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Abstract

Acute skin rejection in vascularized composite allotransplantation (VCA) is the major obstacle for wider adoption in clinical
practice. This study utilized computational modeling to identify biomarkers for diagnosis and targets for treatment of skin
rejection. Protein levels of 14 inflammatory mediators in skin and muscle biopsies from syngeneic grafts [n = 10], allogeneic
transplants without immunosuppression [n = 10] and allografts treated with tacrolimus [n = 10] were assessed by
multiplexed analysis technology. Hierarchical Clustering Analysis, Principal Component Analysis, Random Forest
Classification and Multinomial Logistic Regression models were used to segregate experimental groups. Based on Random
Forest Classification, Multinomial Logistic Regression and Hierarchical Clustering Analysis models, IL-4, TNF-a and IL-12p70
were the best predictors of skin rejection and identified rejection well in advance of histopathological alterations. TNF-a and
IL-12p70 were the best predictors of muscle rejection and also preceded histopathological alterations. Principal Component
Analysis identified IL-1a, IL-18, IL-1b, and IL-4 as principal drivers of transplant rejection. Thus, inflammatory patterns
associated with rejection are specific for the individual tissue and may be superior for early detection and targeted
treatment of rejection.
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Introduction

Rejection in Vascular Composite Allotransplantation (VCA) is

characterized by an inflammatory cell-mediated cytotoxic process,

which progressively harms the epidermis and the junction between

dermis and epidermis, unless reversed or prevented by immuno-

suppression. Understanding the immune signaling patterns of skin

rejection would enable the development of targeted and local

therapy with fewer side effects.

The current gold standard for the diagnosis of rejection is

histological evaluation of tissue biopsies according to the BANFF

2007 working classification [1]. Assessing rejection by histology

suffers from latency between initiation of tissue damage and

diagnosis. Often, histological signs of skin rejection have been

found in protocol biopsies despite absence of clinical signs of

rejection. As stated previously by our group and others, the

histopathological alterations associated with rejection are not

specific, but rather similar to several common inflammatory

dermatoses [2,3] or the result of an inflammatory trigger [4]. The

differential diagnosis between skin rejection, infection and

unspecific inflammation can be challenging in hand- and

especially face transplantation. The conditions are similar in their

appearance and may interfere with or trigger each other [5].

Traditional methods are of limited value for elucidation of how

the immune/inflammatory response in the skin affects VCA

through intricate signaling patterns and context-dependent

behaviors. Advanced computational methods such as language

technologies and machine learning offer significant advances in

deciphering complex processes from other areas of science [6,7].

We hypothesized that mechanisms of rejection in VCA are

tissue specific and can be detected in advance of gross histological

damage by assessing leukocyte expression patterns with advanced

computational tools. Based on our findings, promising diagnostic

markers for skin and muscle rejection as well as possible targets for

new therapeutic interventions in VCA have been identified.

Methods

Experimental design
All animal procedures, care, and housing were reviewed and

approved by the Institutional Animal Care and Use Committee
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(IACUC) of the University of Pittsburgh (protocol number:

0808858B-2), and followed the National Institutes of Health

guidelines for the care and use of laboratory animals. A summary

of the cohorts and the conditions they represent are presented in

Table 1. Limb transplantations including skin, muscle, bone and

vessels, were performed as per a standardized technique between

eight- to ten-week-old male Brown-Norway (BN) and Lewis rats

(LEW) weighing 200–250 g with (group 3) or without (group 1)

immunosuppression and compared with untreated isografts (group

2) [8]. Animals were anesthetized with a combination of xylazine

(Xylasol, 5 mg/kg) and ketamine (Ketavet, 100 mg/kg), injected

intramuscularly.

Assessment of rejection
Animals were inspected daily for signs of rejection. Skin

rejection was classified per appearance: Grade 0 – no signs of

rejection; Grade I – erythema of the transplanted leg, Grade II –

erythema and edema, Grade III – epidermolysis of the

transplanted skin, Grade IV – mummification of the leg (limb

necrosis). In untreated animals (allografts, ATC), rejection occurs

after 3-4 days (Grade I rejection) and progresses to Grade IV

rejection between day 9 and 11. Samples from allograft skin and

muscle were collected at postoperative days (POD) 3, 5, 7, 9 and

11 in all three groups in a staggered fashion. To out rule an impact

of the trauma an the readout of subsequent tissue samples, biopsies

were taken from sites distant to another on days 3, 5, 7 and 11, or

days 5, 9 and 11 (see Table 2). Since all animals showed

mummification of the graft on POD 11 with super infection in

some, samples from this time point were excluded from the study.

The size of each tissue biopsy per chosen time point was

approximately 25610 mm. This tissue sample was divided into 3

identical parts for further analyses. One biopsy part (piece) was

fixed in 10% buffered formalin and processed routinely for

hematoxilyn and eosin (H&E) staining. Sections were evaluated for

lymphocytic infiltration, dermal/epidermal interphase reaction,

dermal-epidermal separation and necrosis by a pathologist in a

blinded fashion. The other biopsy parts were preserved in

RNALater for protein analysis and RNA isolation.

Protein isolation and protein expression analysis
Proteins from skin and muscle samples were isolated using a

disperser (T10, basic ULTRA-TURRAX, IKA, Germany) with

1 ml 1 x Cell Lysis Buffer (Cell Signaling, Danvers, USA) per

sample on ice. Proteins were quantified after homogenizing using

the BCA Protein Assay Kit according to the manufacturer’s

protocol.

Inflammatory mediator expression at the protein levels was

measured using the Luminex inflammatory mediator bead set

(RCYTO-80K-PMX-14-plex Milliplex Map Kit from Millipore,

Billerica, MA) that included interferon (IFN)-c, IL-1a, IL-1b, IL-2,

IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-18, monocyte chemotactic

protein (MCP-1), GRO/KC, TNF-a, and granulocyte-macro-

phage colony stimulating factor (GM-CSF) in a Luminex 100 IS

(Luminex Corporation, USA) and analyzed by xPonent 3.1 Rev.2

Software (Luminex Corporation, USA). Results for each of the 14

analytes were read in pg/ml and subsequently normalized to total

mass of sample protein (pg inflammatory mediator/mg protein) by

multiplying with 0.025 ml standard sample volume and dividing

with 0.1 mg added total protein for each sample. Any analytes

indicating a concentration above 20,000 pg/ml were excluded

from analysis (NA) as being outside the linear range of the

Luminex assay. T
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Statistical and computational analysis
Analyses were performed with the statistical framework R

2.13.1 using packages including stats, nnet, multtest, MASS, beeswarm,

randomForest. The non-parametric Kruskal-Wallis test was used to

compare mediator abundance among groups 1-3 (ATC, ISO,

TAC) at POD 3/POD 5. The Wilcoxon rank-sum test was used to

identify the tissue levels of those mediators whose levels varied

significantly between animals exhibiting rejection (ATC) and

animals treated with tacrolimus to prevent rejection (TAC) in the

early postoperative phase (POD 3/POD 5), as well for selected

inflammatory mediators at POD 3. All p-values were adjusted for

multiple hypothesis testing based on the false discovery rate (FDR)

[9].

The multivariate extension of the one-way analysis of variance

(MANOVA) or the discriminant function analysis (based on the

same formulation as MANOVA with inflammatory mediators as

independent variables and the rejection group as dependent

variable in the latter case) are used to determine the coefficients of

the two orthogonal discriminant vectors (DV), which enable

maximal separation of the groups. As a measure of contribution to

these vectors for each mediator, the sum of the absolute values of

the respective coefficients (loadings) were used and related to the

overall sum. Pillai’s trace statistic was used to test for the

differences in the vectors of means. The mediators showing

significant differences among the 3 groups and with .2.5%

contribution to the DVs in both skin and muscle were subjected to

multinomial (logistic) regression analyses. A model for skin and one

model for muscle were selected based on minimal Akaike

information criterion [AIC]. Classifier performance was assessed

using a 8-fold cross validation procedure and visualized using

confusion tables. Accuracy was defined as 1- misclassification rate

and Welch’s test was used to test the differences between the mean

of the number of true predicted and the mean of the sum of the

respective number of false predicted.

To assess similarity of inflammatory mediator levels among

different time points and tissue types, complete-linkage hierarchi-

cal clustering was performed and visualized as heat map using

Genesis [10] based on mean-centered log2-transformed profiles.

For this analysis, the mean value for each group and mediator was

used.

A Random Forest (RF) [11] approach was used for classification

of the rejection group (ATC, ISO, TAC) including all time points.

This method was also used to identify those mediators most

important for classification or diagnosis. Classifier performances

were assessed by confusion tables and the out-of-bag (OOB) error

rate. Principal Component Analysis (PCA) was used to rank most

variable (important) mediators and potential therapeutic target

candidates [12]. PCA reduces a multidimensional dataset to a few

principal components, which account for the most variability in

the dataset. The underlying hypothesis is that a mediator which

changes during a process is important to that process [12,13]. In

this analysis, the data were combined from skin and muscle, mean

centered, and variance scaled. Components sufficient to capture at

least 70% of total data variance observed were included.

Results

Progression of rejection
Appearance. On postoperative day (POD) 3, none of the

allografts (n = 10) showed signs of rejection, on POD 5, 50% of the

allografts displayed Grade I rejection and 5 animals (50%) II

rejection. On postoperative day 7, rejection Grade II was present

in 7 animals (70%) and rejection Grade III in 3 animals (30%). On

day 9, 4 animals displayed Grade III rejection and 6 animals
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Grade IV. None of the syngeneic controls or tacrolimus treated

animals showed any signs of skin rejection/inflammation (Table 2).

Histological evaluation of skin biopsies. Histological

evaluation of allograft skin biopsies on day 3 showed no or

minimal inflammatory infiltrates (Grade 0) in six animals and a

mild perivascular infiltrate (Grade I) in one biopsy. No tacrolimus-

treated animals showed any signs of rejection while a mild

perivascular infiltration was seen in one of the syngeneic control

animal. On POD 5, biopsies from allogeneic transplants displayed

Grade I rejection in three animals, as well as a moderate to severe

perivascular inflammation with or without mild epidermal and/or

adnexal epidermal dyskeratosis or apoptosis (Grade II) in three

animals. One biopsy taken from the allogeneic group showed a

severe skin rejection (Grade III), with dense inflammation and

epidermal involvement with epithelial apoptosis, dyskeratosis and

keratinolysis on POD 5. No inflammatory response was observed

in isografts on POD 5, but two out of five biopsies in the

tacrolimus treated animals did show an inflammatory infiltrate.

On POD 7, allogeneic animals showed Grade III rejection and,

one skin biopsy taken from the isograft group and one from the

tacrolimus group displayed a moderate inflammation correspond-

ing with Grade I/II rejection. At the endpoint, all samples from

allografts showed rejection Grade III and one biopsy (n = 5) taken

from the isografts displayed the characteristics of Grade I

rejection. Two out of five biopsies in the tacrolimus group showed

a mild rejection (Grade I) and one biopsy was classified as Grade II

rejection (Table 3 and Figure 1).

Histological evaluation of muscle biopsies. H&E stains

from allograft muscle samples showed no or rare inflammatory

cells on POD 3 in four biopsies and Grade I rejection in two

biopsies. Muscle biopsies from syngeneic controls showed a mild

infiltration in two biopsies, severe inflammation similar to rejection

Grade II in one graft, and no inflammatory response at this time

point in two animals. On POD 5, two biopsies from the allogeneic

transplants were classified as Grade 0 rejection, three samples as

Grade I and one muscle biopsy as Grade II rejection, four biopsies

from the isografts showed no or rare inflammation and only one

sample a mild inflammation.

On POD 7, all biopsies (n = 5) from allografts displayed Grade I

rejection and only one biopsy from an isografts showed a mild

muscle inflammation on both day 7 and 9. Allograft muscle

biopsies on day 9 showed rejection Grade I (n = 1, Grade II (n = 2)

or Grade III (n = 2). Tacrolimus treated animals did not show any

signs of rejection except for one animal displaying mild

inflammation in the muscle on POD 9 (Table 4 and Figure 1).

Significant differences of inflammatory mediator levels at
early postoperative time points among the different
transplant models

We examined the levels of 14 inflammatory analytes in skin and

muscle biopsies of allogeneic, syngeneic and immunosuppressed

hind limb transplants at different postoperative days (POD 3, 5, 7,

and 9) with a focus on the early postoperative phase where no

histological alterations were observed (POD 3 and 5, Figure 2 and

Figure S2). Non-parametric univariate analysis of the inflamma-

tory mediators from skin and muscle were performed. Five

inflammatory mediators (GM-CSF, IL1-a, IL-4, IL-12p70, IL-5,

TNF-a) were significantly different at least in one group (adjusted

p,0.05; Kruskal-Wallis test [KW]) in both skin and muscle. IL-

12p70 and TNF-a were highly significantly different in the

allograft versus the tacrolimus-treated animals (adjusted p,0.005;

Wilcoxon-rank sum test [WR]; Table 5).

In Figure 2, the levels of the concentrations of these

inflammatory mediators at POD 3 of all three groups within skin
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and muscle are depicted. Significantly higher concentrations of IL-

12p70 in the skin from the allograft animals compared to the

tacrolimus-treated animals (adjusted p = 0.026) as well as lower

abundance of TNF-a in the allogeneic compared to the

immunosuppressed transplants (adjusted p = 0.026) were detected.

In muscle, numerical differences did not reach statistical signifi-

cance (adjusted p = 0.056 in both cases).

For identification of inflammatory mediators with the highest

predicting value, at early time points, multivariate analyses were

performed. We fitted multivariate analysis of variance (MAN-

OVA) models which resulted in p = 8.9610210 for skin and

p = 3.461025 for muscle from Pillai’s trace statistic. Using these

models, a functional discriminant analysis was performed.

Mediators with the greatest absolute coefficients in the two

Figure 1. Histological evaluation of skin and muscle rejection in the early postoperative phase (POD 3 and 5). (A–C) Skin sample taken
on POD 3 from an allograft without immunosuppression (A), from an isograft (B) and an allograft under TAC (C) showing no/rare inflammatory
response (Grade 0 rejection). (D–F) Skin biopsies taken on POD 5 from a rejecting animal (D) displaying Grade 1 rejection, from an isograft (E) showing
no/rare inflammatory response and a TAC treated allograft (F) characterized by a mild inflammatory response (Grade 0-I) in the deep dermis. (a–c)
Muscle sample taken on POD 3 from an allograft without immunosuppression (a), from an isograft (b) and an allograft under TAC (c) showing no/rare
inflammatory response (Grade 0 rejection). (d–f) Skin biopsies taken on POD 5 from a rejecting animal (d) displaying a mild inflammatory response
(Grad 0-I rejection), from an isograft (E) and a TAC treated allograft (f) showing no/rare inflammatory response.
doi:10.1371/journal.pone.0099926.g001
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resulting discriminant vectors might contribute most to the

separation of groups (Table 5). The partition to the discrimination

vectors for GM-CSF, IL-4, IL-12p70, IL-5, and TNF-a were .

2.5% in both tissues. We selected these inflammatory mediators as

promising biomarkers candidates for further analyses.

Inflammatory mediators at early time points discern the
procedure to which animals were subjected

A major goal of this study was to determine markers for early

and accurate diagnosis of skin rejection in advance of major

histological alterations. We applied several multivariate multino-

mial logistic regression models in skin and muscle samples for the

classification of the three study groups at early postoperative time

points (POD 3 and POD 5) using a combination of the selected

inflammatory mediators (GM-CSF, IL-4, IL-12p70, IL-5, and

TNF-a) as independent variables and study group as outcome.

Based on the Akaike information criterion (AIC), which is a

measure of the trade-off between the complexity of the model, i.e.

number of variables, and the goodness of fit, optimal models for

differentiation of the study groups could be found in skin rejection

(based on IL-4, IL-12p70, and TNF-a: AIC = 16.0; residual

deviance = 1.761024) and in muscle (based on IL-12p70 and

TNF-a: AIC = 12.0; residual variance = 1.661024). The coeffi-

cients of the inflammatory mediators in the logistic regression

models and classifier performance as assessed by 8-fold cross

validation are detailed in Table 5. The prediction accuracy within

skin was 87.1% and in muscle 100%, as derived from classification

tables. A pairwise multivariate logistic regression analysis between

the study groups (ATC vs. TAC, TAC vs. ISO, ISO vs. ATC) and

applying a leave-one-out cross validation strategy resulted in an

area under curve (AUC) from receiver operating characteristics

(ROC) for skin of 0.5, 0.69, and 0.86 and for muscle of 1.0, 1.0,

and 1.0, indicating a substantially better discrimination than by

chance (AUC = 0.5) (Table 6).

Inflammatory mediator profiles are similar within each
group

Hierarchical clustering was performed for all inflammatory

mediators in the three experimental groups. Each row of the data

matrix corresponds with one of the 14 inflammatory mediators,

and each column corresponds with a group. The log2-transformed

and mean-centered values (mean concentrations from each

condition) are visualized as a heat map, with color codes shown

in the color bar (Figure 3). The dendrogram on the x-axis shows

the similarities among the samples. As expected, the rejection

group (ATC skin and muscle samples), especially samples from

later time points with pronounced histological changes, exhibit a

completely different mediator clustering pattern vs. the control

groups, with high abundance of IL-5, IL-18, IL-1b, MCP-1, IL-6,

GRO-KC, and TNF-a. In TAC-treated animals, only IL-1a and

TNF-a were highly abundant, whereas the expression of all other

mediators assessed appeared suppressed.

The separation of the tacrolimus-treated group was also evident

from the cluster analysis. Within sample cluster A (17 samples),

5.9% were from the tacrolimus and 94.1% were from study group

ISO/ATC. In contrast, in cluster B (7 samples), 100% were from

tacrolimus and 0% from the ISO/ATC groups. A Fisher’s exact

test (p = 2.361025) suggested that the distribution between clusters

A and B was not random. Profiles of MCP-1, IL-4, IL-1b, and IL-

6 characterize rejecting grafts, whereas GM-CSF and IL-4

characterize isografts. This was also indicated by an absolute

value of point-biserial correlation coefficient .0.6 comparing each

group with the other groups. Interestingly, there appeared to be an
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Figure 2. Distribution of inflammatory mediator levels at the earliest postoperative measurements (POD 3) in rat limb
transplantation models. Adjusted p-values from Wilcoxon rank-sum test between the rejection group (ATC) vs. Tacrolimus treated group (TAC) for
selected inflammatory mediators, which were tested to be included in a prediction model by multinomial logistic regression analysis, are presented.
doi:10.1371/journal.pone.0099926.g002

Table 5. Statistical analysis for all 14 inflammatory mediator levels in skin and in muscle at early postoperative time points
(combined group of POD 3 and POD 5).

Skin POD 3/5 Muscle POD 3/5

pKW pWR Partition on DVs [%] pKW pWR Partition on DVs [%]

GM-CSF 0.0018 0.3260 4.26 0.0083 0.6178 2.60

IL-1a 0.0244 1.0000 0.01 0.0105 0.0773 0.01

MCP-1 0.0011 0.0026 0.72 0.0466 0.3673 0.79

IL-4 0.0040 0.3421 24.21 0.0194 0.5312 18.68

IL-1b 0.2042 0.1577 0.10 0.8251 0.7577 0.09

IL-2 0.2042 0.2868 0.83 0.1779 0.5312 0.29

IL-6 0.1322 0.2824 0.27 0.5127 0.6178 0.29

IL-10 0.2777 0.2805 0.55 0.8251 0.8657 0.39

IL-12p70 0.0019 0.0013 15.65 0.0030 0.0025 31.59

IL-5 0.0022 0.0123 4.85 0.0010 0.2112 5.03

IFN-c 0.2956 0.3729 5.67 0.2562 0.3619 1.90

IL-18 0.3462 0.2868 0.03 0.0425 0.7498 0.03

GRO-KC 0.0040 0.0021 0.27 0.5127 0.5312 0.11

TNF-a 1.761024 0.0013 42.59 0.0001 0.0025 38.21

Most promising inflammatory mediators for classification of rejection, based on early identification before histological manifestation of rejection is evident, are selected
(pKW,0.05 and Partition on DVs .1%, symbols in bold) and subjected to multinomial logistic regression analyses. For all measured inflammatory mediators adjusted p-
values from Kruskal-Wallis test (KW) of overall equality between all 3 cohorts (ISO, TAC, ATC) and Wilcoxon rank-sum test (WR) for comparison between the rejection
group (ATC) and the Tacrolimus treated group (TAC) as well as partition of each inflammatory mediator on the two discriminant vectors (DVs), which maximizes the
separation between the 3 rejection groups, resulting from discriminant function analysis, are given.
doi:10.1371/journal.pone.0099926.t005
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Table 6. Results for multinomial logistic regression models in skin and muscle for classification of the rejection groups based
inflammatory mediator/chemokine levels at early postoperative time points (POD 3/5) in rat transplantation models.

Skin POD3/5 Muscle POD3/5

ln(p(TAC)/p(ATC)) -6.7-2.6*IL4-61.3*IL12p70+25.6*TNFa -6.9-18.8*IL12p70+11.3*TNFa

ln(p(ISO)/p(ATC)) -1094.8+112.6*IL4+250.4*IL12p70-28.6*TNFa -10.0+25.1*IL12p70-27.0*TNFa

ATCpred TACpred ISOpred ATCpred TACpred ISOpred

ATC 12 0 1 13 0 0

TAC 0 8 0 0 7 0

ISO 3 0 7 0 0 9

Accuracy = 87.1% p = 0.020 Accuracy = 100% p = 0.031

Best prediction models for skin and muscle and their respective logistic prediction functions and classifier performance including confusion table (assessed by an 8-fold
cross validation procedure) are summarized.
doi:10.1371/journal.pone.0099926.t006

Figure 3. Similarity of sample groups and association between inflammatory mediators in rat limb transplantation models based
on their profiles of mean levels in each condition. Heatmap as a result of complete linkage hierarchical clustering on log2-transformed and
mean centered data. Log2-fold differences against the respective mean levels of each inflammatory mediator are color coded (red means higher
inflammatory mediator levels and blue means lower inflammatory mediator levels than the mean levels of the respective inflammatory mediator
according to the color scheme at the top). Dendrograms (trees) show similarity between different conditions and different inflammatory mediator
profiles, respectively.
doi:10.1371/journal.pone.0099926.g003
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overlap in the expression pattern of the isografts and the rejecting

animals for IL-5, IL-1a, IL-18, and GRO-KC.

Mediators relevant for classifications and progression of
rejection

Random forest (RF) classification was performed for skin and

muscle samples in all three cohorts at POD 3–9. The overall out-

of-bag error rate was 6.7% for skin and 7.0% for muscle. The

classification tables are shown in Figure 4. The importance of a

variable in discriminating among study groups was demonstrated

by ranked mean decrease accuracy as depicted in Figure 4. The

mediator best capable of differentiating among experimental

groups samples was MCP-1 in skin and TNF-a in muscle.

Discriminant analysis suggested that the mediators best capable of

discriminating among experimental groups in the early postoper-

ative time points were GM-CSF, IL-4, IL-12p70, IL-5, and TNF-

a; these mediators also appear within the seven top-ranked

mediators in the RF analysis.

To identify inflammatory cytokines with high dynamic vari-

ability, we performed principal component analysis (PCA) on the

combined mean-centered dataset including the whole postopera-

tive time series over all study groups and tissues. The PCA scores

of the first four principle components (explaining .70% of the

variance) of all 14 cytokines were ranked based on the sum of the

absolute PCA scores (loadings) of all 4 PCs (Figure 5). The top

prioritized cytokines IL-1a, IL-18, IL-1b, and IL-4 might be

promising candidates for new therapeutic regimens.

Discussion

Experimental transplant rejection can be detected reliably in

advance of the current clinical gold standard of histologic

evaluation, using computational modeling that involves 14

inflammatory mediators in this model. These findings support

the hypothesis that the immune signaling associated with rejection

follows specific patterns of expression and is driven by different

principal components than those associated with inflammation

following syngeneic transplantation.

Detailed cellular and molecular assessment provides valuable

insights into the role of the immune/inflammatory response in

post-transplant pathophysiology [14,15]. Translation of these

findings into biomarkers applied clinically, however, has been

very limited. It remains a major challenge to reduce the

complexity of dynamic biological systems to elements with

diagnostic or therapeutic clinical value [16,17]. Data-driven

investigations of genomic and proteomic studies in combination

with mechanistic computational modeling based on measurements

of circulating inflammatory mediators have given insight into the

Figure 4. Results from Random Forest classification of the different rejection groups (ISO, TAC, ATC) using over the whole time
course (POD 3, POD 5, POD 7, POD 9) measured inflammatory mediators in skin (A) and muscle (B) samples of rat limb
transplantation models. Most important mediators for the decision trees based classification approach are evident by ranked mean decrease
accuracy. Performances of the classifiers are indicated by the confusion table and the out-of-bag (OOB) error rate.
doi:10.1371/journal.pone.0099926.g004

Figure 5. Most variable mediators identified by principal
component analysis (PCA) suggesting new potential targets
for therapeutic interventions to suppress limb transplant
rejection. PCA scores (loadings) for the first four principal components
(PCs), which represent more than 70% of information within the data,
are displayed in a stacked bar plot for all inflammatory mediators
(ranked by the overall PCA score of the 4 PCs).
doi:10.1371/journal.pone.0099926.g005
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pathophysiology of trauma, shock as well as organ transplantation

[18–22].

Herein, we demonstrate that data-driven and expression

pattern-oriented analyses of a high-content dataset can help to

decipher the complexity of acute inflammation in VCA. In the

present study, these advanced computational algorithms allowed

to diagnose rejection in advance of gross histological damage. We

suggest that measuring inflammatory mediators expressed in skin

and muscle is clinically feasible in the setting of VCA since skin

and muscle are more accessible as compared to solid organs.

Isografts were compared to allografts and tacrolimus treated

allografts in order to delineate between surgery/trauma/ischemia

induced inflammation and allograft rejection. Tacrolimus treat-

ment was sufficient to diminish rejection (but not completely

eliminate the immune response).

In the samples analyzed in the present study, skin rejection was

detected in advance of histological alterations based on the

inflammatory mediators IL-4, IL-12p70 and TNF-a, with a

prediction accuracy of .87%. In muscle rejection, IL-12p70 and

TNF-a were identified as best and accurate classifiers. TNF-a, a

canonical inflammatory mediator, is mainly produced by activated

monocytes, macrophages, and T-cells, and exerts a direct effect on

the proliferation, apoptosis, necrosis, differentiation, and function

of virtually every cell type [23]. In the skin, mast cells appear to be

the predominant source of preformed TNF-a, which can be

released upon inflammatory stimuli [24]. TNF-a activates T-cells;

increases the release of other inflammatory mediators; and induces

neutrophil adherence, infiltration and the production of enzymes

and reactive oxygen. These mechanisms are harmful to the

allograft, and subsequently cause tissue injury as well as organ

dysfunction [23]. Several studies have demonstrated increased

TNF-a levels in the serum during episodes of rejection in liver,

kidney and pancreas transplant recipients [25–27]. Interestingly,

the increase in TNF-a levels occurred two days before clinical

manifestation of rejection.

The production of IL-12 strongly promotes the development of

IFN-c producing helper T (TH)-cells. IL-12 may not only be

essential for macrophage-mediated allograft rejection via induc-

tion of TH1 responses, but IL-12 may be involved in delaying

rejection via induction of inducible nitric oxide synthase (iNOS)

and indolamine 2,3 dioxygenase (IDO) [28]. This positive effect

was shown in several skin or heart allograft models, as well as in

the course of graft-versus-host disease (GVHD) [29–31].

Good performance of the multinomial logistic regression model,

which models linear decision boundaries effectively, indicates that

the patterns of inflammatory mediator expression in skin are

fundamentally different in isograft and allograft skin tissue, and

that this difference can be captured with reasonable performance

by computationally efficient algorithms. Multinomial logistic

regression performance for discrimination of rejection is even

stronger and the consistency with which this distinction is made

across a rather complex set of features implies a high level of

biological significance. In other words, not only is the specific

inflammatory mediator, but also the particular combination of

mediators in the local inflammatory milieu seems to play a

determinative role in the nature and progression of inflammation

expressed.

The RF classification approach including more time points

(POD 3-POD 9) achieves high levels of accuracy and continues to

improve with the addition of variables. This finding implies that

there are specific inflammatory mediator interactions that are

relevant only under certain contexts [32], and that these

interactions can be leveraged to identify potential targets for

therapeutic intervention.

We hypothesized that mediators with time-dependent changes

might be important in the different dynamic processes and

describe principal drivers (principal components, PC), which could

turn out as therapeutic targets. We were focusing on the first four

PCs since they comprise more than 70% of the total variance. The

four top-ranked mediators were IL-1a, IL-18, IL-1b, and IL-4

(Figure 5).

To discern the effect of the inflammatory mediators within each

group, we performed the same PCA procedure for each group

individually (Figure S1). The impact of IL12p70 already shown as

potential early diagnostic marker for rejection was not as

pronounced in the tacrolimus-treated animals as in the isograft

and allograft study group. Interferon-c and IL-4 had a high

ranking in all groups (ISO, TAC, ATC) indicating a more

unspecific effect in inflammation; In contrast, IL-1a and IL-18

exhibited an expression profile which indicates a possible key role

in VCA rejection and makes these cytokines interesting candidates

for therapeutic interventions.

Our studies identified IL-1a and IL-18 as possible candidates

for the treatment of skin rejection. These inflammatory mediators

share similarities regarding structure, receptor family, signal

transduction pathways, and biological effects. Both inflammatory

mediators are produced by monocytes/macrophages but also

constitutively expressed by keratinocytes [33]. IL-1a plays an

important role in sterile inflammation. During necrotic cell death,

the IL-1a precursor is released [34] and binds to its receptor

expressed on adjacent macrophages and epithelial cells, which in

turn triggers a pro-inflammatory response characterized by an

influx of neutrophils followed by macrophages [35,36]. IL-18,

together with IL-2, IL-12, and IL-15, is a dominant IFN-c
inducing factor. Several human diseases, such as systemic lupus

erythematosus, rheumatoid arthritis, Crohn’s disease, psoriasis and

graft-versus-host-disease are thought to be mediated in part by IL-

18 [37]. Moreover, IL-18 stimulates ICAM-1 expression on

monocytic cell lines, which is important for the recruitment of T-

cells and other immune cells to the skin. Lymphocyte recruitment

is known as a key mechanism in inflammatory skin disorders and

[38,39]. Hautz et al. showed, that expression of ICAM-1

correlated closely with severity of skin rejection [8].

Based on our findings, IL-1a and IL-18 appear as interesting

potential targets for intervention. Yuan J et al. already showed the

efficacy of IL-1 receptor antagonist (IL-1ra) gene transfer

treatment for acute corneal graft rejection in a rat model [40]

The group demonstrated during acute rejection, that TGF-b1,

RANTES and IL-1 levels were lower in the IL-1ra treatment

group. Thus antagonizing the biological activitiy of IL-1 could

effectively prolong graft survival. IL-ra, a specific inhibitor of both

IL-1a and IL-b generically known as anakinra is clinically applied

for the treatment of rheumatoid arthritis. IL-18-binding protein

(IL-18BP), a specific inhibitor or IL-18 which neutralizes IL-18

bioactivity, was discovered during the search for soluble IL-18

receptors in humane urine [41]. A clinical preparation of human

IL-18BP has been shown to be safe and effective in patients with

RA or plaque psoriasis [42]. A soluble form of the IL-18 receptor

accessory protein (sIL-18Rb) has recently been identified as novel

IL-18 inhibitor in collagen-induced arthritis in mice [43].

In summary, we herein provide information, which could help

identifying a diagnostic profile and novel targets for treatment of

skin rejection in VCA. The present study demonstrates that the

application of advanced computational methods can be success-

fully applied in molecular assessment of skin rejection and provides

novel insights into the inflammatory mediator communication

patterns. The study remains observational in its nature and
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investigational trials are warranted in order to address the true

functional value of the postulated treatment targets.

Supporting Information

Figure S1 Most variable (influential) mediators identi-
fied by principal component analysis (PCA) for each of
the three study groups (ISO/TAC/ATC). PCA scores

(loadings) for the first four principal components (PCs), which

represent more than 75% of information, are displayed in a

stacked bar plot for all inflammatory mediators (ranked by the

overall PCA score of the 4 PCs) and a scatter plot of the first two

PCs.

(TIFF)

Figure S2 Distribution of inflammatory mediator levels
(boxplots) at postoperative day 5 in rat limb transplan-
tation models for selected inflammatory mediators.
Adjusted p-values from Wilcoxon rank-sum test between the

rejection group (ATC) versus Tacrolimus treated group (TAC) are

provided.

(TIFF)
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