Hindawi

Computational Intelligence and Neuroscience
Volume 2020, Article ID 9601389, 14 pages
https://doi.org/10.1155/2020/9601389

Research Article

Remaining Useful Life Estimation Using Deep Convolutional
Generative Adversarial Networks Based on an

Autoencoder Scheme

Guisheng Hou, Shuo Xu

» Nan Zhou, Lei Yang, and Quanhao Fu

College of Economics and Management, Shandong University of Science and Technology, Qingdao 266590, China

Correspondence should be addressed to Shuo Xu; 646983414@qq.com

Received 21 December 2019; Revised 4 July 2020; Accepted 13 July 2020; Published 1 August 2020

Academic Editor: Anastasios D. Doulamis

Copyright © 2020 Guisheng Hou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Accurate predictions of remaining useful life (RUL) of important components play a crucial role in system reliability, which is the
basis of prognostics and health management (PHM). This paper proposed an integrated deep learning approach for RUL
prediction of a turbofan engine by integrating an autoencoder (AE) with a deep convolutional generative adversarial network
(DCGAN). In the pretraining stage, the reconstructed data of the AE not only participate in its error reconstruction but also take
part in the DCGAN parameter training as the generated data of the DCGAN. Through double-error reconstructions, the ca-
pability of feature extraction is enhanced, and high-level abstract information is obtained. In the fine-tuning stage, a long short-
term memory (LSTM) network is used to extract the sequential information from the features to predict the RUL. The ef-
fectiveness of the proposed scheme is verified on the NASA commercial modular aero-propulsion system simulation (C-MAPSS)
dataset. The superiority of the proposed method is demonstrated via excellent prediction performance and comparisons with
other existing state-of-the-art prognostics. The results of this study suggest that the proposed data-driven prognostic method

offers a new and promising prediction approach and an efficient feature extraction scheme.

1. Introduction

As the demand for reliability and efficiency in maintenance
technical areas is increasing, prognostic and health man-
agement (PHM) has received significant attention. PHM is
not only able to decrease the rate of accidents occurring and
prolong the lives of devices by replacing old or broken
components with new ones earlier but also able to avoid
wasting resources by canceling unnecessary maintenance
activities [1]. The most common task of PHM is to predict
the remaining useful life (RUL) of important components
and systems in different environments. RUL is the length of
time from the current time to the time that the components
or systems break down. If the RUL of the components or
systems can be predicted accurately, appropriate mainte-
nance actions can be scheduled proactively to avoid cata-
strophic failures and minimize the economic losses of
systems [2]. This paper proposes a novel deep learning

scheme for improving RUL estimation. The DCGAN-based
AE model is trained in an unsupervised way to convert the
multisensor (high-dimensional) readings collected from
historical run-to-failure instances (i.e., multiple units of the
same system) to low-dimensional features, which include
important degradation information of the original data.
Then, a long short-term memory (LSTM) network is used to
capture the sequential information from the extracted
representations to predict the RUL.

Generally, the methods of dealing with RUL prediction
problems can be categorized into model-based approaches,
sensor-based data-driven approaches, and hybrid ap-
proaches. For model-based methods, it is difficult to model
extremely complicated systems, such as aircraft systems.
Moreover, model-based methods require a large amount of
prior knowledge and expertise, which limit the effectiveness
of these methods. For sensor-based data-driven approaches,
the availability of sufficient information is the necessary


mailto:646983414@qq.com
https://orcid.org/0000-0001-7985-5463
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9601389

condition to maximize their powerful processing capability.
Fortunately, it is quite common in the current era for a large
number of sensors to be installed to monitor the operational
behaviors of a system. These data records are historical
observations that can be exploited as useful information.
Hybrid methods usually combine the two aforementioned
methods. However, it still remains very challenging to utilize
the advantages and avoid the disadvantages of both ap-
proaches. Therefore, the method adopted in this paper is a
data-driven approach.

Currently, most data collected in real-life PHM appli-
cations are high-dimensional. Due to their complicated
environment, monitoring data are subjected to several op-
erating conditions and fault modes, increasing the inherent
degradation complexity and the difficulty of directly dis-
covering clear trends in the input data for the prognostic
algorithm. To cope with this issue, feature extraction is a
necessary procedure to capture useful information from
high-dimensional data efficiently [3]. Among the deep
learning architectures, convolution neural networks (CNNs),
which are specifically designed for variable and complex
signals, are the basis of the feature extraction in this study.

The CNN was first proposed by LeCun et al. for image
processing [4]. The ability of the CNN to maintain data
information regardless of scale, shift, and distortion in-
variance is presented. CNNs not only performed excellently
on computer vision tasks [5], such as object recognition [6]
and face recognition [7], but also can be applied to multi-
channel sequential sensor data. The deep CNN architecture
has been proven to be effective for extracting abstract in-
formation by Li et al. [8]. Five convolution layers are stacked
to learn the high-level representations from different sensor
measurements, and a good prognostic performance is
achieved. Since the deep CNN structure has shown a re-
markable feature extraction ability [9], it is chosen as the
basic tool to capture high-level abstract features in this study.

An autoencoder neural network [10] is another repre-
sentation extraction method, whose architecture consists of
an input layer, a hidden layer, and an output layer. The AE is
a neural network based on an unsupervised learning algo-
rithm that can convert input data into a lower-dimensional
representation. Malhotra et al. proposed an LSTM-based
autoencoder scheme to obtain an unsupervised health index
(HI), which is used to predict the RUL via comparisons. The
experimental results showed that this method performs
better than other methods [11]. Ren et al. utilized the AE to
construct a multidimensional feature extraction model that
represents battery health degradation. Next, the higher RUL
prediction accuracy of the lithium-ion battery is obtained by
the deep neural network [12].

To extract more degradation-related features, a deep
CNN is embedded in the AE as the basic neural network
architecture. It is difficult for the AE to extract deeper ab-
stract information in a single-error reconstruction process.
To strengthen the feature extraction capability of the AE, it is
used as a generator to participate in the training process of
the DCGAN, and its parameters are trained and optimized
again. Through double-error reconstructions, the high-level
abstract representation is captured and revealed the

Computational Intelligence and Neuroscience

underlying correlations and causalities in the collected
sensor data. Generative adversarial networks (GANs) were
proposed by Goodfellow et al. [13] in 2004 as a new
framework for estimating generative models via an adver-
sarial process. GANs have achieved impressive results in
image generation [14] and image editing [15]. The DCGAN
[16] has a more stable architecture than a GAN by applying
some constraints on GANs. While the DCGAN has shown a
strong data generation ability, very limited research can be
found on its applications to machinery RUL prediction
problems to extract high-level abstract features.

As one of the most complex systems, aircraft systems
have always been a focus of health monitoring. The engine is
one of the most important components for determining the
health and life of an aircraft. Hence, there is always a pressing
need to develop new approaches to better evaluate engine
performance degradation and estimate its RUL. Our work
meets this need by proposing a new deep learning model.

In this paper, the time window approach is employed to
prepare samples to conduct better feature extraction via the
DCGAN based on an AE pretraining model. Raw sensor
measurements with normalization are directly used as inputs
to the proposed model, and no prior expertise on prog-
nostics or signal processing is required, which facilitates the
industrial application of the proposed method. After high-
level abstract features are extracted by the pretraining model,
the associated RUL is estimated based on the learned rep-
resentations via an LSTM. Through a double-nested error
regression, more degradation-related features can be
exploited in the pretraining stage, which is helpful for the
whole algorithm to better understand the underlying deg-
radation phenomena.

In view of the effectiveness of our proposed pretraining
model, the proposed method is expected to obtain a higher
prognostic accuracy than other deep learning methods. A
comprehensive analysis of the proposed approach and
comparisons with existing methods are presented in this
study. The results are verified on four different simulated
turbofan engine degradation datasets from the publicly
available commercial modular aero-propulsion system
simulation (C-MAPSS) dataset produced and provided by
NASA [17]. This study’s main contributions are as follows:

(1) This paper innovatively integrates an AE and a
DCGAN as a pretraining model, which greatly en-
hances the ability of feature extraction. Through
double-error reconstruction, the generated data are
closer to the original data so that the intermediate
features extracted by the encoder contain more
useful information of the original data. Although the
simple LSTM and fully connected neural networks
(FNNs) are chosen as the fine-tuning stage, better
prediction performance is still achieved, which
proves the effectiveness of our proposed pretraining
model. It is suitable not only for engine datasets but
also for other datasets as a feature extraction
framework. This work could provide a new per-
spective to study unsupervised feature representa-
tion methods.



Computational Intelligence and Neuroscience

(2) The proposed new algorithm achieves the RUL
prediction performance compared to other com-
parative algorithms with several operating condi-
tions and fault modes. The proposed algorithm is
appropriate for RUL prediction. Higher prediction
accuracy allows an enterprise to arrange mainte-
nance activities in advance, which improves the
reliability of the system and the economy of the
enterprise.

The remainder of this paper is structured as follows.
Related work on RUL prediction is introduced in Section 2.
The proposed deep learning structure and the necessary
constituent components are described in Section 3. In
Section 4, the experimental results and evaluations are
compared with other popular methods to show the effec-
tiveness and superiority of the proposed architecture. Fi-
nally, conclusion and discussion are provided to close the

paper.
2. Related Work in the C-MAPSS Dataset

The C-MAPSS dataset has been extensively used to evaluate
the effectiveness of deep learning algorithms for RUL esti-
mation. This section reviews the most recent studies con-
ducted using the C-MAPSS dataset. Then, the proposed
method is briefly introduced, which is compared with these
studies in a later section.

2.1. Related Work. In most PHM applications, sensor data
are easy to obtain for intelligent machine health monitoring.
Sequential data are the common format of input data. In
deep learning, the recurrent neural network (RNN) [18] is an
important technique to deal with sequential data, and it has
been widely used to generate sequences in domains in-
cluding speech recognition and text translation. However,
the RNN lacks the capability to learn long-term depen-
dencies because of the vanishing and exploding gradient
issue. Its variant—LSTM [19]—which contains a memory
cell that regulates the information flow in and out of the
cell—can deal with the problem of the RNN well. Zheng et al.
[20] proposed a model that combines multiple layers of
LSTM cells with standard feedforward layers to reveal
hidden patterns within the sensor and operational data. The
model showed better performance than the multilayer
perceptron (MLP), support vector regression (SVR), and
relevance vector regression (RVR). Another LSTM approach
in which dynamic technology was used to extract new
features from raw sensor data before the training procedure
was proposed by Wu et al. [21]. This method provides the
RUL estimation using a vanilla LSTM and obtains a higher
prediction accuracy than the standard RNN and gated re-
current units (GRU) LSTM under the same number of
hidden neurons in a single layer.

To deal with sequential information more effectively, a
CNN can be used to extract abstract features before LSTM
layers. Although CNNs have performed excellently on
computer vision tasks, such as object recognition [22] and
face recognition [7], CNNs can also be applied to

multichannel sequential sensor data. Babu et al. [23] pro-
posed a novel model that includes two layers with convo-
lution and average-pooling modules and an FNN to perform
RUL predictions. Another CNN approach in which a time
window approach was employed for sample preparation was
provided by Li et al. [8]. Five convolution layers are stacked
in the network, and the final feature map is the same size as
the input because of zero padding. The higher prediction
accuracy is demonstrated by comparisons with the RNN,
LSTM, and so on.

It is easier to capture the latent representation of the
original data in the form of a pretrained model. Thus, a
semisupervised learning method is suitable for RUL esti-
mation. Ellefsen and colleagues [24] introduced a semi-
supervised architecture to predict the RUL in which a
restricted Boltzmann machine (RBM) [25] serves as the
initial pretraining stage to extract degradation information
from unlabeled sensor data. To tune the hyperparameters in
the training stage, a genetic algorithm (GA) approach is
applied, which achieves a higher prediction accuracy than
the popular supervised learning. Moreover, Yoon et al. [26]
described a semilearning approach that uses nonlinear
embedding based on the variational autoencoder (VAE)
model. With this approach, they achieved good prediction
performance, even when the available label information was
highly limited.

To improve the efficiency of solving problems, different
deep learning tools are combined. Yu et al. obtained one-
dimensional HI values from sensor data via the bidirectional
RNN-based autoencoder, which represents the degradation
patterns of the units of the system. Then, they used the
similarity-based curve matching technique to estimate the
RUL [27]. Zhang et al. combined the deep belief network
(DBN) training technique with a multiobjective evolution-
ary algorithm to evolve multiple DBNs with varying accu-
racies and diversities. Then, an ensemble model is created by
evolved DBNSs to predict the RUL [28]. The recent studies are
summarized in Table 1.

2.2. Proposed Methodology. As stated previously, there is
great potential to improve the RUL estimation accuracy by
extracting intermediate representations. This paper proposes
a new double-nested pretraining model that enhances the
quality of the extracted intermediate representation. As
shown in Figure 1, the pretraining model is composed of a
DCGAN based on an AE scheme in which the AE is em-
bedded in the DCGAN as the generator. The key to the
success of a GAN is the concept of adversarial loss, which
forces the generated data to be, in principle, indistin-
guishable from real data. The proposed pretraining model
combines the adversarial loss of the DCGAN with the error
reconstruction of the AE to learn the mapping such that the
generated data are hard to distinguish from raw data.
Through double-error training, the generated data are closer
to the original data, which ensures that the intermediate
features extracted by the encoder contain important original
information. Next, to highlight the efficiency of the extracted
abstract features, the simplest two-layer LSTM is used to



TaBLE 1: Recent deep learning (DL) approaches proposed for RUL
predictions on the C-MAPSS dataset (the years between 2016 and
2019).

Authors and references Year Approach

Babu et al. [23] 2016 CNN + FNN
Zhang et al. [28] 2016 MODBNE

Zheng et al. [20] 2017 LSTM + FNN
Li et al. [8] 2018 CNN + FNN
Yu et al. [27] 2019 BiLSTM-ED
Ellefsen et al. [24] 2019 RBM + LSTM

further capture the temporal information of the features
instead of the bidirectional LSTM in the supervised learning
stage. Finally, the following fully connection layers predict
the target RUL.

The specific flowchart of the proposed method is illus-
trated in Figure 2. Before inputting the engine data into the
model, the data are first preprocessed, including data se-
lection, fusion, and standardization. The specific content is
introduced in detail in the experimental study section. The
training data and test data are prepared with the sliding
window method. Then, the pretraining model is trained first
to obtain latent features. The target RUL is output via su-
pervised learning in the fine-tuning stage. After training is
completed, the test data are input into the model to predict
the RUL and verify the prediction performance.

The monitoring data of complex systems, such as engine
data, have the characteristics of high dimensions. Due to the
influence of various operational conditions and fault modes,
it is difficult for the model to directly capture the hidden
degradation trend in data, which decreased the prediction
accuracy of the model. Therefore, it is necessary to perform
high-level feature extraction on the data. The pretraining
model proposed in this paper combines a DCGAN and an
AE to form a double-nested feature extraction structure,
which greatly improves the quality of the extracted features
and thus improves the prediction accuracy of the model.

Aircraft engines are typical complex systems. C-MAPSS
is the benchmark dataset for detecting the prediction per-
formance of the RUL of aircraft engines. It includes software
simulated data of the failures and degradation of large
commercial turbofan engines under different operating
conditions. Our comprehensive experiments and compari-
sons with recently proposed RUL estimation algorithms
developed based on this dataset show the superiority. The
details of the comparison are shown in a later section.

3. Constituent Components and the
Proposed Scheme

This section introduces the necessary components of the
proposed model architecture. First, the main deep learning
tools are introduced, including the CNN, autoencoder,
LSTM, and DCGAN. Next, the architecture of the proposed
model is elaborated.

3.1. Convolutional Neural Network. The CNN was first
proposed by LeCun for image processing, and the network
has three characteristics, i.e., local receptive fields, tied

Computational Intelligence and Neuroscience

weights, and spatial subsampling [29]. CNNs have achieved
significant success in the field of computer vision [30], where
input data are 2-dimensional (2D). A CNN is also useful
when input data are 1-dimensional (1D) [31, 32], which is
why CNNs are utilized in natural language processing and
speech recognition [33, 34]. A classical convolutional
module consists of convolutional layers and pooling layers in
which multiple filters extract spatial features, and pooling
operations choose the most significant information. Actu-
ally, the pooling layers are increasingly replaced by strided
and fractionally strided convolutions to maintain more
useful information from the feature maps. Johnson et al. and
colleagues [35] trained a feedforward transformation net-
work with a perceptual loss function that improved the style-
transfer and single-image super-resolution performances.

In this study, the input data are prepared in a 2D format,
where one dimension is the number of sensors, and the other
is the time sequence of each feature. Despite the fact that the
sources of the collected features are different sensors, the
relationship between the spatially neighboring features in
the data sample is not remarkable. Thus, the convolution
filters in the proposed model are considered to be 1-di-
mensional (1D) in the first four layers. In the following, the
1D CNN is briefly introduced.

First, the input sequential data are assumed to be x =[x,
... x|, where T is the length of the sequence. The con-
volution operation in the convolutional layer is determined
by using multiplication between a kernel w € RP*!, where D
is the kernel size; the concatenation vector representation
X%, p_y is given by the following:

t t t t
Xiirp-1 = X; @ X & @ X p s (1)
where x!,, , | represents a window of length D that starts
from the ith point and @ concatenates each data sample into
a vector. Therefore, the convolution operation is defined as

follows:
Zf = (P(walt’:i+D—l + b)’ (2)

where superscript T denotes the transpose operator and
{b, ¢} are, respectively, the bias and nonlinear activation
functions. By denoting z] to represent the learned feature of
kernel w on the subsequence x!, , , and by sliding the
filtering window from the first point to the last point in the
sampled data, the feature map z; of the jth kernel can be
captured and is expressed as follows:

t ¢t t T
z]-—[zl,zz,...,zl_DH] . (3)

3.2. Autoencoder. An autoencoder (AE) is a typical unsu-
pervised learning method aimed to extract abstract repre-
sentations from raw data, and it includes three essential
parts: an encoder, representations, and a decoder. The input
data X are processed by an encoder to obtain the hidden
representation z that contains abstract information:

z=¢(X), (4)



Computational Intelligence and Neuroscience

Multi-LSTMs

Multi-FNNs > RUL

Encoder

Decoder

—=| Discriminator - Real/fake

| I

FiGure 1: The architecture of semisupervised learning.

C-MAPSS dataset

'

normalization

Data selection, mergence, and

:

Prepare training and testing datasets

Pretrained DCGAN model

fine-tuning

Load pretrained DCGAN model and

Train DCGAN model with unlabeled
training datasets

‘ Optimize prediction error

Maximum steps

Yes

No

Finishing training model

|

Input testing datasets

:

Predict the RUL

FiGure 2: Flowchart of the proposed architecture for prognostics.



where ¢ is a nonlinear activation function. Then, the decoder
maps representation z to the outputs, which is similar to the
input data:

H=9¢'(z2), (5)

where ¢’ is a nonlinear activation function. By minimizing
the reconstruction error between the input data X and the
output H, the representation z can be regarded as the high-
level abstract features of the input data that contain the
important original information. The representations
extracted by the AE have been utilized to process RUL
prediction problems, such as in [36, 37].

3.3. Long Short-Term Memory. An LSTM is a variant of an
RNN that aims to address sequential data. LSTMs have
achieved great success on speech recognition and machine
translation [38]. By controlling the information flow via an
input gate, forget gate, and output gate, LSTMs overcome
the shortcoming of the RNN, which is not able to deal with
long-term time dependency.

The core structures of an LSTM cell are three nonlinear
gating units. Forget gates control the forget rate of the last
cell information and are denoted as f,:

ftz‘f(Wf‘ [ht—l’xt]+bf)' (6)

Input gates (i,) decide how much new information can
be added:

i =o(W;- [ x,] +b). (7)

Output gates (o) are responsible for the output pro-
portion of cell memory:

o, =0(W,- [, x,] +b,), (8)

where o is the sigmoid gate activation function that obtains a
scaled value between 0 and 1; W ., W,, and W, are the input
weights; by, b;, and b, are the bias weights; and - is the matrix
multiplication of two vectors. The new candidate state
values, C,, are created by the tanh layer:

C,=tan h(W,- [h_;,x,] +b.). (9)

The candidate state values C,are combined with the
previous cell state C,_; to generate the new cell state C,:

Ct:ft*ct—l+it*6t’ (10)

where * denotes elementwise multiplication of two vectors.
The forget gate f, keeps a portion of the historical infor-
mation. Then, the input gate i, determines which new in-
formation in C, will be updated and saved in C,.

The output gate, o,, decides how much the memory cell
C, will output. C, ranges from —1 to 1.

h, = o, * tan h(C,). (11)

Through these steps, the LSTM cell is updated in every
step.

Computational Intelligence and Neuroscience

4. Generative Adversarial Network and Deep
Convolutional Generative
Adversarial Network

The core idea of the GAN is the adversarial loss formulated
by the generator model G and the discriminator model D.
The generator G is used to generate an image from random
noise to try to cover the real-data distribution. In addition, D
tries to determine whether the image comes from real
datasets or generated by G.

G and D formulate the two-player mini-max game in
which G tries to capture the distribution of real data x to fool
discriminator D, and D is trained to detect whether the
generator’s output is fake. To achieve the goal mentioned
above, D is trained to maximize log{D(x)}, and the pa-
rameters of G are adjusted to minimize log(1 — D (G (z))).
The total adversarial loss can be described as follows:

minmaxV (D, G) = E,_, gua (x) [l0g D (x)]
G D (12)
+E,p (»[log(1 - D(G(2)))].

DCGANSs have a more stable architecture than GANs via
five improvements. First, the pooling layers are replaced
with strided convolutions (discriminator) and fractional-
strided convolutions (generator). Second, the batch nor-
malization method is used in both the generator and the
discriminator [39]. Third, the fully connected hidden layers
for deeper architectures are removed. Fourth, rectified linear
unit (ReLU) activation is used in the generator for all layers
except for the output, which uses tanh [25]. Finally, Lea-
kyReLU activation is utilized in the discriminator for all
layers.

4.1. The Proposed Model Architecture. Temporal sequence
data provide more information in comparison to a multi-
variate data point sampled at a single time step. In the
proposed architecture, therefore, a sliding window strategy
is adopted to use multivariate temporal information effi-
ciently. The input of the proposed model is a 2D matrix x;
containing x,,, (the size of the sliding window) with x ¥ (the
number of the selected features). Different values of x ¢ are
considered for different subdatasets of the C-MAPSS dataset.
For subsets FD001 and FD0O03, the value of x f is set equal to
16, and the value of x; for subsets FD002 and FD004 is 24.
X, is equal to 32 for all subsets. Moreover, the step size of
the sliding window is chosen to be 1. The segmented
multivariate time series matrix (x; x x,) is fed into the
proposed model.

The proposed architecture structure is shown in Figure 1.
To learn the abstract representations of input data x, the
DCGAN model is pretrained using unsupervised learning
before the prediction of the RUL. The generator of the
DCGAN is composed of an AE architecture in which the
encoder is used to generate hidden representations of input
data, and the decoder reconstructs input data to fool the
discriminator. The generation error and reconstruction
error are utilized together for feature extraction. Through
the dual optimization of the DCGAN and AE, the



Computational Intelligence and Neuroscience

representations extracted by the encoder can capture more
useful information than only one. Then, the LSTM and FNN
are combined to output the target RUL in the fine-tuning
stage.

Considering that the input data are collected from dif-
ferent sensors, four convolutional layers with 1-dimensional
convolution filters and zero paddings are stacked to extract
the degradation information inside every sensor observation
in the generator. The first four CNN layers consist of 10
filters (16x1). The relationship between the spatially
neighboring features in the data sample is captured by three
stride-2 convolutions with 18 x 4 filters. The ReLU function
is used for the convolution layers. Seven total convolutional
layers constitute the encoder of the AE model. The structure
is shown in Figure 3.

To maintain the same size of the raw data x for the output
data, three (1/2)-stride convolutions are stacked in the
decoder. All convolutional layers in the AE employ the ReLU
as the activation function, except that the last convolutional
layer of the decoder uses the tanh function. Moreover, the
discriminator has the same configurations as the encoder
except for the activation function. The tanh function is used
for the final convolution layer. The discriminator D is used to
distinguish the input data x from the generated data. When
D fails to discriminate the generated data, the generator is
successful at capturing the real distribution of the real data,
which means that the extracted representation z consists of
the important information of the real data. It is meaningful
to predict the RUL.

Note that the dropout technique is used in the first
convolutional layer in the decoder and the first FNN to
relieve overfitting [40]. Both the generator and the dis-
criminator use convolution-BatchNorm-ReLu modules ex-
cept for the output layers. Moreover, the Xavier normal
initializer is utilized for the weight initializations [41]. The
RMSprop algorithm [42] is employed for optimizing the
adversarial loss in the unsupervised pretrained process.

In the supervised stage, two LSTM layers are used to
reveal the hidden sequential features of the representation z
generated by the pretraining stage. Each of the two layers is
defined by a 64-cell structure. Repeating cells within each
LSTM layer have the same structure and parameter values.
Then, two FNNs are stacked to map all the extracted features
to the RUL. To improve the prognostic accuracy, a fine-
tuning process algorithm is applied via backpropagation
(BP) [43], where the parameters of the supervised learning
model are updated to minimize the prediction error. The
Adam algorithm is employed for optimization [44]. The
entire process of model training is shown in Algorithm 1.

5. Experimental Study

In the following experimental study, the performance of the
proposed framework is evaluated. First, we introduce the
C-MAPSS dataset, which has been adopted by many studies.
Then, the details of the experimental setup are elaborated.
Finally, comparison results are shown and discussed. All the
experiments are run on an Intel(R) Core(TM) i7-8550U with
8GB of RAM and the Microsoft Windows 10 operating

Kernel = [16, 1], stride = 1

Four layers —<

feef — — — |

Kernel = [16, 1], stride = 1

\

Kernel = [18, 4], stride =2

Three layers —

-y — — —

Kernel = [18, 4], stride =2

Figure 3: The architecture of the encoder.

system. The programming languages for the deep learning
are “TensorFlow” version 1.13.1 and Python 3.5 [45].

5.1. C-MAPSS Dataset. C-MAPSS is a dataset that simulates
the effects of faults and deterioration under different op-
erating conditions in the five main rotating components
(fan, low-pressure compressor, high-pressure compressor,
high-pressure turbine, and low-pressure turbine) found in a
large commercial turbofan engine. The C-MAPSS dataset
consists of 4 subsets, which are divided into training datasets
and test datasets. Each subset includes 26 columns: the
number of engines, operational cycles, three operational
sensor settings, and 21 sensor measurements that give 21
types of measurements from 21 sensors. A description of the
sensed engine variables can be found in Table 2. The three
operating mode indicators are altitude, Mach number, and
throttle resolver angle, which determine different flight
conditions of an aero-engine.

In addition, different subsets have different numbers of
engines whose operational cycles vary. Each engine starts
with different degrees of initial wear and manufacturing
variation that are unknown and considered to be healthy. As
the operating time increases, the engines start to degrade at
some point. The degradation in the training datasets grows
in magnitude until a failure occurs, while the degradation in
the test datasets ends sometime prior to the occurrence of a
failure, which is the RUL. The purpose of the proposed
algorithm is to predict the RULs of the test datasets. To
access the prediction accuracy, the true RUL targets of the
test datasets are provided.

The basic information of the datasets is given in Table 3.
Specifically, FDOO1 represents a situation in which a fleet of
engines suffered a high-pressure compressor failure with a
single operating condition, FD002 represents a situation in
which the engines suffered a high-pressure compressor
failure with six operating conditions, FD003 is the situation



8 Computational Intelligence and Neuroscience

Phase 1 DCGAN based on AE Modeling
Input: sliding window training data x; € X
Initialize: CNN layer parameters, batch size, learning rate
repeat
Generation losses = generator loss + reconstruction loss of AE
Discrimination loss = discriminator error of real data + discriminator error of
generative data
Update Generator and Discriminator parameters using RMSprop optimizer separately
until Maximum iterations
return Trained DCGAN-AE model
end
Phase 2 Supervised Learning Stage
Input: training data and label RUL x; € X, y; € Y
Initialize: LSTM layer parameters, FNN layer parameters, dropout rate
repeat
Extracted representations « Pretraining DCGAN-AE model
Conducting LSTM operations with the representations (dropout rate is
employed to avoid the overfitting problem)
FNN is used for RUL estimation
Compute losses between predicted RUL with label RUL
Update parameters using Adam
until Maximum iterations
return Trained RUL prediction model

end
ALGoriTHM 1: Outline of proposed model training for RUL estimation.
TaBLE 2: Variables of the C-MAPSS dataset.

Sensor data number Description Units
1 Total temperature at the fan inlet ‘R

2 Total temperature at the low-pressure compressor outlet ‘R

3 Total temperature at the high-pressure compressor outlet ‘R

4 Total temperature at the low-pressure turbine outlet ‘R

5 Pressure at the fan inlet psia
6 Total pressure in bypass-duct psia
7 Total pressure at the high-pressure compressor outlet psia
8 Physical fan speed rpm
9 Physical core speed rpm
10 Engine pressure ratio —
11 Static pressure at the high-pressure compressor outlet (Ps30) psia
12 Ratio of fuel flow to Ps30 pps/psi
13 Corrected fan speed rpm
14 Corrected core speed rpm
15 Bypass ratio —
16 Burner fuel-air ratio —
17 Bleed enthalpy —
18 Demanded fan speed rpm
19 Demanded corrected fan speed rpm
20 High-pressure turbine coolant bleed Ibm/s
21 Low-pressure turbine coolant bleed Ibm/s
in which a fleet of engines suffered high-pressure com- In the training process, all the available engine mea-
pressor and fan degradations with a single operating con-  surements are used as the training samples, and the cor-

dition, and FDO004 is the situation in which a batch of engines ~ responding RUL labels obtained from a piecewise linear
suffered high-pressure compressor and fan degradations  degradation model are regarded as the targets [47]. During
with six operating conditions (see [46] for more details). the test stage, the performance at the last time step for each



Computational Intelligence and Neuroscience

engine is generally used as the testing sample. The actual
RUL of the testing samples is provided to calculate the
prognostic accuracy.

5.2. Feature Selection. Sensors 1, 5, 6, 10, 16, 18, and 19 in
subsets FD001 and FDO003 exhibit constant sensor mea-
surements throughout the engine’s lifetime, which are not
important for RUL estimation. In addition, subsets FD001
and FDO003 are subject to a single operating condition.
Hence, the three operational settings are excluded. Ac-
cordingly, sensors 2, 3,4,7,8,9, 11,12, 13, 14, 15, 17, 20, and
21 are used as the input features for subsets FD001 and
FDO003. However, to make the output data generated by the
decoder maintain the same size as the input data, one of the
constant sensor measurements needs to be used. Any one of
six constant sensors is sufficient, and thus, sensor 19 is
chosen is this paper.

The three operational settings cannot be excluded due to
the six operating conditions in subsets FD002 and FD004.
Only sensor 1 is dropped from the constant measurements
to recover the input data in the generator. In fact, any one of
the constant sensor measurements is sufficient.

5.3. Merging of Training Datasets. It is obvious that FDO0OI,
FD002, and FD003 are particular cases of FD004 [48]. There
is an increasing order of complexity from FD001 to FD004.
To obtain better results and demonstrate the generalization
capacity, simple datasets can be merged into complex ones to
increase the sizes of the datasets when the representation is
abstracted in the unsupervised training stage. However, the
test datasets are not merged because the goal of this paper is
to demonstrate the superiority of the proposed method over
other methods.

No datasets are merged with dataset FDOOI since it is
useful to test the generalization capacity of the model in the
simplest case. Moreover, the algorithm needs to generalize
more complex cases, such as FD002 and FD004, in which all
the subdatasets are used for their unsupervised training. For
dataset FD003, FDO0O1 is merged with it for the sake of
measuring the capability of dealing with multiple fault
modes [49].

5.4. Data Normalization. For each of the 4 subdatasets in
C-MAPSS, the collected measurement data from each sensor
are normalized to be within the range of [-1, 1] using the
min-max normalization method:
G
ij o _ z(xl] - xmin) 1
norm j j - b
max = Xin

Vi, j, (13)

where x*/ denotes the original i-th data point of the j-th

sensor and xpl.m is the normalized value of x*/. x.x and

x! . denote the maximum and minimum values of the

original measurement data from the j-th sensor, respectively.

5.5. Label Training Datasets. True RUL labels are not pro-
vided in the training sets; they are only provided at the last
time step for each engine in the test sets. To construct labels

120

100

80

RUL

60

40

20

0 50 100 150 200 250

Operational cycle

FIGURE 4: Illustration of the piecewise linear degradation function.

15 4
14
513 A
=
~
12
11
115 120 125 130
Initial constant RUL

FiGUre 5: Prediction performance of different RUL values on
FDOO1.

140

120

100

> ()] o
(=} (=} S

Performance metric value

N3
S

S

-40 -20 0 20 40
Error value

—— RMSE
S

F1GURE 6: Difference between RMSE and S with respect to different
errors.

for every time step for each engine in the training sets, a
piecewise linear degradation model has been validated to be
suitable and effective to label training datasets [50]. In



10

12.75
12.50
12.25
12.00
11.75

RMSE

11.50
11.25
11.00
10.75

128 256 384 512 640 768 896 1024

Batch size

()

Computational Intelligence and Neuroscience

RMSE

(64, 32) (128, 64) (256, 128)

Hidden size of LSTM and FNN
(b)

(32, 16)

FIGURE 7: Prediction performances of different hyperparameters in FDO001. (a) Prediction accuracy of different batch sizes in FD001. (b)

Prediction accuracy of different hidden sizes in FDOO1.

TaBLE 3: Details of the C-MAPSS dataset.

Dataset FDO001 FD002 FDO003 FDO004
Engines of the training set 100 260 100 249
Engines of the test set 100 259 100 248
Fault modes 1 1 2 2
Operational modes 1 6 1 6
Training samples (default) 17,731 48,819 21,820 57,522
Testing samples 100 259 100 248

general, an engine works normally in the early stages and
degrades linearly afterward and is assumed to have a con-
stant RUL label in the initial period (Figure 4).

This piecewise linear RUL target function is the most
common approach in previous studies. Based on previous
studies, the choice of the initial constant RUL is mainly
divided into four types, namely, 115, 120, 125, and 130. The
experimental results of the four parameter settings are
shown in Figure 5. It is clear that the prediction performance
is the best when RUL is set to 120.

5.6. Performance Metrics. For the sake of comparability with
other algorithms, the same performance metrics are used to
evaluate the prediction accuracy. The formulas for the
scoring function (S) and root mean square error (RMSE) are
provided in Saxena et al. [46]:

5 (-(@1), ford, <o,

i=1

3 e(-(419)  ford, >0,
i=1 (14)

RMSE =

where n is the total number of true RUL targets in the
respective test set and d; = RUL — RUL,,,.. The RMSE

predicted true*

gives an equal penalty to early and late predictions. The
scoring function penalizes late predictions more than early
predictions because late predictions usually lead to more
severe consequences in many fields, such as the aerospace
industry. In comparison, early predictions pose less risk, but
they lead to greater costs. Nevertheless, the main objective is
to achieve the smallest value possible for both S and RMSE,
that is, when the error value d; = 0. Figure 6 shows the
details.

5.7. Configuration of the Proposed Architecture. First, the
C-MAPSS subdatasets are preprocessed as mentioned above.
The normalized data are sent to the initial DCGAN based on
the AE pretrained model to extract high-level abstract
representations, which are used to predict the RUL. Due to
the large amount of data, minibatches are used to train the
model. The value of the hyperparameter batch size has an
impact on the prediction performance. We choose common
values for the experiment (values: 128, 256, 512, and 1024).
The results are shown in Figure 7(a). It is obvious that the
best performance is obtained when 512 is selected. Three
thousand batches are generated to train the initial pretrained
model.

Then, the extracted features are utilized by two LSTM
layers and two FNN layers to predict the RUL. To achieve
better prediction performance, four commonly used hidden
node numbers are evaluated ((32, 16), (64, 32), (128, 64), and
(256, 128)). When the hidden nodes of the LSTM and FNN
are 64 and 32, respectively, the highest prediction accuracy is
achieved (see Figure 7(b)). Since the last layer of the FNN
outputs the target RUL, the hidden size is set to 1. Back-
propagation learning is used to fine-tune the weights in the
network. The Adam optimization algorithm is used with
minibatches for the updates. For the sake of stable con-
vergence, the learning rate is 0.0002.

The hyperparameter p for the dropout technique is used
to randomly drop units during training. In this way, dropout
approximately combines an exponential number of different
architectures, which enhances the feature extraction ability



Computational Intelligence and Neuroscience

120 A

100 A

80

60

40

Remaining useful life

20

0 20 40 60 80 100
Test unit with increasing RUL

—— Actual

—— Prediction

120 -
o 100 -
£ 801
w
=
2 60
£
<
E 40
o~

20 1

0

0 20 40 60 80 100
Test unit with increasing RUL

—— Actual

—— Prediction

()

11

120

100

80 +

60 4

40 +

Remaining useful life

20 +

0 50 100 150 200 250
Test unit with increasing RUL

—— Actual

—— Prediction

(®)

Remaining useful life

0 50 100 150 200

Test unit with increasing RUL

—— Actual

—— Prediction

(d)

FIGURE 8: Prediction for the last recorded data point of different testing engine units in FD001-FD004: (a) prediction for the 100 testing
engine units in FD0OL1; (b) prediction for the 256 testing engine units in FD002; (c) prediction for the 100 testing engine units in FD003; (d)

prediction for the 248 testing engine units in FD004.

and alleviates overfitting. A typical value for p used in the
literature is 0.5, which is the value chosen in this paper. As
Patterson and Gibson [51] recommended, to preserve the
important extracted features, dropout is disabled in the first
layer and output layer. In the proposed method, dropout is
used in the first transposed convolutional layer of the de-
coder, the two LSTM layers, and the first fully connected
layer of the supervised architecture. The parameters of the
supervised architecture are presented (see Table 4).

In the training procedure, each complete training subset
is split into a training set and a cross-validation set. Fifteen
percent of the total time windows in the training subsets are
randomly selected for cross-validation. The remaining 85%
of the total data are designated as the training sets. After the
pretraining stage, the testing data samples are fed into the
trained network for the RUL prognostics. Finally, the target
RUL and prediction accuracy can be obtained.

6. Experimental Results and Discussion

In this section, the performance of the proposed deep
learning approach is evaluated. First, the prediction results
of four subsets are analyzed. Then, a comparison is con-
ducted with other state-of-the-art methods to show the
superiority of the proposed approach.

6.1. RUL Estimation Results. The RUL prediction results over
the four datasets (i.e., FDOO1-FD004) are presented in
Figures 8(b)-8(d). To better visualize the results, in the
figures, the testing engines are sorted in the ascending order
(from small to large). Figures 8(b)-8(d) show the prediction
results associated with the last recorded data point over the
four datasets. It is worth mentioning that the number of test
cases in each dataset is different, ranging from 100 testing



12

TaBLE 4: Default parameters of the supervised architecture.

Architecture Hidden size Dropout Activation function
First LSTM layer 64 0.5 tanh
Second LSTM layer 64 0.5 tanh
First FNN layer 32 0.5 ReLU
Second FNN layer 1 1.0 Abs

TaBLE 5: RMSE comparison with the literature on the C-MAPSS
dataset.

DL approach and references FD001 FD002 FD003 FD004
CNN + FNN (23] 18.45 30.29 19.82 29.16
MODBNE [28] 15.04 25.05 12.51 28.66
LSTM + ENN [20] 16.14 24.49 16.18 28.17
CNN + FNN (8] 12.61 22.36 12.64 23.31
BiLSTM-ED [27] 14.74 22.07 17.48 23.49
RBM + LSTM [24] 12.56 22.73 12.10 22.66
Proposed architecture 1071 1949 1148 19.71

TABLE 6: Score function comparison with the literature on the C-
MAPSS dataset.

DL approach and references FD001 FD002 FD003 FD004
CNN + ENN [23] 1287 13,570 1596 7886
MODBNE [28] 334 5585 422 6558
LSTM + FNN [20] 338 4450 852 5550
CNN + FNN [8] 274 10,412 284 12,466
BiLSTM-ED [27] 273 3099 574 3202
RBM + LSTM [24] 231 3366 251 2840
Proposed architecture 174 2982 273 3874

engines in FD0O1 and FDO003 to 256 and 248 engines in
FD002 and FDO004, respectively. It is observed that the
predicted RUL values closely follow their ground truths.

Three key points can be highlighted. First, it can be
observed that the accuracy for engines with smaller RULs is
noticeably higher, which is particularly important since a
smaller RUL means a higher probability of a potential
failure. Maintenance activities can be carried out in advance
to avoid catastrophic failures. Second, it is easy to find that
the prediction error is greater in the early stage than in the
late stage, especially when the machine is in a fresh healthy
state. That is, because each engine starts with different de-
grees of initial wear and manufacturing variations that are
unknown, the prediction error is increased in the early stage.
Third, the prediction accuracies shown in Figures 8(b) and
8(d) are poorer than the others because subsets FD002 and
FD004 are the most complex scenarios, which make them
more difficult to accurately predict the target RUL.

6.2. Comparison with the Literature. Studies that have re-
ported results on all four subsets in the C-MAPSS dataset
have been selected for comparison. Although the initial RUL
values are somewhat different, the results are still compa-
rable. As shown in Tables 5 and 6, the proposed deep ar-
chitecture achieved promising results compared with the
recent studies.

Computational Intelligence and Neuroscience

As seen from Table 5, the proposed deep architecture
indicates a substantially improved RMSE prediction accu-
racy on all subsets over the other methods. This result means
that the predicted RULs in the proposed architecture are
closer to the real RULs. Due to the high reliability re-
quirements of aircraft systems, a higher RUL prediction
accuracy means more accurate and timely maintenance,
which can greatly improve the safety of systems. In Table 6,
the proposed approach achieves a better performance in the
S metric for the FD0O1 and FDO002 subsets. Although the
remaining subsets did not reach the best performance, they
were close to the best accuracy.

Compared with these algorithms, the performance of
our model was first assessed through a parameter study only
on subset FDOO1 to find suitable key parameters, and then it
was directly applied to the other datasets without further
tuning for each dataset. More importantly, the proposed
scheme shows a good generalization capability for the other
datasets when tuned only on subset FD0OL. Based on the
comparison of the above two evaluation criteria, it can be
seen that the proposed model greatly improves the pre-
diction accuracy of the RUL of aircraft engines. However, for
the two subsets of FD002 and FD004, the inherent com-
plexity of the data increases the difficulty of extracting high-
level abstract features, so the prediction stability remains to
be improved.

7. Conclusions and Future Work

In this paper, we proposed and demonstrated a new deep
learning approach, referred to as the DCGAN-based AE
scheme, for RUL estimation from multivariate time-series
sensor signals. The DCGAN and an AE are integrated to
achieve a pretrained stage to extract high-level abstract
representations from initial data, and then a fine-tuning
stage that includes the LSTM and FNN is used to predict
RUL. The improved results have proven that the pretraining
model can capture the degradation trend of a fault, which
means the proposed method can also be used as an efficient
feature extraction scheme to solve other problems. Exper-
iments are carried out on the popular C-MAPSS dataset to
show the superiority of the proposed model. Comparisons
with several state-of-the-art approaches demonstrate better
prediction performance of the model, which proves that the
proposed data-driven prognostic method is effective and
suitable for prediction problems.

While good experimental results were obtained by the
proposed method, further optimization is still necessary.
Improving the stability of the method for complex condi-
tions is a further direction for future research. Moreover,
efforts should be made to decrease the average training time
for each subset in the future.

Data Availability

The dataset was provided by the Prognostics CoE at NASA
Ames. So, this dataset is public, and we can visit https://ti.arc.
nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
to get it. The dataset we use is the sixth in all datasets from


https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

Computational Intelligence and Neuroscience

the website, and the name is “Turbofan Engine Degradation
Simulation Data Set.” The dataset is in the text format and
has been zipped including a readme file.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] F. Elasha, S. Shanbr, X. Li, and D. Mba, “Prognosis of a wind
turbine gearbox bearing using supervised machine learning,”
Sensors, vol. 19, no. 14, p. 3092, 2019.

[2] S.Hong, Z. Zhou, E. Zio, and B. Wang, “An adaptive method
for health trend prediction of rotating bearings,” Digital Signal
Processing, vol. 35, pp. 117-123, 2014.

[3] S. Hong, E. Z. Zhou, K. Zio, and K. Hong, “Condition as-
sessment for the performance degradation of bearing based on
a combinatorial feature extraction method,” Digital Signal
Processing, vol. 27, pp. 159-166, 2014.

[4] Y. LeCun, B. E. Boser, J. S. Denker et al., “Handwritten digit
recognition with a back-propagation network,” in Proceedings
of the Advances in Neural Information Processing Systems,
pp. 396-404, Denver, CO, USA, 1990.

[5] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew,
“Deep learning for visual understanding: a review,” Neuro-
computing, vol. 187, pp. 27-48, 2016.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Proceedings of the Advances in Neural Information Processing
Systems, pp. 1097-1105, Tahoe, NV, USA, December 2012.

[7] Y. Taigman, M. Yang, M. Ranzato, and L. D. Wolf, “Closing
the gap to human-level performance in face verification,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1701-1708, Columbus, OH, USA,
June 2014.

[8] X. Li, Q. Ding, and J.-Q. Sun, “Remaining useful life esti-
mation in prognostics using deep convolution neural net-
works,” Reliability Engineering ¢ System Safety, vol. 172,
pp. 1-11, 2018.

[9] H.-]. Yoo, “Deep convolution neural networks in computer
vision: a review,” IEIE Transactions on Smart Processing and
Computing, vol. 4, no. 1, pp. 35-43, 2015.

[10] Y. Bengio, “Learning deep architectures for AI,” Foundations
and Trends in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

[11] P. Malhotra, V. TV, A. Ramakrishnan et al., “Multi-sensor
prognostics using an unsupervised health index based on Istm
encoder-decoder,” 2016, http://arxiv.org/abs/1608.06154.

[12] L. Ren, L. Zhao, S. Hong, S. Zhao, H. Wang, and L. Zhang,

“Remaining useful life prediction for lithium-ion battery: a

deep learning approach,” IEEE Access, vol. 6, pp. 50587-

50598, 2018.

I. Goodfellow, J. Pouget-Abadie, M. Mirza et al., “Generative

adversarial nets,” in Proceedings of the Advances in Neural

Information Processing Systems, pp. 2672-2680, Denver, CO,

USA, June 2014.

[14] E. L. Denton, S. Chintala, and R. Fergus, “Deep generative
image models using a laplacian pyramid of adversarial net-
works,” in Proceedings of the Advances in Neural Information
Processing Systems, pp. 1486-1494, Montreal, Canada, De-
cember 2015.

[15] J.-Y. Zhu, P. Krdhenbiihl, E. Shechtman, and A. A. Efros,
“Generative visual manipulation on the natural image

[13

13

manifold,” in Computer Vision-European Conference on
Computer Vision 2016, , pp. 597-613, Springer, 2016.

[16] A. Radford, L. Metz, and S. Chintala, “Unsupervised repre-
sentation learning with deep convolutional generative
adversarial networks,” 2015, http://arxiv.org/abs/1511.06434.

[17] A. Saxena and K. Goebel, Turbofan Engine Degradation
Simulation Data Set. NASA Ames Prognostics Data Repository,
NASA Ames Research Center, Moffett Field, CA, USA, 2008.

[18] K.-I. Funahashi and Y. Nakamura, “Approximation of dy-
namical systems by continuous time recurrent neural net-
works,” Neural Networks, vol. 6, no. 6, pp. 801-806, 1993.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[20] S.Zheng, K. Ristovski, A. Farahat, and C. Gupta, “Long short-
term memory network for remaining useful life estimation,”
in Proceedings of the 2017 IEEE International Conference on
Prognostics and Health Management (ICPHM), pp. 88-95,
IEEE, Dallas, TX, USA, June 2017.

[21] Y. Wu, M. Yuan, S. Dong, L. Lin, and Y. Liu, “Remaining
useful life estimation of engineered systems using vanilla
LSTM neural networks,” Neurocomputing, vol. 275, pp. 167-
179, 2018.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Proceedings of the Advances in Neural Information Processing
Systems, pp. 1097-1105, 2012.

[23] G.S. Babu, P. Zhao, and X.-L. Li, “Deep convolutional neural
network based regression approach for estimation of
remaining useful life,” in Database Systems for Advanced
Applications, , pp. 214-228, Springer, 2016.

[24] A. L. Ellefsen, E. Bjorlykhaug, V. ZEsey, S. Ushakov, and
H. Zhang, “Remaining useful life predictions for turbofan
engine degradation using semi-supervised deep architecture,”
Reliability Engineering & System Safety, vol. 183, pp. 240-251,
2019.

[25] V. Nair and G. E. Hinton, “Rectified linear units improve
restricted Boltzmann machines,” in Proceedings of the 27th
International Conference on Machine Learning (ICML-10),
pp. 807-814, Haifa, Israel, June 2010.

[26] A.S. Yoon, T. Lee, Y. Lim et al., “Semi-supervised learning
with deep generative models for asset failure prediction,”
2017, http://arxiv.org/abs/1709.00845.

[27] W. Yu, I Y. Kim, and C. Mechefske, “Remaining useful life
estimation using a bidirectional recurrent neural network
based autoencoder scheme,” Mechanical Systems and Signal
Processing, vol. 129, pp. 764-780, 2019.

[28] C. Zhang, P. Lim, A. K. Qin, and K. C. Tan, “Multiobjective
deep belief networks ensemble for remaining useful life es-
timation in prognostics,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 28, no. 10, pp. 2306-2318,
2016.

[29] A. Voulodimos, “Deep learning for computer vision: a brief
review,” Computational Intelligence and Neuroscience,
vol. 2018, Article ID 7068349, 13 pages, 2018.

[30] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What
is the best multi-stage architecture for object recognition?” in
Proceedings of the 2009 IEEE 12th International Conference on
Computer Vision, IEEE, pp. 2146-2153, September 2009.

[31] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj,
“Real-time motor fault detection by 1-D convolutional neural
networks,” IEEE Transactions on Industrial Electronics,
vol. 63, no. 11, pp. 7067-7075, 2016.

[32] O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and
D. J. Inman, “Real-time vibration-based structural damage


http://arxiv.org/abs/1608.06154
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1709.00845

14

(33

(34]

(35

(36]

(37

(38]

(39]

(40]

(41]

(42]

(43]

[44]

(45]
[46]

(47]

(48]

(49]

detection using one-dimensional convolutional neural net-
works,” Journal of Sound and Vibration, vol. 388, pp. 154-170,
2017.

O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn,
“Applying convolutional neural networks concepts to hybrid
NN-HMM model for speech recognition,” in Proceedings of
the 2012 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 4277-4280, IEEE, Kyoto,
Japan, March 2012.

Y. Kim, “Convolutional neural networks for sentence clas-
sification,” 2014, http://arxiv.org/abs/1408.5882.

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-
time style transfer and super-resolution,” in Computer Vision-
European Conference on Computer Vision 2016, Springer,
pp. 694-711, 2016.

P. Malhotra, V. TV, L. Vig, P. Agarwal, and G. Shroff,
“TimeNet: pre-trained deep recurrent neural network for time
series classification,” 2017, http://arxiv.org/abs/1408.5882.
N. Gugulothu, V. TV, P. Malhotra, L. Vig, P. Agarwal, and
G. Shroff, “Predicting remaining useful life using time series
embeddings based on recurrent neural networks,” 2017,
http://arxiv.org/abs/1709.01073.

M. Auli, M. Galley, C. Quirk, and G. Zweig, “Joint language
and translation modeling with recurrent neural networks,” in
Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, vol. 3, pp. 1044-1054, Seattle,
WA, USA, October 2013.

S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,”
2015, http://arxiv.org/abs/1502.03167.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” The Journal of Machine Learning
Research, vol. 15, pp. 1929-1958, 2014.

X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings of
the Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249-256, 2010.

T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: divide the
gradient by a running average of its recent magnitude,”
COURSERA: Neural Networks for Machine Learning, vol. 4,
pp. 26-31, 2012.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323,
no. 6088, pp. 533-536, 1986.

D. P. Kingma and J. Ba, “A method for stochastic optimi-
zation,” 2014, http://arxiv.org/abs/1412.6980.
https://www.tensorflow.org/.

A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage
propagation modeling for aircraft engine run-to-failure
simula tion,” in Proceedings of IEEE International Conference
on Prognostics and Health Management, pp. 1-9, Denver, CO,
USA, October 2008.

F. O. Heimes, “Recurrent neural networks for remaining
useful life estimation,” in Proceedings of the 2008 International
Conference on Prognostics and Health Management, 1EEE,
pp. 1-6, Denver, CO, USA, October 2008.

E. Ramasso and A. Saxena, “Review and analysis of algo-
rithmic approaches developed for prognostics on CMAPSS
dataset,” 2014.

N. Opyharcabal Astorga, “Convolutional recurrent neural
networks for remaining useful life prediction in mechanical
systems,” 2018.

Computational Intelligence and Neuroscience

[50] E. Ramasso, “Investigating computational geometry for fail-
ure prognostics,” International Journal of Prognostics and
Health Management, vol. 5, p. 005, 2014.

[51] J. Patterson and A. Gibson, Deep Learning: A Practitioner’s
Approach, O’'Reilly Media, Inc., Sebastopol, CA, USA, 2017.


http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1709.01073
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
https://www.tensorflow.org/

