrate the substantial potentiation of contractility during cooling, were capable of fully

restoring contractile function after reheating in contrast to rats (S1 Fig). This unique feature of

hibernators’ hearts was further confirmed using the contractile force-frequency relationship

(FFR), an important characteristic of the cardiac contractile reserve, which allows discriminat-

ing between diverse calcium-transporting systems contributing to the control of contraction

force [49,50]. It has been established that, at low frequencies, the main mediator of contractile

function is intracellular Ca2+ release from sarcoplasmic reticulum (SR), supported by SERCA,

whereas at high stimulation frequencies the force of contraction is primarily controlled by

Ca2+ influx via L-type Ca2+ channels [46,51–53]. Within the frequency range from 0.003 to 1

Hz, the constructed FFR displayed a negative staircase response (decreased force with increas-

ing frequency), typical for mature rats as well as for hibernating and interbout ground squirrels

[46,49,51]. The FFR exhibited complete reversibility of contractile function upon rewarming

within the whole frequency range in PM of ground squirrels, but not in rats (Fig 1C and 1D).

Suppression of SERCA induced opposite effects on PM contractility in

ground squirrels and rats

It has been shown that post rest potentiation (PRP) of PM contractility can serve as a qualita-

tive parameter of SR Ca2+ levels, and normally should correlate well with contractile pause

durations, during which SR Ca2+stores can be refilled by SERCA [11,54,55]. Therefore, the

observed weak negative FFR may be explained by abundant Ca2+ levels within SR, which, in

turn, may be a consequence of relatively high spatial Na+ accumulation limiting removal of

intracellular Ca2+ via reverse mode of NCX operation [46,50]. Indeed, the PRP in ground

squirrel PM were marginal and statistically independent from the pause durations (Spearman’s

rank correlation coefficient ρ = 0.3, P = 0.68; Fig 2A), whereas the PRP in rat PM correlated

well with this parameter (ρ = 1.0, P = 0.017; Fig 2B). Suppression of SERCA activity by cyclo-

piazonic acid (CPA) considerably attenuated PM contractility in rats throughout the frequency

stimulation range, which however retained the correlation of PRP with pause durations (Fig

2B and 2D). Conversely, in PM of interbout ground squirrels, but not in PM of summer ani-

mals, CPA paradoxically stimulated PRP, which remained independent from pause durations

(ρ = 0.6, P = 0.35), and improved force of contraction at the stimulation frequencies below 0.3

Hz (Fig 2A and 2C and S2 Fig). Concomitantly, while CPA significantly delayed the contractile

relaxation time TP50 in rat PM, such prolongations of TP50 in ground squirrel PM were statis-

tically insignificant (Table 2). These data suggest that, in contrast to rats, ground squirrels can

implement an alternative mechanism of intracellular Ca2+ handling capable of controlling

myocardial contractility, such as store-operated Ca2+ entry.

Comparative expression of SOC in papillary muscles of ground squirrels

versus rats

Comparative quantitative analysis of gene product expression using qPCR revealed substan-

tially increased mRNA levels of putative myocardial SOC components in PM from hearts of

interbout ground squirrels versus rat PM (Fig 3A). There was a>103-fold increase in relative

expression of Stim1, Trpc4, and Trpc5, as well as the 106-fold increase in Trpc7 mRNAs in
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ground squirrels compared to rat PM, indicating that SOCE may contribute to adaptive func-

tion of hibernating hearts. We did not find differences in the mRNA expression levels of all

Trpc, Stim1 and Orai1 genes in the summer versus winter ground squirrel groups. However,

while there was no a significant difference in the expression of Trpc5, Trpc6 and Trpc7 pro-

teins between active winter and summer ground squirrels, Trpc3, which exhibited significantly

Fig 2. CPA-induced changes in PRP and FFR of PM contractile function. (A and B) Representative recordings of ground squirrel and rat PM

contractility implementing 2 s- and 60 s-long pauses along with corresponding PRP, calculated as a percentile ratio of the first post-rest contraction

force F1 to the basal rhythmic contraction force F0 (at 1 Hz), plotted as a function of pause durations in the absence and presence of CPA. (C) and (D)

Ground squirrels and rat FFR in the absence and presence of 10 μM CPA were constructed as described in Fig 1C and 1D. Insets at 0.1 and 1 Hz

represent typical changes in PM contractility induced by CPA (dotted lines); *, denotes statistically significant CPA-induced changes in relative force

contraction values (P<0.05; n = 9 in ground squirrels, and n = 3 in rats).

https://doi.org/10.1371/journal.pone.0177469.g002

Table 2. Changes of time-to-peak (TPT) and time to 50% relaxation (TP50) contractile parameters induced by CPA (10 μM) in isolated PM.

n TPT (ms) TP50 (ms)

0.1 Hz 0.3 Hz 1 Hz 0.1 Hz 0.3 Hz 1 Hz

Ground squirrels control 5 111.5±3.0 110.5±3.1 103.8±3.1 59.0±2.9 58.1±3.0 51.9±3.9

CPA 5 123.7±4.5 118.5±1.9 108.9±3.6 69.7±5.0 65.9±6.4 62.6±7.5

Rat control 4 113.4±2.4 109.8±2.9 104.7±2.8 60.0±2.3 63.2±1.2 59.6±1.4

CPA 4 118.6±8.8 116.0±9.7 114.1±8.7 73.0±2.0* 80.4±1.6* 82.1±4.1*

*—significantly different (P<0.05) from corresponding controls.

https://doi.org/10.1371/journal.pone.0177469.t002
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lower protein levels in summer compared to interbout ground squirrels (Fig 3B and 3C), may

be a candidate participating in cardiac seasonal adaptation of hibernating ground squirrels. Of

note, Trpc3 and Trpc6 proteins exhibited a marked increase of expression in hibernating

ground squirrels compared to rats (Fig 3D and 3E).

Ca2+ store-dependent regulation of papillary muscle contractility

The functional contribution of store-operated Ca2+ entry to regulation of PM contractility was

assessed with the established protocol implementing a depletion/replenishment of intracellular

Ca2+ stores [43,56,57] while testing the effect on Ca2+ influx of 2-aminoethyl diphenylborinate

(2-APB), a widely-used nonselective regulator of store-operated channels [35,39,58]. Transi-

tion from 1.8 mM to 0 external Ca2+ levels, in the presence of CPA, gradually eliminated the

contractility in both rat and ground squirrel PM (Fig 4A and 4B), in line with depletion of

intracellular Ca2+ stores. Following reapplication of normal external Ca2+, while this CPA-

induced prevention of SR Ca2+ replenishment strengthened the measured force of PM con-

traction in ground squirrels (Fig 4A and 4C), the lack of intracellular Ca2+ resources in rats led

to only partial restoration of PM contractility (Fig 4B and 4D). Furthermore, in contrast to rat,

ground squirrel PM exhibited a relatively brief but significant elevation of the resting tension

(Fig 4A and 4B), indicating a transient Ca2+ overload presumably resulting from store-oper-

ated Ca2+ entry. Of note, such Ca2+ overload can be exaggerated by Ca2+ entry at doubled

external Ca2+ levels (Fig 4C), which amplified the resting tension of PM to values comparable

with the control force of contraction (Fig 4D and 4E). Outstandingly, PM in hibernating

ground squirrels, despite the suppression of SERCA activity by CPA, were capable of with-

standing a significant Ca2+ overload and enforcing increased contractility, emphasizing a

remarkable plasticity of Ca2+ homeostatic mechanisms in cardiac muscle of hibernators (Fig

4A–4E).

Fig 3. Expression of SOC components in papillary muscles (PM) from ground squirrel hearts. (A) Relative mRNA expression defined by qPCR

in PM of ground squirrels. mRNA levels were normalized to housekeeping genes (GAPDH) and expressed as fold change of that determined in rat PM.

*, denotes statistically significant difference with P<0.05 (n = 6–7 in both species). (B) and (C) Comparative Trpc3, Trpc5, Trpc6 and Trpc7 protein

expression determined by western blot in PM from winter interbout (n = 6) versus summer ground squirrels (n = 4). (D) and (E) Comparative Trpc3,

Trpc5 and Trpc6 protein expression determined by western blot in PM from winter interbout versus rats hearts (n = 3). Protein levels were expressed

relative to β-actin; *, denote statistically significant expression difference with P < 0.05.

https://doi.org/10.1371/journal.pone.0177469.g003
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Voltage-gated Ca2+ entry via L-type Ca2+ channels represents a major mechanism of exter-

nal Ca2+ entry contributing to excitation-contraction coupling. However, suppression of L-

type Ca2+ channels by nifedipine resulted neither in elimination of notches in resting tension

nor in enhancement of the contractile force, following depletion of intracellular Ca2+ stores

(Fig 4F and 4G). Nifedipine approximately halved the force of contraction in both rat and

ground squirrel PM, indicating the contribution of this L-type Ca2+ channel-dependent Ca2+

entry at low stimulation rates (Fig 4G). According to the established contribution of different

Ca2+ sources into excitation-contraction coupling in these animal species, this antagonist of

Fig 4. Ca2+ store-dependent regulation of contractile function of ground squirrel versus rat PM. (A and B) Representative recordings of ground

squirrel and rat PM contractility under transition from nominal 1.8 mM Ca2+ to Ca2+-free Tyrode solution at 0.1 Hz stimulation frequency. (C) Same

protocol in ground squirrel PM at doubled external Ca2+ levels also increase the force of contraction and further enhanced the amplitude of resting

tension. Arrows in panels point to an increase in resting tension observed in ground squirrel but not rat PM. (D and E) Comparison of averaged relative

force of contraction and relative resting tension (n = at least 3 in each experimental group) measured in the presence of CPA relative to control force of

contraction before treatments. *, denotes statistically significant difference (P<0.05) defined by single group t-test comparing values with 1 in panel (D)

and with 0 in panel (E). ‡, denotes significant difference (P<0.05) between relative resting tensions at 1.8 mM versus 3.6 mM of external Ca2+ in ground

squirrel PM. (F) The profile of changes in the force of contraction and resting tension under manipulations with external Ca2+ and CPA was unaffected

by the blocker of L-type Ca2+ channels, nifedipine, in line with moderate dependence of PM contractility on voltage-gated Ca2+ entry at low stimulation

frequencies (G; *, P<0.05 for effects of nifedipine compared to corresponding controls; n = 4 in each group). (H) In ground squirrel PM, 2-APB reversed

the contraction force potentiated by CPA to value below control. The averaged (n = 3) relative force of contraction is shown in panel (D).

https://doi.org/10.1371/journal.pone.0177469.g004
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L-type Ca2+ channels had a more profound effect on PM contractility at high stimulation fre-

quencies (Fig 4G). It is noteworthy, that in the presence of nifedipine and absence of CPA,

removal of external Ca2+ apparently was insufficient to significantly reduce abundant Ca2+ lev-

els within SR of ground squirrels, since reapplication of external Ca2+ normally restored the

contractile levels, but did not potentiate the force of contraction, which was seen in the pres-

ence of CPA (Fig 4F). Thus, the existence of alternative Ca2+ entry allowed suggesting the con-

tribution of SOCE in regulation of PM contractility in ground squirrels, which was further

confirmed by application of 2-APB that not only effectively reversed the CPA-induced potenti-

ation of contractility, but also reduced the contractile force to values significantly lower than

control (Fig 4C and 4G).

The impact of SOCE on Ca2+ homeostasis in hearts of hibernating ground squirrels was

further probed in isolated cardiac myocytes. Under suppressed voltage-dependent K+, Na+

and Ca2+ currents, 2-APB (40 μM) inhibited whole-cell membrane current in ground squirrel

cardiomyocytes (Fig 5A). Subtraction of the currents measured in the presence of 2-APB from

control records revealed a non-selective 2-APB-sensitive current component with reversal

potential slightly more negative than 0 mV (Er = -11.7 ± 5.2 mV, n = 3), which is typical for

non-selective SOCE measured in heterologous expression systems [59,60] or in adult cardio-

myocytes [45,61]. However, in ground squirrel cardiomyocytes 2-APB-sensitive currents were

detected without a pretreatment aimed at depleting intracellular Ca2+ stores, indicating that

the detected current could be induced by certain Trpc-Orai1-Stim1 channels capable of oper-

ating in store-independent mode [36,40,62]. Concomitantly, in isolated PM of ground squir-

rels 2-APB reversibly suppressed the contraction force measured at 0.1 Hz of stimulation

frequency, yet complete inhibition (32.7±8.5% of control values, n = 3) was reached approxi-

mately in one hour following drug application (Fig 5B). While this effect of 2-APB was

detected throughout the stimulation range (Fig 5C), the most profound suppression of the

contractile force was found at the lowest stimulation frequencies (below 0.3 Hz) where the

contribution of voltage-sensitive Ca2+ entry to myocardial contractility is considered to be

minimal [46,51,53]. SKF-96365, an alternative SOCE antagonist, also inhibited the contraction

force of ground squirrel PM throughout the range of stimulation frequencies (S3 Fig).

In contrast to the effect in ground squirrels, 2-APB increased membrane currents in iso-

lated rat cardiomyocytes (Fig 5D). 2-APB-induced current components (Fig 5D) exhibited

reversal potential (Er = -7.8 ± 4.2 mV, n = 3) similar to 2-APB-sensitive current in ground

squirrels, yet with significantly reduced current density (0.39 ± 0.16 pA/pF, n = 3 vs.

1.52 ± 0.31 pA/pF, n = 3; P<0.05; at +20 mV membrane potential). In isolated PM from rats,

Ca2+ entry provoked by 2-APB at concentrations exceeding 10 μM usually induced arrhythmia

and sporadic contractile dysfunction, which was identified in all 5 performed experiments,

whereas in PM from ground squirrels this agent reduced contractility without any proarrhyth-

mic effects (n = 6; Fig 5E). Thus, these observations allow suggesting that ground squirrels, in

contrast to non-hibernators, may reserve Trpc-Orai1-Stim1 channels to maintain cardiac con-

tractile function during the transition between normal and hypothermic states.

SOCE in control of PM contractility during cooling-reheating cycle

In order to assess the role of SOCE in ground squirrel myocardium during transition from

high temperature to hypothermia, we compare contractility of PM in the presence of 2-APB

during a slow cooling/reheating cycle at the rate of ~0.2˚C/min from 30˚C to 7–10˚C and back

to 30˚C. The representative control recoding (Fig 6A) demonstrates that the operation capacity

of PM during cooling-reheating cycle underwent significant changes in contractile force. The

phase of attenuation in force of contraction at ~20˚C gave place to the significant elevation of
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contractility during further cooling to ~10˚C and to partial drop of peak contractile forces

at the lowest temperature points. Reheating back to 30˚C was characterized again by the

increased contraction force at ~20˚C followed by the restoration of initial contractile function,

which remained somewhat elevated at approaching 30˚C, compared to control contractility

prior to cooling (Fig 6A and 6D). Surprisingly, the suppression of contractile function induced

by 2-APB at 30˚C was reversed and even further amplified following the cooling progression

to ~10˚C, despite the continuous presence of the SOC inhibitor. However, 2-APB effectively

prohibited the restoration of PM contractile function following reheating to 20˚C and 30˚C,

until complete washout of 2-APB (Fig 6B and 6D). At the low temperatures, where 2-APB lost

the ability to suppress contractility of PM, the dominant role in governing cardiac muscle con-

traction pertained to SR Ca2+ stores controlled by CPA-sensitive SERCA activity (Fig 6C and

6D). Such profile of regulation of contractile function of PM from hibernating ground squir-

rels indicate that 2-APB-sensitive SOCE can play a pivotal role during entering to hypothermic

adaptation (30–25˚C) of cardiac contractility and govern the restoration of contractile func-

tion throughout the exit from hibernating state.

Fig 5. Effects of 2-APB on membrane currents in isolated cardiomyocytes and PM contractility in ground squirrel and rat hearts. (A)

Representative voltage-current relationships of whole-cell membrane currents in a ground squirrel cardiomyocyte measured in response to a voltage

ramp of 133.3 mV/s in the absence and presence of 2-APB. 2-APB-sensitive currents were obtained by subtraction of currents measured in the

presence of 2-APB from control values at each membrane potential. (B) Time course and summary statistics of reversible 2-APB-induced inhibition of

ground squirrel PM contractility measured at 0.1 Hz stimulation frequency. (C) FFR in ground squirrel PM in the absence (n = 8–9) and presence (n = 6)

of 2-APB (20 μM); *, denotes statistically significant difference with P<0.05. (D) Representative voltage-current relationships of whole-cell membrane

currents in a rat cardiomyocyte detected in response to a voltage ramp of 153.3 mV/s in the absence and presence of 2-APB. 2-APB-induced currents

were obtained by subtraction of currents measured in the presence of 2-APB from control values at each membrane potential. (E) Representative

recordings at 0.3 Hz stimulation frequency exemplifying the incidents of contractile dysfunction and arrhythmia induced by 2-APB in rat, but not in

ground squirrel PM.

https://doi.org/10.1371/journal.pone.0177469.g005
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Discussion

In the present study, we have identified that inhibition of the ability of SERCA to replenish SR

Ca2+ stores oppositely affected contractility of cardiac PM in hibernating ground squirrels ver-

sus non-hibernating rats. While inhibition of SERCA in rat PM resulted in an expected reduc-

tion of contractile function, the contractility of ground squirrel PM, under such conditions,

was paradoxically potentiated at low pacing rates, where the dominant role in mediating exci-

tation-contraction coupling belongs to intracellular Ca2+ stores [46,51,53]. Although we

hypothesized that voltage-insensitive passive Ca2+ influx would be a favorable mechanism con-

tributing to excitation-contraction coupling under hypometabolic/hypothermic states of

hibernators, the involvement of the Ca2+ store-associated functions in control of PM contrac-

tility was identified here only at the relatively high physiological temperatures during entry or

exit from bouts of torpor. Thus, ground squirrels may adopt an unrecognized complementary

mechanism supporting the reversibility of cardiac muscle contractility during transition of

such heterothermic animals between their physiological states.

An established system that can be triggered by inhibition of SERCA due to depletion of SR

Ca2+ stores is store-operated Ca2+ entry (SOCE) through the plasma membrane [41]. Stim1,

an endoplasmic reticulum Ca2+ sensor, Orai1, a functional membrane unit of SOC, and the

canonical Trp isoforms are putative constituents of cardiac SOC [35,36,38,45]. In particular, 6

isoforms of nonselective cation Trpc channels are grouped into 2 subfamilies based on

Fig 6. 2-APB- and CPA-induced modulation of ground squirrel PM contractility during cooling-reheating cycles. PM contractility acquired at

0.1Hz stimulation frequency in control (A), in the presence of 2-APB (B) or CPA (C). The temperature of bath solutions was changed at the

approximate rate 0.1–0.2˚C/min. Blue solid bars marked by asterisks (B) indicate 2-APB-induced inhibition of PM contractility before and after cooling,

respectively. The profiles of temperature changes and drug application are shown by corresponding colored gradient bars and solid lines above the

traces. (D) Summarized statistics for (A), (B) and (C) at the indicated temperatures; *, denotes statistically significant differences (P < 0.05; n = 5, 4

and 3 in control, in the presence of 2-APB and CPA groups, respectively), estimated using the single group t-test compared to peak force of contraction

before cooling (100%).

https://doi.org/10.1371/journal.pone.0177469.g006
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structural and functional features: Trpc1/4/5 and Trpc3/6/7 [63]. It has been argued that

Trpc3/6/7 can be activated via G protein-coupled receptor/phospholipase C signaling, whereas

Trpc1/4/5 current can be induced by stretch or depletion of SR Ca2+ stores [40]. While mem-

bers of the Trpc family along with Orai1 and Stim1 have been predominantly recognized in

non-excitable cells, their role in regulation of Ca2+ homeostasis in cardyomyocytes has been

associated with pathological cardiac remodeling [42,43]. In fact, Trpc channels are present at

very low levels in normal adult cardiac myocytes, yet select Trpc isoforms have been found to

be overexpressed in several animal models of myopathy, cardiac hypertrophy and heart failure

[42,64–66]. Hence, the argument could be advanced that SOC represent an important element

of cardiac adaptive mechanisms, which partially or completely has been lost in the tissue of

non-hibernators, but remains preserved in hibernator’s hearts to support cardiac survival

under environmental stress conditions.

Therefore, the expression of these SOC components was tested here in the papillary muscles

of hibernating ground squirrels. We identified that the genes encoding all suggested SOC con-

stituents were dramatically overexpressed in ground squirrel PM, compared to PM of non-

hibernating rats. However, for instance, the relative 106-fold increase in Trpc7 mRNA expres-

sion identified by qPCR in ground squirrels compared to rats, may not necessarily indicate its

redundancy in the myocardium of hibernators, but rather may be due to the very low levels of

these transcripts in rat tissue. Surprisingly, the expression levels of particular mRNA and Trpc

proteins, except Trpc3 protein, were not different in hibernating (winter interbout) versus

summer active ground squirrels, suggesting that the mobilization of SOC function may rely on

signaling mechanisms. This suggestion is supported by our observation that PM of summer

ground squirrels although can functionally withstand experimental hypothermia, lack charac-

teristic potentiation of contractility at low temperatures as well as CPA-induced elevation of

contractile function (S1 and S2 Figs). One may speculate that critical Ca2+ store-related protein

structures are constantly preserved in the cardiac muscles of ground squirrels, and can be

operatively recruited during the transition to hibernating state. Indeed, studies have shown

that in addition to regulation via G protein-coupled receptors, SOCE in cardiomyocytes is sen-

sitive to changes in glucose homeostasis, hypoxic or ischemic events [67–69], characteristic of

the transition of hibernators between active and torpid states [12,22,23].

Unfortunately, in the present study we cannot specify the exact composition of SOC in

ground squirrel myocardium, which would require future extensive investigations implement-

ing, for example, gene silencing techniques. However, in cardiomyocytes isolated from hearts

of hibernating ground squirrels, testing using the whole-cell mode of the patch-clamp tech-

nique revealed the non-selective SOC activity without drug-induced depletion of intracellular

Ca2+ stores [35,38,41]. According to present-day understanding, the Stim1-Orai1 complexes

are responsible for plasma membrane conductance via Ca2+-release activated channels (ICRAC)

that are highly selective to Ca2+ ions [35–37]. In contrast, Trpc channels do not contribute to

ICRAC [70] and in combination with Stim1 or Stim1-Orai1, produced less selective SOC mem-

brane currents (ISOC) that are permissive to other cations [40,70,71]. Indeed, the reversal

potential near 0 mV, detected for the 2-APB-sensitive membrane current in ground squirrel

cardiomyocytes, indicates a non-selective ISOC, since ICRAC would exhibit a reversal potential

near the equilibrium potential for Ca2+, which under the experimental conditions used here

was estimated within a range of +150 to +170 mV [32]. Despite the canonical definition of

SOC as a unit sensitive to intracellular Ca2+ stores, such principle of their operation may not

be applicable to all conditions in which Stim1 clustering results from the store depletion by

inositol-1,4,5-trisphosphate-induced Ca2+ release or by inhibition of SERCA [62,72]. Cardio-

myocytes are different from non-excitable cells in that they produce robust excitation-induced

release of Ca2+ from intracellular stores that, under certain conditions, may reduce SR Ca2+
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levels to the threshold of SOC activation. However, it is not evident that Ca2+ stores in ground

squirrels PM are significantly depleted during excitation [46,73], as shown here using post rest

potentiation measurements (Fig 2). Furthermore, 2-APB sensitive current components were

measured in ground squirrel cardiomyocytes in the presence of nifedipine, which by blocking

L-type Ca2+ channels would prevent RyR-mediated Ca2+ release from SR. Thus, we are

tempted to suggest that in ground squirrel cardiomyoctes, the overexpression of Stim1 may

provoke creation of punctae [38,41], which following association with abundant Trpc/Orai1

can lead to formation of SOC and activation of 2-APB-sensitive currents. Concomitantly, we

identified that 2-APB-induced SOC inhibition resulted in significant reduction of contractile

force measured in ground squirrels PM within the whole range of applied stimulation frequen-

cies. Application of 2-APB to rat cardiomyocytes in our patch-clamp experiments resulted in

activation of whole-cell membrane currents, emphasizing a striking difference between SOC

regulation and, presumably, the channel composition in hibernating versus not-hibernating

species [74]. Our observations are in accord with the previously reported ability of 2-APB to

stimulate store-operated Ca2+ entry in some cells [56] and produce atrial and ventricular

arrhythmias in rat and mouse hearts [75,76]. Indeed, it has been demonstrated that 2-APB can

activate different types of Orai channels independently of Stim1 or Ca2+ store depletion [77].

This data suggest that Ca2+ entry via voltage-independent ion channels may elicit ectopic elec-

trical activity leading to ventricular fibrillation and persistent or paroxysmal tachycardia

[75,76]. Thus, while upregulation of SOCE in non-hibernator hearts suggested to be deleteri-

ous [35,43,63,64], under pathological remodeling it may be viewed as an endeavor to mobilize

the obsolescent Ca2+ controlling mechanism that is still in use by hibernators.

Since the physiological significance of SOCE remains elusive, especially in excitable cells, such

as cardiomyocytes, we can only outline their possible contribution to Ca2+ homeostasis and myo-

cardial contractility in hibernating ground squirrels. Permissive for Ca2+ ions, SOC can serve as

a scaffold for local signaling complexes that directly sense the proximal Ca2+ emerging from the

channel [63,78,79]. It has been suggested that in such capacity SOC can provide local Ca2+ in spe-

cific microdomains to reload particular SR compartments that are distinct from the greater SR

involved in regulating contractility [63]. On the other hand, non-selectivity of Trpc channels,

with a Na+/Ca2+ permeability ratio (PCa/PNa) between 1 and 1/10 [80,81], at physiological con-

centrations would allow significant Na+ load in cardiomyocytes. This mechanism can contribute

to the spatial Na+ accumulation, which can be sufficient to drive Ca2+ entry via reverse mode of

NCX [82,83], suggested for hibernators [6,46,84]. Finally, it has been demonstrated that, by bind-

ing phospholamban, an endogenous SERCA inhibitor, Stim1 can facilitate SERCA-dependent

refiling of SR by Ca2+ [62], which in turn would result in a positive inotropic effect.

Despite the absence of a clear understanding of the proposed mechanisms for SOC-depen-

dent control of contractile function in hibernating ground squirrel PM, direct testing of SOC

inhibition during a cooling-reheating cycle revealed the clear contribution of 2-APB-sensitive

components to hypothermic adaptation of cardiac contractility. We conclude that, in contrast to

non-hibernating species, hibernating animals evolutionary retain the SOCE-dependent mecha-

nism to secure adaptation of cardiac contractility during transitions in and out of hibernating

states. Further investigation of this phenomenon may open a new pathway to comprehension of

the protective mechanism governing cold tolerance in the myocardium of hibernating animals.

Supporting information

S1 Fig. Typical contractile profile of PM from summer ground squirrel during cooling-

reheating protocol.

(PDF)
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S2 Fig. CPA did not affect force-frequency relationships of PM in summer ground squir-

rels.

(PDF)

S3 Fig. SKF-96365 supressed contractility of PM isolated from ground squirrel hearts.

(PDF)
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