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Abstract

Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and
reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve
diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-
based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L.
borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method
uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To
monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal b-actin and the leptospiral
lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be ,10 genome
equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of
pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity.
Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp.,
Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L.
interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in
domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the
epidemiology of leptopirosis.
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Introduction

Leptospirosis is a growing and underestimated public health and

veterinary concern, caused by pathogenic spirochetes belonging to

the family Leptospiracea, genus Leptospira [1,2]. The disease is an

important cause of abortion, stillbirths, infertility, poor milk

production and death amongst livestock, harboring a significant

economic impact [3–5]. Its transmission requires circulation of the

agents among domestic and wild animal reservoirs, with rodents

recognized as the most important sources that establish persistent

renal carriage and urinary shedding of Leptospira. Humans are

incidental hosts acquiring a systemic infection upon direct or

indirect exposure to the urine, blood or tissue of an infected

animal. Farmers, veterinarians, sewer workers, pet keepers, rodent

catchers and those persons participating in aquatic leisure activities

are more prone to acquire the disease.

Conventional classification of Leptospira is based on serological

criteria, using the serovar as the basic taxon. To date over 250

pathogenic serovars separated into 25 serogroups are known [6].

The serological classification system is complemented by a

genotypic one, in which 21 genetic species are currently

recognized, including pathogenic, intermediate and non-patho-

genic (or saprophytic) species [7–10]. Genetic species boundaries

hardly correlate with the serological classification [8].

Serological approaches are used commonly for diagnosis of

leptospirosis in animals. The reference method is the Microscopic

Agglutination Test (MAT), which has the advantage of being

specific for serogroups [3] but has several drawbacks of being

laborious and requiring a panel of viable Leptospira cultures.

Isolation of leptospires, from suspect clinical specimens, constitutes

the definitive diagnosis but is also technically demanding, time

consuming and subject to contamination and high rates of failure
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[4]. Isolates are traditionally classified to the serovar level by the

Cross Agglutinin Absorption Test (CAAT) [8] which is cumber-

some for routine use and is only performed in a few reference

laboratories worldwide.

Rapid and reliable laboratory tests for the direct detection of

leptospiral infections in animals are in high demand, particularly

to support suitable control measures. Serology does not corrob-

orate well with the presence of pathogenic viable leptospires in the

kidneys or urine and detection of the agents is necessary to identify

healthy animal carriers. Molecular-based assays have been

previously described for detecting leptospires in clinical samples.

Most approaches are PCR-based and target specific genes or

polymorphisms in the genome of pathogenic leptospires. Several

real time PCR assays have been described predominantly for use

with human samples such as whole-blood, serum or urine [11–17]

but only few have been plentifully validated [18,19]. A few assays

were evaluated or used for detecting Leptospira in kidney tissue,

blood, urine and other clinical specimens from animals such as

sheep [20], dogs [21,22], pigs [5], deer [23], flying foxes [24] and

rodents [25,26]. Most assays rely on SYBR green detection

chemistry and only differentiate between pathogenic and non-

pathogenic leptospires, lacking the ability to distinguish between

different species. Nevertheless, speciation of infecting Leptospira
from clinical material may be important for determining the

clinical significance, the probable source of infection, to distinguish

sporadic cases from possible outbreaks and to better access the

epidemiology of the disease.

In the present work we have developed a novel and simple

TaqMan-based multi-gene targeted real-time PCR approach

yielding high sensitivity and specificity for the direct detection

and differentiation of the most relevant pathogenic Leptospira
species in animal samples, suitable for introduction into the

routine diagnostics of veterinary laboratories.

Materials and Methods

Bacterial strains
Eighty five reference strains and clinical and environmental

isolates of Leptospira spp. belonging to pathogenic, intermediate

and non-pathogenic phylogenetic clades were used in this study

(Table 1). Strains were obtained from the collection maintained by

the Instituto Nacional de Investigação Agrária e Veterinária
(INIAV), Portugal, which is the Portuguese reference laboratory

for animal diseases, from the Leptospirosis Laboratory at the

Instituto de Higiene e Medicina Tropical (IHMT/UNL), Portugal,

and from the WHO/FAO/OIE and National Leptospirosis

Reference Centre in Amsterdam, The Netherlands. Strains were

grown in liquid Ellinghausen-McCullough-Johnson-Harris

(EMJH) medium for up to 7 days.

Culturing Leptospira from tissue samples was performed as

described by the OIE Manual of Diagnostic Tests and Vaccines

for Terrestrial Animals [27]. Other bacterial strains were provided

by INIAV for assessing the analytical specificity of the amplifica-

tion reactions, representing the species: Acinetobacter baumannii
(LNIV 1628/12), Bacillus licheniformis (VLA 1831), Klebsiella
pneumoniae (VLA 1643), Salmonella Dublin (VLA 1272),

Streptococcus agalactiae (VLA 33), Proteus mirabilis (LNIV

2269/II), Yersinia enterocolitica (VLA 1884), Staphylococcus
aureus (VLA 1032), Pseudomonas aeruginosa (VLA 67),

Arcanobacterium pyogenes (VLA 1321) and Listeria monocytogenes
(VLA 1774).

Spiked tissue samples
A sample of kidney tissue from a bovine was used for testing as

spiked sample. The kidney was acquired from a local official

slaughterhouse (Raporal, Portugal), obtained from a bovine

intended for normal human consumption, with no signs of

leptospirosis. The bovine was not killed specifically for the purpose

of this study. Approximately 200 mg portions of kidney tissue were

excised with a sterile scalpel and homogenized with 5 ml of PBS

buffer in a sterile plastic bag (Whirl-Pak bags) using a stomacher

lab-blender. Kidney samples were individually spiked with the

following strains, in order to determine the analytical detection

sensitivity: Leptospira interrogans (serovar Autumnalis, strain

Akiyami), L. kirschneri (serovar Mozdok, strain Portugal 1990)

[28], L. noguchii (serovar Panama, strain CZ 214K) and L.
borgpetersenii (serovar Tarassovi, strain Mitis Johnson). All the

strains were grown at 29uC and the concentrations of leptospires

were determined using a Petroff-Hausser counting chamber and

adjusted to 108 cells/ml with PBS buffer. For each strain, tenfold

serial dilutions from 107 to 100 cells/ml were prepared in PBS

buffer and 0.1 ml aliquots were used to spike 0.9 ml of tissue

homogenates. Tissue homogenate spiked with 0.1 ml PBS buffer

was used as negative control. DNA extraction was performed as

described in the paragraph ‘‘Genomic DNA extraction’’ below.

Tissue samples
INIAV IP is the Portuguese Reference Laboratory for animal

diseases and provides diagnostic services to national veterinary

authorities and private clients. Twenty seven dead wild rodents (25

Mus spp. and 2 Rattus spp.) were sent to the INIAV laboratory

during the year 2011 for analysis and further used in this study

(Table 2). The rodents were captured in the Lisbon Zoo under

routine operations for rodent population control, by the local

veterinary authorities. No animals were sacrificed for the only

purposes of research. Additionally, a Patagonian mara (Dolichotis
patagonum), also from the zoo, and a swine (Sus domesticus)
stillbirth fetus, from a private client, both suspect of dying with

leptospirosis, were submitted for analysis to our reference

laboratory and later included in this study (Table 2). On arrival

to the laboratory, animals were given a reference number and sent

to the pathology where kidney, liver and/or lung tissue samples

were collected. Specimens were then analysed using culture-based

methods according to the OIE standard procedures for leptospi-

rosis [27]. Briefly, specimens were aseptically collected at

necropsy, immediately emulsified in sterile buffered saline solution

in a 10% tissue suspension, two to three drops were inoculated in a

first tube of medium and two more tubes were similarly inoculated

with increasing 10-fold dilutions of the tissue suspension. For the

tissue culture, a semisolid Leptospira EMJH medium was used by

adding 0.1% agar to commercial EMJH (Difco), to which rabbit

serum (0.4%) and 5-Fluorouracil (100 mg/ml) were further added

[27].

DNA was extracted directly from tissues homogenates as

described below.

Genomic DNA extraction
Genomic DNA was extracted from both bacterial liquid cultures

and tissue homogenates using the QIAamp DNA extraction kit

according to the manufacturer’s instructions (Qiagen, Hilden,

Germany), with a final elution volume of 200 ml. The DNA

concentration from the pure cultures was estimated spectropho-

tometrically using a Nanodrop 1000 spectrophotometer (Nano-

drop Technologies, Wilmington, DE) and standardized to a

concentration of 104 genome equivalents (GE)/ml for use in the

reactions. The number of GE was estimated using an average
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genome size of 4.6 Mb [29]. Genomic DNA suspensions were

stored at 220uC until further use.

Design of TaqMan probes and flanking primers
DNA sequences of representative strains and species of

Leptospira were retrieved from NCBI-GenBank and aligned using

the ClustalW algorithm implemented in the program MegAlign

(vers. 5.03) (DNAStar, USA). Primers and dual labeled hydrolysis

probes (TaqMan probes) were designed to target selected species-

specific genetic polymorphisms of the following pathogenic

Leptospira spp.: L. interrogans, L. borgpetersenii, L. kirschneri
and L. noguchii (Table 3). Probes and primers specificities were

assessed in silico using the BLAST tools from NCBI-GenBank. All

probes and primers were synthesized by MWG Biotech (Ger-

many).

Real-time PCR assays
We have implemented the following assay format for testing

DNA templates extracted from biological samples: (i) a first duplex

amplification step aiming the detection of pathogenic Leptospira
spp. (by targeting the leptospiral lipL32 gene; Table 3) and

including an internal control to monitor the presence of potential

amplification inhibitors (by targeting the mammal b-actin gene;

Table 3); (ii) if pathogenic leptospires are detected in the first

reaction, these may be further discriminated by testing each of the

L. interrogans, L. borgpetersenii, L. kirschneri and L. noguchii
targeted probes/primers (Table 3). The CFX96 real-time PCR

detection system (Bio-Rad, USA) was used for all assays. The

amplification reactions were optimized individually for all the

probes and associated primers using the SsoFast Probes Supermix

(Bio-Rad, USA), according to the manufacturer’s instructions.

Each reaction was conducted in a total volume of 20 ml consisting

of 16SsoFast Probes Supermix, 400 nM of each primer, 150 nM

of TaqMan probe, DNase free water (GIBCO) and 5 ml of DNA

template solution (extracted from pure cultures or tissues samples).

Non-template negative controls (with PCR grade water) were

included in each run to rule out the possibility of cross-

contamination. The assay thermal conditions were as follows:

95uC for 2 min, followed by 45 cycles of 5 s at 95uC and 15 s at

the optimized annealing temperature for each probe (Table 3).

The thermal cycling conditions for the duplex amplification

targeting b-actin and lipL32 were 95uC for 2 min, followed by 45

cycles of 5 s at 95uC and 35 s at 60uC. Reproducibility of the

assays was assessed by repeating the assays at least twice. Data

analyses were performed by the detection system of the real-time

PCR equipment, according to the manufacturer’s instructions.

Analytical specificity and sensitivity
In order to determine if each set of probe and associated

primers was specific for the respective Leptospira target species, the

amplification assays were tested on DNA templates extracted from

different strains belonging to pathogenic, intermediate and non-

pathogenic Leptospira species (Table 1), and from other non-

related bacteria previously mentioned in ‘‘bacterial strains’’

section. The analytical sensitivity of the amplification assays (limits

of detection – LODs) were determined using 10-fold serial

dilutions of genomic DNA extracted from pure cultures of L.
interrogans (serovar Autumnalis, strain Akiyami), L. kirschneri
(serovar Mozdok, strain Portugal 1990), L. noguchii (serovar

Panama, strain CZ 214K) and L. borgpetersenii (serovar

Tarassovi, strain Mitis Johnson). LODs on tissue samples were

assessed using DNA extracted from the serially diluted spiked

macerates. Each template was tested in triplicate.

Sequencing
Leptospira isolates obtained from tissue samples were identified

by comparative sequence analysis of a 245 bp region of the secY
gene, as described by Victoria et al. [30]. Briefly, the region of

interest was amplified using primers SecYII (59-GAA TTT CTC

TTT TGA TCT TCG-39) and SecYIV (59-GAG TTA GAG

CTC AAA TCT AAG-39), which amplify secY sequences from all

pathogenic strains of Leptospira. PCR amplifications were

performed on a C1000 thermocycler (Bio-Rad) using the following

program: an initial step of denaturation for 5 min at 95uC,

followed by 34 cycles consisting of annealing, 45 sec at 54uC,

extension, 2 min at 72uC, and denaturation, 30 sec at 94uC.

Nucleotide sequences were determined, using the same primers,

by commercially available sequencing services. Nucleotide se-

quence analysis and comparison with other relevant reference

sequences were performed using the BLAST suite at NCBI-

GenBank and aligned using Clustal X or MEGA software (version

5.0).

Results

Design of probes and primers
Species-specific sets of primers and probes targeting L.

interrogans, L. borgpetersenii, L. kirschneri and L. noguchii are

listed in Table 3. As shown in Figures S1, S2, S3 and S4 in File S1,

these sets of probes and primers contained sufficient polymor-

phisms to warrant ‘in silico’ species specific amplification.

Analytical specificity and sensitivity
Execution of the PCRs on DNA extracted from various

bacteria, revealed a highly specific amplification from any of the

pathogenic strains belonging to the respective target Leptospira
spp., i.e. L. interrogans, L. kirschneri, L borgpetersenii and L.
noguchii. None of the other strains yielded a positive amplification

reaction (Table 1; Fig. 1A). The analytical sensitivity (LOD) of the

amplification assays were found to be between 1 and 10 genome

copies in the PCR mixture for each probe and primer set.

Spiked tissue samples
The LOD of the PCRs on spiked tissue samples was similar for

all probe/primers sets targeting the respective target species, and

estimated to be 103 leptospires/ml of tissue homogenate (< per

20 mg of tissue) (Fig. 1B). Furthermore, the same LOD was

estimated for the lipL32-targeted probe/primers when used in

duplex amplification reactions with the mammal b-actin probe

(not shown).

Clinical tissue samples
DNA extracted from 27 kidney samples of wild rodents were

analysed with the lipL32 and mammal b-actin targeted duplex

assay (Table 2; Fig. 2A). Leptospiral DNA was detected in three

samples, as demonstrated by a positive amplification of the lipL32
gene region (Table 2; Fig. 2A). Furthermore, the partial b-actin
gene was amplified from all samples, showing that the PCR

reactions were not significantly inhibited by potential contami-

nants. When tested with each of the L. interrogans, L.
borgpetersenii, L. kirschneri and L. noguchii targeted probes/

primers, only these three samples showed amplification (Table 2;

Fig. 2B). Two of these DNA samples were identified as L.
borgpetersenii and one sample as L. interrogans. Testing a pooled

sample of kidney and liver tissues from a Patagonian mara, and a

lung sample from an aborted swine fetus with the duplex PCR

revealed a positive amplification for both samples (Table 2).

Subsequent testing with the species-specific sets of probes and
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primers showed that the Patagonian mara was infected with L.
interrogans and the swine fetus with L. kirschneri.

Leptospira isolates were only cultured from the samples that also

yielded PCR-positive results, thus confirming the presence of

viable leptospires (Table 2).

Molecular speciation through analysis of the partial sequences

of the secY gene was in concordance with the results obtained by

the species-specific PCRs. Two isolates were identified as L.
borgpetersenii (from wild rodents; GenBank accession numbers

KM066006 and KM066007), one as L. kirschneri (from the swine

fetus; accession number KM066009) and two as L. interrogans
(from a wild rodent and the Patagonian mara; accession numbers

KM066008 and KM066010, respectively).

Discussion

In this work we present a two step real-time PCR strategy to

infer the presence of pathogenic leptospires in clinical and

veterinary samples. In the first step, we assess if an animal tissue

sample is infected with a pathogenic leptospire by targeting its

lipL32 gene. The lipL32 gene encodes an outer membrane

lipoprotein that is confined to pathogenic Leptospira species [16].

The second step identifies the four most common and veterinary

relevant pathogenic Leptospira species, L. interrogans, L.
borgpetersenii, L. kirschneri and L. noguchii using dedicated sets

of probes and primers.

Probes and flanking primers were developed by in silico analysis

and further tested for their practical utility on DNA extracted from

cultured bacteria, spiked tissues and clinical specimens. The

amplification assays have proved to be specific to the respective

targeted species, with no cross-reactions when non-pathogenic

leptospires or other pathogens were tested. The amplification of

the b-actin gene was included in the initial lipL32-based PCR to

assess the presence of amplification inhibitors in tissue samples

[31]. However, the abundant presence of b-actin gene copies in

DNA samples extracted from tissues may ensure some amplifica-

tion even when low levels of potential inhibitors are present (but

amplification curves are usually weaker and anomalous). The

analytical sensitivity deduced for the amplification assays, i.e. 1 to

10 GE on DNA extracted from cultured leptospires and 103

leptospires/ml tissue homogenate, were similar to the ones of other

previous studies concerning the molecular detection of leptospires

[15–17,19,22].

The panel of species-specific probes and flanking primers may

be extended with the design of novel oligonucleotides, e.g. for use

in regions where the occurrence of additional species of pathogenic

leptospires is common. As far as we know, this is the first report

describing a strategy capable of clearly identify four most

frequently found pathogenic Leptospira species based on the use

of TaqMan probes.

From 27 kidney samples of wild rodents, and samples from a

Patagonian mara and a porcine fetus suspected of leptospirosis,

three rodent samples and the samples from the Patagonian mara

and fetus all yielded a positive PCR test for the presence of

pathogenic leptospires. In concordance, these samples were also

positive by culture. Culture provides proof of infection and thus is

an ideal reference standard. Consequently, these results are

consistent with a 100% clinical sensitivity and specificity of the

PCR. Subsequent prospective analysis of a larger sample set would

allow substantiating this conclusion.

Table 3. Primers and probes used in this study targeting selected genes of pathogenic species of Leptospira.

Set Primer/Probe Sequence (59- 39) Annealing temperature Complementary target species

Set F_Actin GGC TCY ATY CTG GCC TC 60uC b-actin gene of mammals

Actin1 R_Actin GCA YTT GCG GTG SAC RAT G

P_Actin Cy5.5 (Quasar 705) -TAC TCC TGC TTG
CTG ATC CAC ATC-BHQ2

Set 12 45F AAG CAT TAC CGC TTG TGG TG 60uC lipL32 gene of pathogenic Leptospira spp.

286R GAA CTC CCA TTT CAG CGA TT

taq-189P FAM-AAA GCC AGG ACA AGC GCC G-BHQ1

Set 2 PFLint2 CTT GAG CCT GCG CGT TAY C 63uC secY gene of L. interrogans

PRLint2 CCG ATA ATT CCA GCG AAG ATC

TaqLint2 TET-CTC ATT TGG TTA GGA GAA
CAG ATC A-BHQ1

Set 3 F_bpn GAT TCG GGT TAC AAT TAG ACC 65uC ompL1 gene of L. borgpetersenii

R_bpn1 TTG ATC TAA CCG GAC CAT AGT

TqM_bpn Cy5.5 (Quasar 705) -TAC TAA GGA TGG
TTT GGA CGC TGC-BHQ2

Set 4 F_nery CTG GCT TAA TCA ATG CTT CTG 60uC secY gene of L. kirschneri

R_nery CTC TTT CGG TGA TCT GTT CC

TqM_nery Texas Red-CAG TTC CAG TTG TAA TAG
ATA AGA TTC-BHQ2

Set 5 FLnog2 TCA GGG TGT AAG AAA GGT TC 63uC secY gene of L. noguchii

RLnog2 CAA AAT TAA AGA AGA AGC AAA GAT

TaqLnog FAM-CGA TTG GCT TTT TGC TTG AAC
CATC-BHQ1

1Retrieved from Costa et al. [31];
2Retrieved from Stoddard et al. [16].
doi:10.1371/journal.pone.0112312.t003
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Figure 1. Illustration of the real-time PCR amplification curves obtained during the optimization of the assays. (A) Specificity tests of
the L. noguchii targeted amplification assay using the TaqLnog probe combined with the flanking primers FLnog2 and RLnog2. Blue amplification
curves represent L. noguchii strains. All other non-target strains yielded no amplification results. (B) Estimation of the limit of detection of the
amplification assay targeting L. interrogans (serovar Autumnalis, strain Akiyami) using DNA extracted directly from spiked bovine kidney samples as
template as a typical example of all Leptospira probe and primer sets. The amplification curves obtained from different ten-fold serial dilutions of the
target Leptospira are represented by different colours. Unspiked tissue homogenate (grey line) was used as negative control. (C) Standard curve
obtained from the analysis of the amplification curves mentioned in the previous panel B. RFU - Relative Fluorescence Units.
doi:10.1371/journal.pone.0112312.g001
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Phylogenetic identification of the cultures also allowed support-

ing the findings obtained with the species-specific PCRs. Indeed,

speciation by phylogeny was in all cases in concordance with the

results obtained via the PCR method.

Initially, we anticipated that more samples would be positive by

the real time PCR assay than by culture [5,32–34]. Recently,

Fornazari et al. [20] reported that quantitative PCR presented the

highest sensitivity among several techniques to detect leptospires in

tissues samples, the bacteriological culture being the least sensitive.

Apparently, our procedure of culturing, using macerated fresh

tissue has been highly effective. Alternatively, it cannot be

excluded that the bacterial load of the tissues might have been

very high. Nevertheless, the low rate of positive animals (11%) is

not too discrepant from the prevalence values found in other

studies where leptospiral DNA was detected in rodents tissues by

PCR-based assays, which ranged from 13% to 20% [25,35,36].

Furthermore, as far as we know, the region of Lisbon, where the

rodents were captured, is not usually regarded as having major

leptospirosis problems [2], which may also reflect a lower

prevalence of the agent in reservoirs such as wild rodents. We

anticipate that our assays may be useful in studies inferring the

prevalence of pathogenic leptospires in wild rodents and other

animals, with the advantage of differentiating the infecting

Leptospira species.

The amplification assays described were able to detect pathogenic

leptospires in samples of animal tissues, such as kidney or lung.

Although the analysis of this kind of samples is not essential for an

early diagnosis of leptospirosis, it has a great value in situations such

as epidemiological and post-mortem investigations. The last

situation is very well illustrated in this work with the detection of

pathogenic leptospires in tissues of a Patagonian mara and a swine

fetus. Both animals were suspect of having leptospirosis, which was

confirmed by this study. The porcine fetus was infected with a strain

belonging to L. kirschneri. Pigs may be infected by several

Leptospira species (and serovars) that may cause infertility, fetal

death and abortion. Leptospira kirschneri has been reported but

seems to be less frequently found in pigs in Portugal than other

species [37]. The Patagonian mara, a relatively large rodent that

lived in the local zoo, was found to be infected with L. interrogans.
To our knowledge, this is the first report describing the molecular

detection or the isolation of a pathogenic leptospire from that

rodent, which proved to have died of leptospirosis. Zoos are often

infested with rats that are notorious reservoirs of L. interrogans. We

hypothesise that this Patagonian mara has been infected by rats as

the primary infection reservoir, which would support the potential

hazard of rodents in zoos for both (exotics) animals and public.

The amplification assay described in this work is able to

indentify the four most relevant pathogenic species of Leptospira
infecting farm and wild animals. While the approach can be

extended to other Leptospira species, it is important to continually

evaluate the specificity of previously designed probes and primers

and, if necessary, modify and improve the sequences, in order to

ensure an effective and specific detection and identification of the

circulating Leptospira species.

Conclusions

The molecular assays presented in this work allow the detection

and identification of four relevant pathogenic species of Leptospira,

directly from animal tissues. The assays proved to be specific and

sensitive, and much faster than the bacteriological culture,

reducing the time for confirmatory leptospirosis diagnosis. The

assays are amenable to future automation possibilities and will

reinforce the diagnostic information and enhance our knowledge

about the epidemiology of leptopirosis.
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Figure 2. Illustration of the real-time PCR amplification curves
obtained during the testing of naturally-infected tissue
samples. (A) Results of the b-actin and lipL32 targeted duplex
amplification assay when testing representative samples from the wild
rodents. The partial b-actin gene was amplified from all tissue samples
(dark pink lines). Leptospiral DNA was detected in three samples by a
positive amplification of the lipL32 gene (blue lines). A spiked positive
control with L. interrogans (serovar Autumnalis, strain Akiyami) is shown
(green line). (B) From the previous leptospiral positive amplification
results, two samples were assessed as infected with L. borgpetersenii
using the respective targeted amplification assay with probe TqM_bpn
and flanking primers F_bpn and R_bpn1 (blue lines). The positive and
negative controls are illustrated by the orange and red lines,
respectively.
doi:10.1371/journal.pone.0112312.g002
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