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Abstract: The prevailing approach for three-dimensional (3D) medical image segmentation is to use
convolutional networks. Recently, deep learning methods have achieved human-level performance
in several important applied problems, such as volumetry for lung-cancer diagnosis or delineation for
radiation therapy planning. However, state-of-the-art architectures, such as U-Net and DeepMedic,
are computationally heavy and require workstations accelerated with graphics processing units
for fast inference. However, scarce research has been conducted concerning enabling fast central
processing unit computations for such networks. Our paper fills this gap. We propose a new
segmentation method with a human-like technique to segment a 3D study. First, we analyze the
image at a small scale to identify areas of interest and then process only relevant feature-map patches.
Our method not only reduces the inference time from 10 min to 15 s but also preserves state-of-the-art
segmentation quality, as we illustrate in the set of experiments with two large datasets.

Keywords: deep learning; medical image segmentation; computed tomography (CT); magnetic
resonance imaging (MRI)

1. Introduction

Segmentation plays a vital role in many medical image analysis applications [1]. For
example, the volume of lung nodules must be measured to diagnose lung cancer [2], or
brain lesions must be accurately delineated before stereotactic radiosurgery [3] on Magnetic
Resonance Imaging (MRI) or Positron Emission Tomography [4]. The academic community
has extensively explored automatic segmentation methods and has achieved massive
progress in algorithmic development [5]. The widely accepted current state-of-the-art
methods are based on convolutional neural networks (CNNs), as shown by the results of
major competitions, such as Lung Nodule Analysis 2016 (LUNA16) [6] and Multimodal
Brain Tumor Segmentation (BraTS) [7]. Although a gap exists between computer science
research and medical requirements [8], several promising clinical-ready results have been
achieved (e.g., [9]). We assume that the number of validated applications and subsequent
clinical installations will soon grow exponentially.
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The majority of the current segmentation methods, such as DeepMedic [10] and 3D U-
Net [11], rely on heavy 3D convolutional networks and require substantial computational
resources. Currently, radiological departments are not typically equipped with graphics
processing units (GPUs) [12]. Even when deep-learning-based tools are eligible for clinical
installation and are highly demanded by radiologists, the typically slow hardware renewal
cycle [13] is likely to limit the adoption of these new technologies. The critical issue is low
processing time on the central processing unit (CPU) because modern networks require
more than 10 min to segment large 3D images, such as a Computed Tomography (CT) chest
scan. Cloud services may potentially resolve the problem, but privacy-related concerns
hinder this solution in many countries. Moreover, the current workload of radiologists is
more than 16.1 images per minute and continues to increase [14]. Though slow background
processing is an acceptable solution for some situations, in many cases, nearly real-time
performance is crucial even for diagnostics [15].

Scarce research has been conducted on evaluating the current limitations and acceler-
ating 3D convolutional networks on a CPU (see the existing examples in Section 2). The
nonmedical computer vision community actively explores different methods to increase
the inference speed of the deep learning methods (e.g., mobile networks [16] that provide
substantial acceleration at the cost of a moderate decrease in quality). This paper fills this
gap and investigates the computational limitations of popular 3D convolutional networks
in medical image segmentation using two large MRI and CT databases.

Our main contribution is a new acceleration method that adaptively processes regions
of the input image. The concept is intuitive and similar to the way humans analyze 3D
studies. First, we roughly process the whole image to identify areas of interest, such as
lung nodules or brain metastases, and then locally segment each small part independently.
As a result, our method processes 3D medical images 50 times faster than DeepMedic and
3D U-Net with the same quality and requires 15 s or less on a CPU (see Figure 1). Our
idea is simple and can be jointly applied with other acceleration techniques for additional
acceleration and with other architecture improvements for quality increase. We have
released (https://github.com/neuro-ml/low-resolution, accessed on 29 December 2020)
our code for the proposed model and the experiments with the LUNA16 dataset to facilitate
future research.

Figure 1. Time-performance trade-off for different convolutional neural network models under
8 GB of RAM and eight central processing unit thread restrictions. We evaluate models on two
clinically relevant datasets with lung nodules (LUNA16) and brain metastases in terms of the average
object-wise recall (LUNA16 competition metric [17]). Our model spends less than 15 s per study on
processing time while preserving or even surpassing the performance of the state-of-the-art models.

2. Related Work

Many different CNN architectures have been introduced in the past to solve the se-
mantic segmentation of volumetric medical images. Popular models, such as 3D U-Net [11]

https://github.com/neuro-ml/low-resolution
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or DeepMedic [10], provide convincing results on public medical datasets [7,18]. Here,
we aim to validate the effective and well-known models without diving into architecture
details. Following the suggestion of [19], we mainly focus on building a state-of-the-art
deep learning pipeline arguing that the architecture tweaks will have a minor contribution.
Moreover, we address that the majority of the architecture tweaks could be applied to
benefit our method as well (see Section 7). However, all of these methods are based on 3D
convolutional layers and have numerous parameters. Therefore, the inference time could
be severely affected by the absence of GPU-accelerated workstations.

2.1. Medical Imaging

Several researchers have recently studied ways to accelerate CNNs for 3D medical
imaging segmentation. The authors of [20] proposed a CPU-GPU data swapping approach
that allows for training a neural network on the full-size images instead of the patches.
Consequently, their approach reduces the number of iterations on training, hence it reduces
the total training time. However, the design of their method can hardly be used to reduce
the inference time. The design does not change the number of network’s parameters and
moreover introduces additional time costs on the CPU-GPU data swapping process in the
forward step alone. In [21], the authors developed the M-Net model for faster segmentation
of brain extraction from MRI scans. The M-Net model aggregates volumetric information
with a large initial 3D convolution and then processes data with a 2D CNN; hence, the
resulting network has fewer parameters than the 3D analogies. However, the inference
time on the CPU is 5 min for a 256 × 256 × 128 volume, which is comparable to that
of DeepMedic and 3D U-Net. The authors of [22] proposed a TernaryNet with sparse
and binary convolutions for medical image segmentation. It tremendously reduces the
inference time on the CPU from 80 s for the original 2D U-Net [23] to 7 s. The additional
use of proposed weight quantization can significantly reduce the segmentation quality.
In general, 2D networks perform worse than their 3D analogous in segmentation tasks
with volumetric images [11,24]. The simple and natural reason for it is the inability of 2D
networks to capture the objects’ given volumetric information. Hence, in our work, we
focus the attention on the 3D architectures.

Within our model, we use a natural two-stage method of regional localization and
detailed segmentation (see Section 3). The similar approaches were proposed by [25,26]. In
both papers, the first part of the method roughly localized the target anatomical region in
the study. Then, the second part provided the detailed segmentation. However, the authors
did not focus on the inference time and suggested using the methods to improve the
segmentation quality. In addition, these architectures use independent networks, whereas
we propose using weight-sharing between the first and second stages to achieve more
effective inference. A similar idea of increasing the segmentation quality using multiple
resolutions was studied by [27].

2.2. Nonmedical Imaging

The most common way to reduce the model size and thus increase inference speed is to
use mobile neural network architectures [16], which are designed to run on low-power devices.
For example, E-Net [28] replaces the standard convolutional blocks with asymmetric con-
volutions that could be especially effective in our 3D tasks. Additionally, MobileNetV2 [29]
uses inverted residual blocks with separable convolutions to reduce the computationally
expensive convolutions. Unfortunately, most mobile architectures suffer from a loss in
quality due to the achieved speed gain, which could be crucial for medical tasks.

3. Method

The current state-of-the-art segmentation models spend equal computational resources
on all parts of the input image. However, the fraction of the target on the images is often
very low (e.g., 10−2 or even 10−3) for lung-nodule segmentation (see the distribution of the
lesions diameters in the Figure 2). Moreover, these multiple small targets are distinct. With
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our architecture, LowRes (Figure 3), we aim to use the human-like approach to delineate
the image. First, we solve the simpler task of target localization, modeling a human expert’s
quick review of the whole image. Then, we apply detailed segmentation to the proposed
regions, incorporating features from the first step. A similar idea was proposed in [30]
where low resolution image was used to localize a large object prior to further segmentation
to reduce GPU memory consumption.

Figure 2. Diameter distribution of tumors in the chosen datasets. On both plots, the distribution is
presented separately for each subset for which we split the data. The median value is highlighted
with orange. In addition, medical studies [31,32] recommend choosing a 10 mm threshold for the
data that contain lung nodules and 5 mm threshold for multiple brain metastases, when classifying
the particular component of a target as small.

Figure 3. The proposed architecture is a two-stage fully convolutional neural network. It includes
low-resolution segmentation (blue), which predicts the 83 times downsampled mask, and detailed
segmentation (red), which iteratively and locally aggregates features from the first stage and predicts
the segmentation map in the original resolution. Speedup comes from two main factors: the lighter
network with early downsampling in the first stage and the heavier second part that typically
processes only 5% of the image.

We demonstrate the effectiveness of the method without delving into the architecture
details. Our architecture is the de-facto 3D implementation of U-Net [23]. We use residual
blocks (ResBlocks) [33], apply batch normalization, and ReLU activation [34] after every
convolution except the output convolution. The number of input and output channels is
shown for every convolution and ResBlock in the legend of Figure 3. We apply the sigmoid
function to the one-channel output logits to obtain the probabilities of the foreground class.
Note that our architecture could be trivially extended to solve the multiclass segmenta-
tion task by changing the number of output layers and replacing the sigmoid function
with softmax.
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3.1. Target Localization

The current approach to localizing targets is neural networks for object detection [35].
Nevertheless, classical object detection tasks often include multi-label classification and
overlapping bounding box detection and are sensitive to a set of hyperparameters: intersec-
tion over union threshold, anchor sizes, and so on. We consider it to be overly complicated
for our problem of semantic segmentation. Hence, we use the CNN segmentation model
to predict the 8 × 8 × 8 times downsampled probability map (x8O output in Figure 3).
Processing an image in the initial resolution is the main bottleneck of the standard segmen-
tation CNNs. We avoid this by downsampling an image before passing it to the model.
For our tasks, we downsample an input image only twice in every spatial dimension.
Applying downsampling with a factor of 4 gives us significantly worse results. We train
the low-resolution part of our model via standard backpropagation, minimizing the loss
function between the output probability map and the ground truth downsampled with
8 × 8 × 8 kernels of max pooling. It is detailed in Figure 3 in green.

Early downsampling and lighter modeling allow us to process a 3D image much faster.
Moreover, the model can solve a “simpler” task of object localization with higher object-
wise recall than the standard segmentation models. The U-Net-like architecture allows us
to efficiently aggregate features and pass them to the next stage of detailed segmentation.

3.2. Detailed Segmentation

The pretrained first part of our model predicts the downsampled probability map,
which we use to localize the regions of interest. We binarize the downsampled prediction
using the standard probability threshold of 0.5. We do not use any fine-tuning of the
threshold and also use this standard value to obtain a binary segmentation map for every
model. After binarization, we divide the segmentation map into the connected components.
Then, we create bounding boxes with a margin of 1 voxel (in low resolution) for every
component. We apply the margin to correct the possible drawbacks of the previous rough
segmentation step in detecting boundaries. The larger margins will sufficiently increase
the inference time, hence we use the minimum possible margin.

The detailed part of our model predicts every bounding box in the original resolution.
It processes, aggregates, and upsamples features from the first stage, similar to the original
U-Net, but with two major differences: (i) the model uses features corresponding only to
the selected bounding box and (ii) iteratively predicts every proposed component. The
process is detailed in Figure 3 in red. The outputs are finally inserted into the prediction
map with the original resolution, which is initially filled with zeros. Although the detailed
part is heavier than the low-resolution path, it preserves the fast inference speed because it
typically processes only 5% of the image.

We train the model through the standard backpropagation procedure, simply mini-
mizing the loss function between the full prediction map and the corresponding ground
truth. We use the pretrained first part of our model and freeze its weights while training
the second part. The same training set is used for both stages to ensure no leak in validation
or hold-out data, which could lead to overfitting.

4. Data

We report our results based on two large datasets: a private MRI dataset with multiple
brain metastases and a publicly available CT chest scan from LUNA16 [17]. The dataset
with multiple brain metastases consists of 1952 unique T1-weighted MRI of the head with a
0.94× 0.94× 1 mm image resolution and 211× 198× 164 typical shape. We do not perform
any brain-specific preprocessing, such as template registration or skull stripping.

LUNA16 includes 888 3D chest scans from the LIDC/IDRI database [18] with the
typical shape 432 × 306 × 214 and the largest at 512 × 512 × 652. To preprocess the image,
we apply the provided lung masks (excluding the aorta component). In addition, we
exclude all cases with nodules located outside of the lung mask (72 cases). Then, we
clip the intensities to between −1000 and 300 Hounsfield units. We average four given
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annotations [18] to generate the mean mask for the subsequent training. Finally, we scale
the images from both datasets to reach values between 0 and 1.

We use the train-validation setup to select hyperparameters and then merge these
subsets to retrain the final model. The results are reported on a previously unseen hold-out
set. Furthermore, LUNA16 is presented as 10 approximately equal subsets [17] so we
use the first six for training (534 images), the next two for validation (178 images), and the
last two as hold-out (174 images). Multiple metastases datasets are randomly divided into
training (1250 images), validation (402 images), and hold-out (300 images). The diameters
distribution of the tumors on these three sets for both datasets is given in Figure 2.

5. Experiments and Results
5.1. Training

We minimize Dice Loss [36] because it provides consistently better results on the
validation data for all models. The only exception is the first stage of LowRes—we use
weighted cross-entropy [23] to train it. We train all models for 100 epochs consisting of 100
iterations of stochastic gradient descent with Nesterov momentum (0.9). The training starts
with a learning rate of 10−2, and it is reduced to 10−3 at epoch 80. During the preliminary
experiments, we ensure that both training loss and validation score reach a plateau for
all models. Therefore, we assume this training policy to be enough for the representative
performance and the further fine-tuning will result only in the minor score changes.

We also use validation scores of the preliminary experiments to determine the best
combination of patch size and batch size for every model. The latter represents a memory
trade-off between a larger batch size for the better generalization and a sufficient patch
size to capture enough contextual information. We set the patch size of 64 × 64 × 64 for
all models except the DeepMedic. DeepMedic has a patch size of 39 × 39 × 39. The batch
size is 12 for the 3D U-Net, 16 for DeepMedic, and 32 for the LowRes and mobile networks.
Sampled patch contains a ground truth object with the probability of 0.5, otherwise it
is sampled randomly. This sampling strategy is suggested to efficiently alleviate class-
imbalance [10].

We use the DeepMedic and 3D U-Net architectures without any adjustments. Mobile
network architectures [28,29] are designed for 2D image processing, hence we add an
extra dimension. Apart from the 3D generalization, we use the vanilla E-Net architecture.
However, MobileNetV2 is a feature extractor by the design, thus we complete it with
a U-Net-like decoder preserving the speedup ideas.

5.2. Experimental Setup

We highlight two main characteristics of all methods: inference time and segmentation
quality. We measure the average inference time for 10 randomly chosen images for each
dataset. To ensure broad coverage of the possible hardware setups, we report time at 4,
8, and 16 threads on an Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 GHz. Models running
on a standard workstation have random-access memory (RAM) usage constraints. Hence,
during the inference step, we divide an image into patches to iteratively predict them and
combine them back into the full segmentation map. We operate under the upper boundary
of 16 GB of RAM. We also noted that the inference time does not heavily depend on the
partition sizes and strides, except the cases with a huge overlap of predicting patches.

The most common method to measure segmentation performance is the Dice Score [7].
However, averaging the Dice Score over images has a serious drawback in the case of
multiple targets because large objects overshadow small ones. Hence, we report the average
Dice Score per unique object. We use the Free-response Receiver Operating Characteristic
(FROC) analysis [37] to assess the detection quality. Such a curve illustrates the trade-off
between the model’s object-wise recall and average false positives (FPs) per image. The
authors of [37] also extracted a single score from these curves—the average recall at seven
predefined FP rates: 1/8, 1/4, 1/2, 1, 2, 4, and 8 FPs per scan. We report more robust values
averaged over FP points from 0 to 5 with a step of 0.01. Hence, the detection quality is
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measured similarly to the LUNA16 challenge [17]. This is our main quality metric because
the fraction of detected lesions per case is an important clinical characteristic, especially for
lung-cancer screening [38].

5.3. Results

The final evaluation of the hold-out data of the inference time and segmentation
quality is given in Table 1 for LUNA16 and in Table 2 for multiple metastase datasets.
Moreover, LowRes achieves a comparable inference speed with the fastest 3D mobile
network E-Net. The maximum inference time is 23 s with four CPU threads on LUNA16
data. Our model achieves the same detection quality using the state-of-the-art DeepMedic
and 3D U-Net models, outperforming them in terms of speed by approximately 60 times.
The visual representation of the time-performance trade-off is given in Figure 1.

Table 1. Comparative performance of segmentation models on LUNA16 data. Standard deviation
for every measurement is given in brackets. The best values for each column are emphasized in bold.
The quality metrics definitions are given in the last paragraph of Section 5.2.

Inference Time ∗(CPU Threads) Quality Metrics

4 Threads 8 Threads 16 Threads Avg Recall Obj DSC

3D U-Net 1293 (100) 880 (61) 828 (62) 0.77 (0.02) 0.82 (0.16)
DeepMedic 1139 (162) 872 (138) 840 (127) 0.78 (0.02) 0.78 (0.20)

3D MobileNetV2 108 (14) 89 (12) 74 (10) 0.68 (0.02) 0.75 (0.22)
3D E-Net 11 (1.2) 9.5 (1.2) 9.2 (1.0) 0.62 (0.02) 0.70 (0.22)

LowRes 23 (2.9) 15 (1.9) 13 (1.7) 0.80 (0.02) 0.75 (.18)
∗ in seconds.

Table 2. Comparative performance of segmentation models on Multiple Metastases data. Standard
deviation for every measurement is given in brackets. The best values for each column are emphasized
in bold. The quality metrics definitions are given in the last paragraph of Section 5.2.

Inference Time ∗(CPU Threads) Quality Metrics

4 Threads 8 Threads 16 Threads Avg Recall Obj DSC

3D U-Net 342 (36) 225 (20) 202 (16) 0.71 (0.01) 0.72 (0.21)
DeepMedic 381 (74) 254 (50) 226 (46) 0.70 (0.02) 0.69 (0.23)

3D MobileNetV2 33 (4.6) 23 (3.0) 21 (2.4) 0.65 (0.01) 0.69 (0.22)
3D E-Net 3.2 (0.3) 1.7 (0.2) 1.9 (0.3) 0.47 (0.01) 0.59 (0.23)

LowRes 6.1 (0.7) 4.3 (0.6) 3.7 (0.6) 0.68 (0.01) 0.64 (0.22)
∗ in seconds.

6. Discussion

To our knowledge, the proposed method is the first two-stage network that utilizes
local feature representation from the first network to accelerate a heavy second network.
We carefully combined well studied DL techniques with the new final goal to speed up CPU
processing time significantly without minor quality loss (see Section 1, the last paragraph).
De-facto, our method can indeed be considered two separate networks as far as they are
trained separately. However, we highlight that our work is one of the first accelerated DL
methods for medical images, so it opens up a curious research direction of simultaneous
learning of both CNN parts, among other ideas.

The “other ideas” mean the key concepts proposed to reduce the inference time or
increase the segmentation and detection quality in many recent papers, which can be
applied to our method. However, the research direction for medical image segmentation
is naturally biased towards addressing the segmentation and detection quality, so these
papers’ results are of particular interest. We can not address all of them here and provide
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comparison only to the well-known baseline methods like 3D U-Net and DeepMedic
on the open-source LUNA16 dataset for the two main reasons. First, researchers can
easily compare their great methods with ours and elaborate on this curious research
direction. Second, most of the best practices from the recent methods can be adapted
to ours without restriction. For example, one can modify skip connections by adding
Bi-Directional ConvLSTM [39] or add a residual path with deconvolution and activation
operations [40]. However, applying these improvements will likely preserve the time gap
between the particular method and ours, modified correspondingly. Note that our pioneer
work proposes the general idea of the speed up on CPU, so we treat such experiments as a
possible way to work on in future, which is a common practice.

7. Conclusions

We proposed a two-stage CNN called LowRes (Figure 3) to solve 3D medical image
segmentation tasks on a CPU workstation within 15 s for a single case. Our network uses a
human-like approach of a quick review of the image to detect regions of interest and then
processes these regions locally (see Section 3). The proposed model achieves an inference
speed close to that of mobile networks and preserves or even increases the performance of
the state-of-the-art segmentation networks (Tables 1 and 2).
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The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
BraTS Multimodal Brain Tumor Segmentation
CNN Convolutional Neural Network
CPU Central Processing Unit
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CT Computed Tomography
DSC Dice Score
FP False Positive
FROC Free-response Receiver Operating Characteristic
GPU Graphics Processing Unit
LUNA16 Lung Nodule Analysis 2016
MRI Magnetic Resonance Imaging
RAM Random Access Memory
ReLU Rectified Linear Unit

References
1. Pham, D.L.; Xu, C.; Prince, J.L. Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2000, 2, 315–337.

[CrossRef]
2. The Lancet Digital Health. Leaving cancer diagnosis to the computers. Lancet Digit. Health 2020, 2, e49. [CrossRef]
3. Meyer, P.; Noblet, V.; Mazzara, C.; Lallement, A. Survey on deep learning for radiotherapy. Comput. Biol. Med. 2018, 98, 126–146.

[CrossRef] [PubMed]
4. Comelli, A. Fully 3D Active Surface with Machine Learning for PET Image Segmentation. J. Imaging 2020, 6, 113. [CrossRef]
5. Greenspan, H.; Van Ginneken, B.; Summers, R.M. Guest editorial deep learning in medical imaging: Overview and future

promise of an exciting new technique. IEEE Trans. Med. Imaging 2016, 35, 1153–1159. [CrossRef]
6. Setio, A.A.A.; Traverso, A.; De Bel, T.; Berens, M.S.; van den Bogaard, C.; Cerello, P.; Chen, H.; Dou, Q.; Fantacci, M.E.; Geurts, B.;

et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed
tomography images: The LUNA16 challenge. Med. Image Anal. 2017, 42, 1–13. [CrossRef]

7. Bakas, S.; Reyes, M.; Jakab, A.; Bauer, S.; Rempfler, M.; Crimi, A.; Shinohara, R.T.; Berger, C.; Ha, S.M.; Rozycki, M.; et al.
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival
prediction in the BRATS challenge. arXiv 2018, arXiv:1811.02629.

8. Liu, X.; Faes, L.; Kale, A.U.; Wagner, S.K.; Fu, D.J.; Bruynseels, A.; Mahendiran, T.; Moraes, G.; Shamdas, M.; Kern, C.; et al.
A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging:
A systematic review and meta-analysis. Lancet Digit. Health 2019, 1, e271–e297. [CrossRef]

9. Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.; Corrado, G.; et al. End-to-
end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 2019,
25, 954–961. [CrossRef]

10. Kamnitsas, K.; Ledig, C.; Newcombe, V.F.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale
3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [CrossRef]

11. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from
sparse annotation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin,
Germany, 2016; pp. 424–432.

12. Chen, D.; Liu, S.; Kingsbury, P.; Sohn, S.; Storlie, C.B.; Habermann, E.B.; Naessens, J.M.; Larson, D.W.; Liu, H. Deep learning and
alternative learning strategies for retrospective real-world clinical data. NPJ Digit. Med. 2019, 2, 1–5. [CrossRef]

13. European Society of Radiology. Renewal of radiological equipment. Insights Imaging 2014, 5, 543–546. [CrossRef]
14. McDonald, R.J.; Schwartz, K.M.; Eckel, L.J.; Diehn, F.E.; Hunt, C.H.; Bartholmai, B.J.; Erickson, B.J.; Kallmes, D.F. The effects of

changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad. Radiol. 2015,
22, 1191–1198. [CrossRef]

15. Lindfors, K.K.; O’Connor, J.; Parker, R.A. False-positive screening mammograms: Effect of immediate versus later work-up on
patient stress. Radiology 2001, 218, 247–253. [CrossRef] [PubMed]

16. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

17. Jacobs, C.; Setio, A.A.A.; Traverso, A.; van Ginneken, B. LUng Nodule Analysis 2016. Available online: https://luna16.grand-
challenge.org (accessed on 9 December 2019).

18. Armato, S.G., III; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.;
Hoffman, E.A.; et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed
reference database of lung nodules on CT scans. Med. Phys. 2011, 38, 915–931.

19. Isensee, F.; Kickingereder, P.; Wick, W.; Bendszus, M.; Maier-Hein, K.H. No new-net. In International MICCAI Brainlesion Workshop;
Springer: Berlin, Germany, 2018; pp. 234–244.

20. Imai, H.; Matzek, S.; Le, T.D.; Negishi, Y.; Kawachiya, K. Fast and accurate 3d medical image segmentation with data-swapping
method. arXiv 2018, arXiv:1812.07816.

21. Mehta, R.; Sivaswamy, J. M-net: A convolutional neural network for deep brain structure segmentation. In Proceedings of
the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, Australia, 18–21 April 2017;
pp. 437–440.

http://doi.org/10.1146/annurev.bioeng.2.1.315
http://dx.doi.org/10.1016/S2589-7500(20)30004-2
http://dx.doi.org/10.1016/j.compbiomed.2018.05.018
http://www.ncbi.nlm.nih.gov/pubmed/29787940
http://dx.doi.org/10.3390/jimaging6110113
http://dx.doi.org/10.1109/TMI.2016.2553401
http://dx.doi.org/10.1016/j.media.2017.06.015
http://dx.doi.org/10.1016/S2589-7500(19)30123-2
http://dx.doi.org/10.1038/s41591-019-0447-x
http://dx.doi.org/10.1016/j.media.2016.10.004
http://dx.doi.org/10.1038/s41746-019-0122-0
http://dx.doi.org/10.1007/s13244-014-0345-1
http://dx.doi.org/10.1016/j.acra.2015.05.007
http://dx.doi.org/10.1148/radiology.218.1.r01ja35247
http://www.ncbi.nlm.nih.gov/pubmed/11152810
https://luna16.grand-challenge.org
https://luna16.grand-challenge.org


J. Imaging 2021, 7, 35 10 of 10

22. Heinrich, M.P.; Blendowski, M.; Oktay, O. TernaryNet: Faster deep model inference without GPUs for medical 3D segmentation
using sparse and binary convolutions. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 1311–1320. [CrossRef]

23. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International
Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin, Germany, 2015; pp. 234–241.

24. Lai, M. Deep learning for medical image segmentation. arXiv 2015, arXiv:1505.02000.
25. Zhao, N.; Tong, N.; Ruan, D.; Sheng, K. Fully Automated Pancreas Segmentation with Two-Stage 3D Convolutional Neural

Networks. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin, Germany,
2019; pp. 201–209.

26. Wang, C.; MacGillivray, T.; Macnaught, G.; Yang, G.; Newby, D. A two-stage 3D Unet framework for multi-class segmentation on
full resolution image. arXiv 2018, arXiv:1804.04341.

27. Gerard, S.E.; Herrmann, J.; Kaczka, D.W.; Musch, G.; Fernandez-Bustamante, A.; Reinhardt, J.M. Multi-resolution convolutional
neural networks for fully automated segmentation of acutely injured lungs in multiple species. Med. Image Anal. 2020, 60, 101592.
[CrossRef] [PubMed]

28. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv 2016, arXiv:1606.02147.

29. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

30. Vesal, S.; Maier, A.; Ravikumar, N. Fully Automated 3D Cardiac MRI Localisation and Segmentation Using Deep Neural
Networks. J. Imaging 2020, 6, 65. [CrossRef]

31. Lin, N.U.; Lee, E.Q.; Aoyama, H.; Barani, I.J.; Barboriak, D.P.; Baumert, B.G.; Bendszus, M.; Brown, P.D.; Camidge, D.R.;
Chang, S.M.; et al. Response assessment criteria for brain metastases: Proposal from the RANO group. Lancet Oncol. 2015,
16, e270–e278. [CrossRef]

32. Bankier, A.A.; MacMahon, H.; Goo, J.M.; Rubin, G.D.; Schaefer-Prokop, C.M.; Naidich, D.P. Recommendations for measuring
pulmonary nodules at CT: A statement from the Fleischner Society. Radiology 2017, 285, 584–600. [CrossRef] [PubMed]

33. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

34. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.

35. Zhao, Z.Q.; Zheng, P.; Xu, S.t.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019,
30, 3212–3232. [CrossRef]

36. Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation.
In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016;
pp. 565–571.

37. Van Ginneken, B.; Armato, S.G., III; de Hoop, B.; van Amelsvoort-van de Vorst, S.; Duindam, T.; Niemeijer, M.; Murphy, K.;
Schilham, A.; Retico, A.; Fantacci, M.E.; et al. Comparing and combining algorithms for computer-aided detection of pulmonary
nodules in computed tomography scans: The ANODE09 study. Med. Image Anal. 2010, 14, 707–722.

38. Quekel, L.G.; Kessels, A.G.; Goei, R.; van Engelshoven, J.M. Miss rate of lung cancer on the chest radiograph in clinical practice.
Chest 1999, 115, 720–724. [CrossRef] [PubMed]

39. Azad, R.; Asadi-Aghbolaghi, M.; Fathy, M.; Escalera, S. Bi-directional convlstm u-net with densley connected convolutions.
In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Korea, 27–28 October 2019.

40. Seo, H.; Huang, C.; Bassenne, M.; Xiao, R.; Xing, L. Modified U-Net (mU-Net) with incorporation of object-dependent high level
features for improved liver and liver-tumor segmentation in CT images. IEEE Trans. Med. Imaging 2019, 39, 1316–1325. [CrossRef]

http://dx.doi.org/10.1007/s11548-018-1797-4
http://dx.doi.org/10.1016/j.media.2019.101592
http://www.ncbi.nlm.nih.gov/pubmed/31760194
http://dx.doi.org/10.3390/jimaging6070065
http://dx.doi.org/10.1016/S1470-2045(15)70057-4
http://dx.doi.org/10.1148/radiol.2017162894
http://www.ncbi.nlm.nih.gov/pubmed/28650738
http://dx.doi.org/10.1109/TNNLS.2018.2876865
http://dx.doi.org/10.1378/chest.115.3.720
http://www.ncbi.nlm.nih.gov/pubmed/10084482
http://dx.doi.org/10.1109/TMI.2019.2948320

	Introduction
	Related Work
	Medical Imaging
	Nonmedical Imaging

	Method
	Target Localization
	Detailed Segmentation

	Data
	Experiments and Results
	Training
	Experimental Setup
	Results

	Discussion
	Conclusions
	References

