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Abstract: Professional cleaning and safe social distance monitoring are often considered as de-
manding, time-consuming, repetitive, and labor-intensive tasks with the risk of getting exposed
to the virus. Safe social distance monitoring and cleaning are emerging problems solved through
robotics solutions. This research aims to develop a safe social distance surveillance system on an
intra-reconfigurable robot with a multi-robot cleaning system for large population environments,
like office buildings, hospitals, or shopping malls. We propose an adaptive multi-robot cleaning
strategy based on zig-zag-based coverage path planning that works in synergy with the human
interaction heat map generated by safe social distance monitoring systems. We further validate the
proposed adaptive velocity model’s efficiency for the multi-robot cleaning systems regarding time
consumption and energy saved. The proposed method using sigmoid-based non-linear function has
shown superior performance with 14.1 percent faster and energy consumption of 11.8 percent less
than conventional cleaning methods.

Keywords: adaptive multi-robot cleaning startegy; safe social distance surveillance; COVID-19;
coverage path planning; reconfigurable robotics

1. Introduction

The rampant COVID-19 has brought global crisis worldwide by affecting almost all
the continents, infecting more than 103 million people and 2.2 million death reports as of
31 January 2021. With the ongoing COVID-19 pandemic situation, following safe social
distancing norms, frequent cleaning, and sterilization of the environment has become an
indispensable safety measure to mitigate the spread of the virus. The current pandemic
situation has already shown numerous instances of how service robots are being used to
help and control the virus’s spread [1]. According to TechNavio’s Global Service Robot
Market report, the service robotics industry is poised to grow at a compounded rate of
16.5% [2]. One of the significant and vital sectors with an increasing demand for service
robots, especially with the ongoing COVID-19 pandemic, is the healthcare industry. In
places, like hospitals, with patients entering and leaving, healthcare staff and other co-
workers are more exposed to the risk of virus infections. Hence, frequent cleaning and
sanitation of the environment are vital for controlling the spread of infections.

Over the past few decades, numerous researches have been done in the development
of service robots. Robots have been applied in the domestic and industrial workspaces, such
as collaborative robots robotic painting, robotic welding, material removal, part transfer,
and machine tending. Recently, the robots, such as AGV and drones, have made great
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strides in fighting the COVID-19 pandemic [3]. these robots integrated with Al-assisted
technology distribute the goods to COVID-19 patients, implements effectively the safe
entry check-in body temperature measurement and social distancing, routine sanitize the
infected area, frequent cleaning of high touchpoints, like hospital walls, floors, and door
handles [4-6].

In cleaning applications, area coverage is seen as one of the emerging problems, and
exploration for coverage path planning has been studied in depth under various aspects:
design, control, autonomy, perception techniques, and multi-robot strategies. For instance,
in the design aspects of cleaning robots, Wu et al., in Reference [7], presented the use of
vacuum suction and propeller-thrust techniques as adhesion mechanisms for cleaning
the vertical surfaces. These adhesion techniques have greater flexibility in controlling
the adhesion force exerted on the surface by varying the power supply. Leveraging on
the idea of self reconfigurable design mechanisms have been widely explored in-floor
cleaning [8], ship hull cleaning maintenance [9,10], staircase cleaning [11], and pavement
cleaning [12]. hTetro robot in Reference [8] is a vacuum cleaning autonomous robot
that can reconfigure its morphology to access narrow regions that cannot be reached by
standard fixed-shaped vacuum cleaning robots. It can achieve a higher cleaning area than
a standard automatic vacuum cleaner in the market today. In another work, Vega et al. [13]
presented the design and modeling of a self-reconfigurable window cleaning robot named
Mantis. Using impellers to hold on to the vertical glass surface, they have demonstrated
Mantis to transition from one window panel to another by avoiding the window frame. In
Reference [14], Le et al. presented the design and development of a novel self-reconfigurable
staircase cleaning robot sTetro. sTetro uses a vertical conveyor belt mechanism to achieve
staircase climbing.

To overcome speed constraints and control complexity, various types of locomotion
strategies have been proposed. For instance, Gao et al. [15] presented a floor cleaning robot
equipped with Swedish wheels to enable Omnidirectional locomotion. The kinematics
and the robot’s motion control have been tested to demonstrate locomotion in eight direc-
tions without changing the robot’s posture. Miyake et al. [16] analyzed and illustrated
the adsorption technique and locomotion mechanism of a window cleaner robot. They
utilized a suction cup to adsorb over vertical surfaces, and the two motors fixed in the
locomotion module help achieve locomotion over any axis along the plane. Megalingam et
al., in Reference [17], presented a staircase cleaning robot equipped with a tracked belt for
locomotion and a cleaning brush attached to the front side of the robot supports in climbing
up of staircase. In the aspect of autonomy in area coverage-based robots, Kim and Ryan
presented a navigation algorithm based on visual SLAM to achieve efficient area coverage
for the robots [18]. In Reference [19], Liu et al. introduced a novel coverage path planning
strategy for an autonomous cleaner, where they integrated local coverage path planning
and random path planning to achieve robustness and efficiency in coverage performance
to work in family environments. Implementing autonomous navigation for reconfigurable
cleaning robots has been an interesting topic in recent times. Le et al. [20] demonstrated an
A-star-based zig-zag global path planning approach for a Tetris-inspired self-reconfigurable
cleaning robot (hTetro). They further validated the presented approach to cover narrow
spaces leveraging the robot’s shape-shifting capabilities. In other works, Le et al. [6] and
Verra et al. [21] presented the idea of adapting tiling theory principles as a coverage path
planning strategy for autonomous navigation in Tetris inspired self-reconfigurable robot
hTetro. This robot platform is also applied in shortest path planning [5]. They further
validated the proposed approach with a set of experimental trials by varying obstacle den-
sity in the testbed environment and extended the platform morphologies to hexagon- [22],
diamond- [23], and rhombus [6]-based shapes. Regarding the optimal control for tilling
robot, Yuyao et al. [24] presented the idea of path tracking control of self-reconfigurable
robot hTetro with four differential drive units that address the synchronization issues of
linked tiling multi-blocks platforms.
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Another critical aspect of cleaning robots is to understand the surroundings and build
synergy with their surroundings. So, perception technique is an important aspect that
determines the robustness and overall efficiency of the robot. Maryam et al. [25] proposed
a CNN-based deep learning approach for a glass facade cleaning robot to detect cracks in
glass pane to avoid navigation on the cracked glass. The proposed trained CNN models
validated its performance with an accuracy of 90 percent in detecting cracks, while Seul
et al. presented a surface texture classification method for autonomous cleaning robots
using the Gray Level Co-occurrence Matrix. The proposed approach aids in optimizing
cleaning performance for different floor surfaces [26]. In References [27,28], the authors
proposed a vision-based Deep Learning (DL) framework to classify, detect and segment
the wall/floor surface to perform wall cleaning. The proposed framework is evaluated
on a Toyota Human Support Robot. Veera et al. [29] and Muthugala et al. [30] developed
the self-evaluating system to validate the cleaning efficiency using corrosion classification
deep learning-based model and fuzzy logic model.

While Al and perception techniques are popular in many domains and are an essential
aspect to improve the efficiency of the cleaning system, adapting to a multi-robot system
is another critical aspect in cleaning robots to improve productivity with fast cleaning
approach. Luo et al. [31] proposed a real-time cooperative sweeping strategy of complete
coverage path planning for multiple cleaning robots. This approach produces an efficient
path that allows robots to avoid collisions with obstacles and other robots and work
cooperatively, using biologically inspired neural networks. The approach focuses on
improving the efficiency of cleaning with multiple cleaning robots. Using swarm robots
by Megalingam et al. [32] is another approach in multi-robot systems to cover a large
area in less time by using multiple slave bots controlled by a master bot. In another work,
Kurazume et al. [33] developed a cleaning robot system with a cooperative positioning
system (CPS). The proposed system focuses on reducing localization errors by using
landmarks information from multiple robots in the CPS.

In the COVID-19 pandemic situation, other than frequent cleaning and sanitation of
the environment, following safe social distancing measures is also crucial to slow down
the virus’s spread. According to the Centre for disease control (CDC) for social distancing
measures, a physical distance of at least 6ft is necessary to be maintained between each
individual [34]. A survey study in Reference [35] indicated that adopting social distancing
measures in Spain has shown significant reductions in daily COVID-19 cases. To ensure safe
social distancing measures are appropriately followed, several practices are implemented
globally to avoid crowd gathering. For example, employing special officers in public
places to monitor the social distancing norms, limiting the maximum number of people
allowed in workplaces to restrict crowd gathering, installing safe distance signboards in
potentially crowded places [36,37]. However, monitoring and tracking safe social distancing
in potentially crowded places, such as hospitals, workplaces, shopping malls, public
transport stations, and schools, are quite challenging. Moreover, monitoring safe distance
measures is a manual process that can bring the surveillance staff in close proximity with
people affected by COVID-19. With the current COVID-19 pandemic, safe social distance
monitoring is seen as an emerging problem that employs robotics solutions. Exploring
human safe distancing surveillance can be studied under various aspects, including human
personal spatial zones, communication frameworks, and perception techniques. In the case
of safe social distance surveillance systems, one significant aspect that has been widely
studied is the idea of personal human space in the field of cognitive science. Based on
human interactions and interpersonal distances maintained between humans Hall et al.,
in Reference [38], classified personal spatial zone into three categories: public interaction,
social interaction, and intimate interaction.

For instance, Reference [39] presented the idea of using personal human space to
model social behavior in robots. The proposed model uses a personal space zone between
humans to determine the gap between the robot and humans while standing in a line. In
another research work, Reference [40] explores the idea of transferring human personal



Sensors 2021, 21, 2965

40f22

spatial zones to human-robot interactions. A critical aspect of social distance surveillance
is communication systems in cellular devices and wearable systems to track humans and
control gathering. In Reference [41], the use of UWB in lightweight wearable devices
to measure people’s distance is presented. It alerts the people if any person breaks the
safe distancing norms. Many countries have been taking the help of technology-based
solutions, such as wifi, cellular, and GNSS positioning (localization) systems, to monitor
and alert the social distance in public and crowded areas [42,43], while the exploration on
the use of drones and IoT-based technologies are gaining popularity for their applications
in monitoring crowd control and alert safe distancing between people [37,44]. Adopting
Al and other perception-assisted techniques to detect and track human interactions is
one viable approach to better perform safe social distance monitoring in dynamic and
indoor environments. For example, in Reference [45], a multi-sensor-based human tracking
algorithm is proposed. The proposed approach uses two detection layers where a laser
range scanner is used to detect human legs and a monocular camera to detect a human
face. Further, they fuse the data using an Unscented Kalman filter for human tracking.

Given a large number of applications in the domain of cleaning and safe social dis-
tancing surveillance, existing robotic innovations and technologies provide a wide range
of solutions to improve productivity and quality. Even though the works mentioned above
discuss various aspects of safe distancing surveillance and cleaning robots to improve
productivity and quality, they still are primarily limited with performance constraints due
to their application-specific design and their capability to handle one specific application.
This militates to the use of the different robots for each application. The major hurdles
in using individual robots to perform these tasks are that each robot requires expensive
and multiple sensors, communication frameworks, navigation hardware, and high-end
processors installed throughout the facility. To this end, this work mainly focuses on the
development of an intra-reconfigurable robot WASP with a virtually connected multi-robot
cleaning system. In this work, we present an adaptive cleaning method for the virtu-
ally connected multi-robot cleaning system. The cleaning system works in synergy with
the WASP platform’s surveillance module. The surveillance system’s role is to monitor
and identify the contaminated regions based on human interaction levels and generate
a zig-zag-based coverage path along with motion commands based on adaptive velocity
behavior models. Thus, the multi-robot systems proposed in this approach do not require
high computational resources and high-cost intuitive sensors for perception. The proposed
adaptive cleaning methodology algorithm is simulated in a MATLAB environment based
on the surveillance system’s actual test data. In this work, we evaluate the proposed clean-
ing strategy’s efficiency in terms of energy and time consumption. This paper is organized
as follows: Section 2 introduces the design of a Multi-robot cleaning system on WASP
robot. Section 3 presents the software system architecture of WASP and its multi-robot
design to handle multiple tasks. Section 4 discusses the Human safe distancing surveillance
module on the robot. Section 5 discusses the adaptive cleaning method in synergy with
the robot’s surveillance system. Section 6 validates the experiments and results conducted
under different map scenarios. Finally, Section 7 concludes this study and discusses future
research directions. This paper concentrates on the development of a safe social distancing
surveillance module on the platform to generate an adaptive velocity behavior model for a
multi-robot cleaning system.

2. Design of Multi-Purpose Service System

In this paper, we demonstrate the concept of multi-robot cleaning system on the
Intra-reconfigurable logistic platform WASP, as seen in Figure 1. The notion of the WASP
platform is to provide:

*  Logistics transportation of different kinds of trolleys that are available in hospital settings.

e  Safe distancing surveillance system to monitor the human interactions inside hospital
environment to control the spread of the virus.

e  Efficient cleaning and disinfection in the hospital environment.
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Figure 1. Design of WASP robot.

The intra-reconfigurability of the robot aims to handle logistics carrying operations
and safe distancing surveillance in hospitals, wherein the robot is capable of switching
between trolley lifting, trolley towing, and human safe distance monitoring applications.
The multi-robot system acts as a virtual extension to the WASP robot to handle cleaning
tasks based on the inputs from the human safe distance surveillance system. One of the
significant advantages of the WASP design is its intra-reconfigurability along with the
multi-robot system, which unifies the model of the robot. Therefore, instead of having
different communication frameworks and repetitive use of the same hardware units on
different robots” models, this design requires fewer resources.

2.1. Kinematic Motion Model

The locomotion unit of WASP robot is a four-wheeled mechanism drive system where
a series of free moving rollers are attached about the perimeter of the wheels with an
angle of 45 degrees. This meccanum wheel design enables the robot to perform motion in
X, and Y, direction and 6, rotation. With the meccanum wheeled drive mechanism, the
robot can move longitudinally and laterally, pivot around, and move towards arbitrary
direction without changing the orientation. This adds up more degrees of freedom for robot
locomotion and can perform logistics applications with smooth navigation even in narrow
spaces. For the multi-robot cleaning system, we consider the same mechanical features as
the WASP robot. This enables the cleaning system to achieve area coverage in zig-zag-based
path planning. Figure 2 describes the wheel configuration and posture definition of the
robot where the configuration parameters Veontieft, Vrontrights Voackrights Voackleft Specify the
corresponding velocity of the wheel of the robot. Parameters a and b are the distance
from the robot’s center in the corresponding x and y — axis of the robot frame. Based
on the research work done by Taheri et al., in Reference [46], the forward kinematic
Equations (1)-(4) and inverse kinematic Equations (5)—(7) of the robot can be written as:

W rontleft = %(le — vely + (a + b)wy), ¢y
W frontright = %(—Uely + velx + (a+ b)wy), 2)
Whackright = %(vely +vely + (a+ b)wy), 3)
Whackleft = %(—vely —vely + (a+ b)wy), 4)

where W trontiefts W frontrights Woackright Woackleft T€Present the corresponding angular veloci-
ties of each wheel calculated based on the command velocities vely, vely, wy received by the
robot, and r is the radius of each wheel.

Vi=1025x (Vfrontleft - Vfrontright + Vbackright - Vbackleft)r ®)
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Vy =0.25% (_Vfrontleft + Vfrontright + Vbackright - Vbackleft)/ (6)
Vo = 025/(“ + b) * (Vfrontleft + Vfrontright + Vbackright + Vbackleft)' @)

After calculating the velocity of the robot based on inverse kinematics equations,
Equations (8)—(10) are used to estimate the position of the robot relative to the robot
environment.

X = (Vy xcos (—0) — V, xsin (—0)) * &, 8)
Y= (Vyxsin(—6) — V, * cos (—0)) x5, )
0 =V * 6;. (10)

The estimated position and velocity of the robot are published in ROS topic as wheel
odometry messages.

Figure 2. WASP: Kinematic motion model.

2.2. Multi-Robot Design

In this paper, we propose the design idea of using the multi-robot system to handle
cleaning and disinfection tasks. In contrast with the fixed cleaning strategies in the works
proposed on the multi-robot cleaning systems [31,33,47,48], this work presents the design
idea of using a multi-robot cleaning system to perform adaptive cleaning and disinfection
of the environment based on the control commands from the main robot system, as shown
in Figure 3. For the ease of demonstration and proof of concept, we use a single sub
cleaning robot system to validate the concept of adaptive cleaning method in this paper.
For the cleaning system, we replicate the WASP robot’s mechanical design with extra
internal space to accommodate for cleaning modules on the robot. On the software side,
Robot Operating System (ROS) is used as the underlying software framework to enable the
data transmission and processing within the robot system to carry out the designated tasks
autonomously. The onboard Nvidia jetson computer is 8 core GPU processor and has 8GB
RAM that enables high-level processing.



Sensors 2021, 21, 2965

7 of 22

WASP-Surveillance

\

Wasp-Cleaning system

/

Adaptive velocity control .. 2
— ~.
ROS ‘
=
server Jh ' :
Position feedback | i I
\ ] |

Figure 3. WASP with cleaning subsystem.

In this approach, an adaptive cleaning strategy is developed to improve the cleaning
and disinfection performance by maximizing area coverage, able to identify contaminated
regions in the environment, and clean the environment by spending more time and increas-
ing the power of cleaning modules on the contaminated regions. The control commands
for the cleaning system are generated by the WASP platform after processing the heat
map generated from the surveillance module. The control model for the adaptive cleaning
is generated by adapting to zig-zag-based coverage path planning for maximum area
coverage. An adaptive velocity-based behavior model is integrated along with the path
generation to enhance the cleaning performance and efficiency by reducing cleaning time
and energy consumption. The WASP robot’s ROS framework establishes a virtual wireless
communication with the cleaning subsystems over the ROS server through wifi. The con-
trol signals generated from the WASP platform are published in a ROS node and exported
to the cleaning subsystem to perform the tasks through ROS client-server. The cleaning
system sends the position feedback to the WASP robot’s surveillance system to update the
position on the map.

3. Software System Architecture

WASP is an Intra-reconfigurable robot designed to handle logistics, safe distance
surveillance, and cleaning applications. The platform’s software system is categorized into
autonomous navigation, surveillance system, and multi-robot cleaning system, as shown
in Figure 4.

For the autonomous navigation of the platform, the robot is equipped with a 2D
laser scan range sensor, RGB-depth camera, and an Industrial grade IMU sensor. Robot
localization is one of the critical things required for stable and effective autonomous
navigation where the pose of the robot is estimated by the sensor fusion from wheel
odometry and IMU data through an extended Kalman filter. For dynamic and static
obstacle avoidance, the robot uses both local and global planners. While navigating, the
robot generates a global path to reach the goal position, and a local path is generated to
avoid dynamic obstacles in the environment by aligning towards the global path. For
the safe distancing surveillance system, an intel realsense RGB-depth camera is manually
connected on top of the WASP robot with the camera fixed at the height of 150 cm above
the ground level. The camera has a field of view of 120 degrees and is used for human
detection and tracking to monitor safe distancing. Based on the pose estimates of detected
humans and the overlapping of each human’s personal space zones, human interaction
levels are measured and plotted as a heat map on the grid map.
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Multi-Robot Cleaning System

For the case of a multi-robot cleaning system, the heat map generated from the
WASP robot’s surveillance module is processed to generate a motion trajectory. Figure 5
summarizes the Motion planner framework for the multi-robot cleaning system. The
motion trajectory generated for the cleaning system is based on the zig-zag area coverage
path planning. Along with motion trajectory generation, velocity control is also generated
based on an adaptive velocity behavior model. The velocity for the path is modeled based
on the generated heat map of the environment, where the velocity will be minimum at
the regions marked with high intensity on the heat map and maximum at regions marked
with low intensities. This approach ensures that the cleaning system spends more time
cleaning the contaminated areas based on the human interaction levels. The generated
control commands are sent to the cleaning robot through the ROS server over wifi, and, in
return, the pose feedback of the cleaning robot is sent back to the WASP platform to update
the next set of motion control commands.

Hll Human detection and
: Tracking

Safe Distancing

Surveillance System —
urvefiiance System Hll Heat map distribution

plotting

Motion trajectory
generator

Adaptive Cleaning
Model : Adaptive Velocity
Behaviour Model

Cleaning Sub-Robot :
System :

Figure 5. Motion planner framework for sub-robot cleaning system.
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4. Human Safe Distancing Surveillance Framework

The objective of the proposed framework for human detection and monitoring human
interaction levels is to ensure safe social distancing norms in public places to control the
spread of the virus during pandemic situations, especially with the ongoing COVID-19. As
the WASP robot has the intra-reconfigurable capability of lifting and towing the trolleys for
logistics applications and handle safe social distancing surveillance in large spaces, like
hospital settings, good and high-quality perception and navigation sensors are required.
Therefore, the robot is mounted with a RealSense D435 RGB-depth sensor as the perception
unit and Sick 2D lidars to collect the data from surroundings. In this work, we present
a vision-based perceptive framework for safe social distancing surveillance, as shown in
Figure 6. The first layer of the perceptive algorithm processes the image stream from an
RGB-depth camera and uses deep learning convolutional neural network to handle the
human detection tasks. The second layer further processes the detected human data along
with human position and orientation to estimate the interaction levels between them. The
third layer of this framework is to generate a heat map on a grid map by estimating the
cost accumulated in each grid cell based on detected humans and their interaction levels.
The detailed description of each layer of the perception framework is explained in the

/ OpenPose

DeepSORT p

Human Detection Layer -

following subsections.
Heat Map Generation\

Human Interaction Layer
Layer

_———

Figure 6. The block diagram of the vision-based framework for safe social distance surveillance.

4.1. Human Detection Layer

As surveillance is one of the keys that focuses on the software module used on this
robotic platform, we use visual feedback from an RGB-Depth sensor to detect and estimate
the human’s pose and position in the environment. The vision sensor publishes raw
color image topics and depth information through the ROS node. We further extend our
software framework with state-of-the-art external perception library OpenPose [49] as
an underlying layer on our system to carry out human detection and pose estimation
tasks. OpenPose is a framework used to accurately estimate human poses and realize
human tracking in real-time applications. It was developed using the VGG pre-trained
network model and using Caffe architecture. The pre-trained Openpose model can detect
25 joints for a human body, which is trained with COCO and MPII datasets to extract body
keypoint coordinates. Using Openpose ROS wrapper, we create a ROS node to subscribe
to the raw image and depth feedback topics published by the RGB-d camera node. The
pre-trained Caffe models are run in the background and matched against the camera’s
feedback to detect and estimate multiple humans with their poses and determine human
key nodes of the detected body parts in the image frame. Each image frame is processed
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here independently and therefore loses track of previously detected humans. So, on top
of this, we implement DeepSort [50] to track detected humans in the environment. For
each detection, tracking information of the human is generated along with the image
frames. If the detected humans disappear over the later frames, the older humans’ tracking
information is eliminated to avoid duplication after applying a threshold gap. Further,
a deep learning-based metric approach was used to quantify the association with the
Kalman states. In addition, the standard Hungarian algorithm was utilized to associate the
data efficiently. To track the human motion, the joint coordinates of the detected human
candidate are passed to deepSORT, and an id for each detected human is assigned to
perform motion tracking.

4.2. Human Interaction Layer

To measure interaction levels between humans, estimation of human attributes, like
shape and size, along with their position and orientation in the environment is crucial.
Oppose library gives 25 joints positions of the body in 3 dimension array. The first two
columns are the X and Y joint positions, while the third one is detection accuracy. We further
filter out the false detections based on the threshold accuracy for each detected joint. In this
work, we use the detected human'’s joint positions to measure the geometrical attributes
of a human. For example, the detected human width can be calculated by measuring the
distance between right and left shoulders from the skeleton joint array. Another essential
information required to measure the human interaction levels is to know the detected
humans’ position and orientation. The raw image frame from the RGB-d camera node,
which is used as input for Openpose, provides 2d image frames of detected humans
with coordinates of the detected humans. However, the coordinates (u,v) estimated are
concerning the pixel coordinates and changes within the space of the image frame. So,
the pixel coordinates from the raw color image frame further need to be transformed to
coordinates in the world frame for estimating human positions in the map of the robot
environment.

4.2.1. Transformation from Image to World Frame

The estimated pixel coordinates of detected key points of the person candidate are
transformed to World coordinate system using 3D depth information through backward
projection. When the robot navigates through the environment, the robot pose is estimated
by the particle filter algorithm to keep track of the transform from the global world frame
to the base link robot frame. The RGB-D camera used on the robot gives both depth
image information and RGB color information. The depth cloud provided by the camera is
nothing but an array of depth points, whereas the RGB color image comprises 3 channels
in each pixel of the image frame. We further transform the estimated 2D pixel coordinates
to a world frame using 3D depth data. The RGB color image frame is given as input
to the Openpose trained model for human detection on the image frame. The u and v
pixel coordinates of the detected human are extracted from the image frame and are taken
from the pixel position of the detected region on the image frame. The depth information
provided by the RGB-D camera provides an accurate depth estimate of the detected human
from the camera frame. To measure each detected human’s depth distance, an area of 10
x 10 from the center position of the neck is cropped, and the average of the depth from
each of the corresponding pixels of the cropped region is calculated. This average depth
distance d, is calculated from the Equation (11).

g — Lieadi
a
where () represents the total number of pixels in a predefined region, and d; is the depth
of each pixel. With u, v pixel coordinates of the RGB color image and depth data from the
depth image, we perform a transformation operation to estimate the detected human’s
position to the robot base frame. Calibration steps are done where the first step is to

(11)
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calculate the extrinsic and intrinsic calibration matrix. The extrinsic calibration matrix
specifies the transformation from world to camera coordinates, and intrinsic calibration pa-
rameters transform 3D image position to pixel coordinates. These parameters are calibrated
using the checkerboard method. The Realsense RGB-depth camera’s intrinsic parameters
estimate the focal length, fy, and fy, and the optical center, ¢y, and ¢y in intrinsic camera
parameters I. The extrinsic parameters of the RealSense camera refer to the estimation of
orientation that includes translation vector K and a rotation vector Q of the camera with
respect to world coordinates. The extrinsic matrix S can be derived from S = [QK]. With
the u and v pixel coordinates p and the depth value z, we can convert the pixel coordinates
from the image plane to real-world coordinates W using the Equation (12).

p=1Ix[QK]*P =1%Sx%P. (12)

where P, p are world coordinate and pixel coordinate, respectively. Further, by using the
ROS of transformation package [51], the transformation from the camera frame is then
translated to the base link, the reference frame for the center of the robot. The frame
lookup transform creates a reference frame for detected humans and links their position
coordinates to the map frame.

4.2.2. Estimating Orientation Angle of the Detected Humans

We calculate the orientation angle of the human by incorporating the depth infor-
mation z and x coordinate positions of both the right and left shoulders of the detected
human. Using the Equation (13) below, we estimate the angle in the clockwise direction
of the human from the detected right and left shoulder joints” positions. Note that the
(x7,27), (x],2]) are the coordinates in (x, z) plane of right shoulder joint and left shoulder
of detected human, respectively.

angle = atan2(|z; — zj|, |x; — x7|) x 180/ . (13)

However, the orientation angle estimated from the detected shoulder position gives
only the rotation angle in an interval of 180 degrees and not the human heading angle. To
estimate the human heading angle, we use the detection of key points on the human face
to measure the heading angle. If in a case of failure to detect a joint, the OpenPose library
will automatically fill a value "0’ this joint among 25 joints. This behavior is to detect the
direction because if the person is heading in the same direction as the camera, it will fail to
recognize the human face features, and Thus, there will not be any joint detected on the
face. Taking this as a reference for heading direction, the orientation angle estimated can
be +180 or +0. Thus, the equations can be modified as (14), in which 0 degree means facing
opposite with the camera.

If joint-nose exist:

angle = (atan2(|z; — zj|, |x; — xj|) x 180/ ) + 180, (14)
else: angle can find by Equaiotn (13).

4.3. Heat Map Generation

The last step of this framework is to generate a heat map distribution based on the
personal human space and their interactions with other people. One important aspect of
estimating human interaction levels is individual human personal space. In this work,
we are particularly interested in the personal space zone that people maintain around
themselves. Numerous researches have shown how the shape and size of personal space
changes based on human activities, like walking, sitting, and engaging in face-to-face inter-
actions [52,53]. The approximate shape of personal space varies from one person to another,
depending on their geometrical attributes. With the idea of personal space, we approximate
a cost function based on asymmetrical Gaussian distribution defined in Reference [54] for
personal human space to account for their interactions and their geometrical attributes.
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Equation (15) refers to the asymmetric Gaussian distribution function used to generate a
heat map of personal space in considering the points in (x, z) plane.

f(x, Z) _ exp—(u(x—zc)z—l—Zb(x—xc)(z—zc)+c(z—zc)2); (15)

the shape of human personal space is formed by changing the variances of distribution
in 3 standard deviaion directions 0y, 0y, and o frontal, rear, and side spaces, respectively,
along with the human heading angle in a Gaussian distribution function. The mean of
the distribution is estimated based on the centre coordinate of the detected human in the
environment. The algorithm 1 below explains the implementation of asymmetric Gaussian
distribution. The coefficients 4, b, c in Equation (15) can be derived by the Algorithm 1.

Algorithm 1: Asymmetric Gaussian-based-heat map generation

1:find: & + atan2(z —z¢, x — xc) — 0+ 7/2

2: Normalize(a)

3: a4+ (cosh)?/(202) + (sinf)?/(202)

4: b+ sin(20)/(40%) —sin(26)%/(402)

5: ¢« (sinf)%/(20%) + (cosh)?/(202)

6 : return (exp(—(a(x — xc)? +2b(x — x.)(z — z¢) + c(z — 2z¢)?))

Plotting in Grid Maps

The occupancy grid map of the environment is discretized into grid cells with each
cell of size 0.05 x 0.05 m. Each cell is assumed to have values ranging from 0 to 1 based
on the Asymmetric Gaussian distribution model for human density and interaction levels.
The map in the figure shows the environment’s structure where every black pixel shows
the space occupied by obstacles, and the white pixel represents the free space in the
environment. The other colors in the grid cells show the human-occupied space with
the intensity of the distribution ranging from 0 to 1. The maximum peak value of the
distribution is represented with the red pixel, and the minimum value in the distribution is
represented with the blue pixel on the grid-based heat map. So, the distribution intensity is
represented as a variation in the heat map color. For the case of multiple people standing
closer, the distribution values will be accumulated over the grid space and are normalized.
So, the regions that are overlapped by the spatial zones of multiple persons will have
a peak value of the grid cells, representing an area of highly contaminated space. The
tracking id of the detected human is stored in the memory. While navigating, if the robot
detects a person, an id will be created for the person, and if the same id is detected again
on the same position of the grid space, the heat distribution is not generated. The new
distribution is generated if the new id appears or the tracked id moves to different grid
cells. The generated distributions are accumulated on the grid-based heat map. The heat
map density on the distribution is estimated based on the level of interactions between
humans.

5. Adaptive Velocity Model

The WASP platform, being the brain/master unit of this system, processes the heat
map generated from the surveillance module to generate an adaptive velocity behavior
model based on a zig-zag path planner for the cleaning system. The heat map distribution
result is used as input to the velocity behavior model for disinfection robots to efficiently
clean the areas having peak values on the generated heat map. The robot calculates the
velocity with which the robot should traverse to sterilize the environment efficiently. The
higher the heat map’s value, the slower it to disinfect the region. On the other hand,
the conventional cleaning systems use a uniform velocity model; thus, there are chances
of leaving the regions uncleaned. So, this work demonstrates the implementation of an
adaptive velocity behavior model based on both linear and non-linear functions to evaluate
the performance of cleaning in terms of energy and time consumption with respect to the
heat map distribution values.
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5.1. Linear Function

To model linear adaptive velocity behavior function, we use parameters, such as
maximum velocity and minimum velocity, required for the cleaning robot to clean and
the probability of the contaminated grid cell. For this approach, we considered maximum
velocity to clean the environment as 0.2 m/s and minimum velocity to clean the peak con-
taminated regions as 0.05 m/s and modeled a linear equation, as shown in Equation (16).

Ocell = (*0'15 * p(zcell) + 0'2)/ (16)

where v, is the velocity of the robot in the particular cell, and P(z.,;) is the probability of
the cell region being contaminated.

5.2. Non-Linear Function

Similar to the linear function approach, we model the non-linear adaptive velocity
behavior model by considering a maximum velocity of 0.2 m/s and minimum velocity
greater than 0 m/s to clean the environment. We considered two non-linear functions
based on tanh and sigmoid function to multiply with the linear function in Equation (16) to
add non-linearity to the velocity behavior model. Equation (17) is the non-linear adaptive
velocity behavior model based on tanh function with maximum velocity of 0.2 m/s and
minimum velocities of 0.0119 m/s. Equation (18) is based on the sigmoid function with
maximum velocity of 0.2 m/s and minimum velocities of 0.0268 m/s.

Vcet1 = (—0.15 % P(2zgeny) +0.2)) * (1 — tanh(zeenr)), (17)
1
Ocell = m * 2(70'15 * P(Zcell) + 0'2))' (18)

Based on the velocity models, we further implement zig-zag-based path planning
strategy to perform selective cleaning over the contaminated regions by inducing more
cleaning power and low velocities, unlike the other conventional cleaning robots. We
evaluate the proposed adaptive velocity behavior model and path planning strategy with
respect to time consumption and energy conserved.

6. Energy Consumption Estimation Model

The energy consumption during the area coverage for the virtually connected floor
cleaning system is directly related to the navigation trajectory and adaptive velocity behav-
ior model generated by the WASP platform. To calculate the total energy consumed based
on the motion control function generated by the adaptive velocity behavior model, we
measure the energy consumption for a series of robot actions encountered during cleaning.
We use the battery management system on the robot to record the current reading of the
robot for each action performed by the robot. Figure 7 shows the robot’s current readings
for the robot in forward and backward motions in the X — axis with their respective linear
velocities Vx. Similarly, Figure 8 displays the current readings of the robot for left and
right directional motions in the Y — axis with linear velocities V. We approximate the
relationship between the current readings and the robot velocities using linear functions as
in (20)-(21) where I is the current consumed.

I= 0.1‘241 +1.441 (Forward motion), (19)

I= mi: +1.441 (Backward motion), (20)
0.1352

I= 0.11yS6 +1.58 (Rightward motion), (21)

I=-0.1248 +1.754 (Leftward motion). (22)

0.1248
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This linearly approximated energy vs velocity equation is used to estimate the total
energy consumption for the proposed adaptive velocity behavior model.

Forward motion in X direction
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Figure 7. Relation between Current consumption and Linear Vx for the cleaning robot.
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Figure 8. Relation between Current consumption and Linear Vy for the cleaning robot.

Table 1 summarizes the energy consumption for each robot’s actions with correspond-
ing velocities. The measured energy values for the corresponding velocity of the robots are
approximated by a linear distribution. Further, for the cleaning module’s energy consump-
tion on the robot, we considered the use of vacuum powered suction unit rated at 12 V and
5 A with 6500 Pa pressure.

Table 1. Energy consumption.

Voltage Rate(V) Rated Current(A)

Forward Motion 48 (ﬁ/ﬁ +1.441
Backward Motion 48 omads + 1441
Rightward Motion 48 01‘/7{86 +1.58
Leftward Motion 48 —0.1248 ;1 + 1.754

Vacuum Unit 12 4.5

Based on each robot action’s energy consumption, we estimate the robot’s total energy
consumption in the experiments and results section for each function model based on
adaptive velocity behavior functions.

7. Experiment, Results and Discussion
7.1. Experimentation

In this work, the algorithms implemented to solve the performance issues of area
coverage path planning on the minimization of time and power consumption of cleaning
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robots are validated. As part of this research work, we evaluated the WASP cleaning
robot’s performance in MATLAB simulation and validated the proposed adaptive velocity
behavior model for cleaning by organizing experiments under four different scenarios.
We used different map environments for each scenario and conducted experiments by
gradually increasing human density and interaction levels for each scenario. The total grid
space for each map environment is defined with a resolution of 0.05 m. The generated
occupancy grid map is decomposed into a mesh-grid with each cell of size 0.05 m. After
performing human detection and estimating interaction levels, the heat map is generated,
and the values are plotted on the map’s grid cells. The values accumulated on each grid
cell range from 0 to 1, depending on the human interaction levels. With the generated heat
map distribution on the grid cells, the robot produces an adaptive velocity behavior model
to navigate and perform area coverage for scenarios I to IV. We compare the adaptive
velocity behavior model results using the linear function and non-linear functions (tanh
and sigmoid) with a uniform velocity behavior model similar to conventional cleaning
robots. We validated the experimental results by simulating the Adaptive velocity behavior
model with time consumption and energy consumption on the WASP cleaning platform.
For scenarios I-1V, the experiments were run on a predefined workspace with dimensions
and number of persons as listed in the Table 2.
Figure 9a—d represents the maps of the environments for scenarios I to IV.

—m
e Y =

c
Figure 9. Generated occupancy grid maps of the work space environments for scenarios I to IV.

Table 2. Experimental Testbed.

Scenarios Dimensions(Metres) Total Number of Humans in the Testbed
Scenario I 53 x5 4
Scenario II 5.7 x 3.7 7
Scenario III 27 x 20 8
Scenario IV 135 x 9 11

7.2. Results and Analysis

The experimental trials were initiated by running the robot in the testbed environment
to monitor the human interactions and safe distancing. The robot generates a heat map
concerning the camera frame and records the detected humans’ pose. This data is then
processed in Python to perform the transformation from camera frame to map frame and
generate heat map plotting on grid map, as shown in Figure 10a—d.

The second phase of experimental trials was simulated in MATLAB software to
generate an adaptive velocity behavior model for a zig-zag-based area coverage approach.
Figure 11a illustrates the area coverage path planning generated for scenario I with uniform
velocity model, and Figure 11b illustrates the area coverage path planning for scenario I
with Adaptive velocity behavior model. The path with green color indicates the regions
where the robot navigates with maximum velocity. The red color path indicates the regions
with lower velocities to spend more time cleaning the contaminated regions.
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Figure 10. Heat map distribution plotted on the grid maps for scenarios I to IV based on the human
interactions.
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Figure 11. Zig-zag-based area coverage path generated for scenario I.

The estimated time taken to cover the region with a uniform velocity model with a
velocity of 0.15 m/s is around 712.3 s. The energy consumption for the entire area coverage
process for the conventional cleaning method is 1.4958 Ah of the total battery capacity of
36 Ah. Figure 12a—c shows the plot between velocity and grid cell position on the map for
the case of adaptive velocity behavior model with linear, tanh, and sigmoid functions. The
results validate that time taken to cover the area for the scenario I is less for the adaptive
velocity behavior model based on the sigmoid function, and the energy consumption is
almost similar for all three adaptive velocity functions. The lowest energy consumption
reading is recorded for the sigmoid-based behavior model with 1.1804 Ah, which is 3.27
percent of the total battery capacity.
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Figure 12. Adaptive velocity behavior model with linear, tanh, and sigmoid functions with velocity
corresponding to the grid cells of the map for scenario I.

Similarly, for scenario II, we increased the number of humans interacting inside the
testbed environment. After completely monitoring the human interactions in the defined
space using the surveillance module, the generated heat map is processed to generate
an area coverage path plan for both uniform and adaptive velocity models, as shown in

Figure 13.
Path without Adapti ity Behaviour Path-planning with Adaptive Velocity Behaviour
— 200
180 <~> Detected Humans <C__> Detected Humans
Velocity=0.15mis _ 180 Velocity=0.2m/s
- T 3 Velocity<0.2m/s
160 1 2 5 4 -
1 _— < 160 :
> ‘
e
140 5 1 140
2 o 0
% 120 [ oo o % 120
> k L P >
R 100
100F ¥ 1
\ 2
E—— 80
80
- B oé};’ﬁ s €0
60 o<
Total Time: 497 s | & o O 40
60 70 80 9 100 110 120 130 140 150 160 60 80 100 120 140 160
X axis X axis
a

Figure 13. Zig-zag-based area coverage path generated for scenario II.

With uniform velocity model, the estimated time for area coverage is 497 s and the
estimated energy consumption for the cleaning task is 1.0436 Ah, which is 2.89 percentage
of the total battery. Figure 14a—c illustrates the plot between velocity and grid cell position
on the map for the case of adaptive velocity behavior model with linear, tanh, and sigmoid
functions.
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Figure 14. Adaptive velocity behavior model with linear, tanh, and sigmoid functions with a velocity

corresponding to the map’s grid cells for scenario II.

With the experiments in scenarios III and IV, we considered a larger testbed of dimen-
sions 27 x 20 and 13.5 x 9 m, respectively. Moreover, the increased number of humans in
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the space (8 in scenario Il and 11 in scenario IV) to validate the efficiency of the proposed
adaptive velocity behavior model. Figures 15 and 16 show the area coverage path plan for
both uniform and adaptive velocity behavior models for scenarios III and IV.
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Figure 15. Zig-zag-based area coverage path generated for scenaio IIIL
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Figure 16. Zig-zag-based area coverage path generated for scenario IV.

Figures 17 and 18 illustrate the adaptive velocity model plot with grid cell position
for scenarios IIl and IV. Even though human interaction levels and map dimensions are
increased, the robot can still achieve area coverage with less time frame and less energy
consumption while using the adaptive velocity behavior model. The experimental results
are summarized in Tables 3 and 4 for time and energy, respectively , which indicates that
the robot could perform cleaning faster using the adaptive velocity model, especially with
sigmoid function.
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Figure 17. Adaptive velocity behavior model with linear, tanh, and sigmoid functions with velocity

corresponding to the grid cells of the map for scenario III.
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Figure 18. Adaptive velocity behavior model with linear, tanh, and sigmoid functions with a velocity
corresponding to the grid cells of the map for scenario IV.

Table 3. Total estimated time (in seconds) for each scenario under various models.

Scenarios Uniform Model Tanh Function Linear Function Sigmoid Function
Scenario I 7123 s 547.4 s (1 23.1%) 537.91 s (| 24.48%) 536.01 s (| 24.74%)
Scenario II 497 s 390.08 s (] 21.51%) 378.38 s (| 23.86%) 375.26 s (] 24.49%)
Scenario III 5550 s 4186 s (| 24.57%) 4169.5s (| 24.8%) 4165.8 s (| 24.94%)
Scenario IV 1743 s 13499 s ({ 22.5%) 1318.8 s (| 24.3%) 13129 s ({ 24.6%)

Table 4. Total estimated energy consumption for each scenario under various models (in percentages with total battery

capacity of 36 Ah ).

Scenarios Uniform Model Tanh Function Linear Function Sigmoid Function
Scenario I 4.15 3.33 (] 19.7%) 3.28 (] 20.9%) 3.27 (] 21.2%)
Scenario II 2.89 2.36 (| 18.33%) 2.3 (] 20.4%) 2.28 (1 21.1%)
Scenario III 32.37 25.59 (] 20.9%) 25.51 (J 21.19%) 25.48 (] 21.28%)
Scenario IV 10.16 8.21 (1 19.19%) 8.05 ({ 20.76%) 8.02 ({ 21%)

8. Conclusions

This paper presents a novel multi-robot-based adaptive cleaning model in synergy
with the human interaction heat map generated by a human safe distancing surveillance
system on WASP intra-reconfigurable robot. This cleaning methodology is demonstrated to
sterilize large space environments, like hospitals, shopping malls, or high-rise construction
buildings, in response to the global pandemic caused due to the COVID-19. We introduced
the mechanism design and software modules of the WASP robot and successfully demon-
strated the ability to handle a safe distancing surveillance system along with a multi-robot
cleaning method. In addition, we introduced adaptive velocity behavior models based on
linear and non-linear functions to compare the cleaning performance with the uniform
velocity model used in conventional cleaning robots. Experiments were performed in
four different map environments by gradually increasing map size and human density to
evaluate the performance of the proposed zig-zag path-based adaptive cleaning approach
in terms of time and energy consumption. In all the experimental scenarios, the adaptive
velocity behavior model based on the non-linear sigmoid function has shown superior
cleaning performance in energy and time consumption. Moreover, the results using linear
function it is similarly to results based on sigmoid function. In future works, we aim to
implement the proposed adaptive cleaning approach for different coverage path planning
algorithms and demonstrate the real-time cleaning performance on multi-robot cleaning
systems.
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