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Abstract: Curcumin diffuses through cell membranes into the endoplasmic reticulum, mitochondria,
and nucleus, where it exerts actions, as an antioxidant property. Therefore, its use has been advocated
for chemopreventive, antimetastatic, and anti-angiogenic purposes. We conducted a literature review
to summarize studies investigating the relationship between curcumin and colorectal cancer (CRC).
In vitro studies, performed on human colon cancer cell lines, showed that curcumin inhibited cellular
growth through cycle arrest at the G2/M and G1 phases, as well as stimulated apoptosis by interacting
with multiple molecular targets. In vivo studies have been performed in inflammatory and genetic
CRC animal models with a chemopreventive effect. To improve curcumin bioavailability, it has
been associated with small particles that increase its absorption when orally administered with
excellent results on both inflammation and carcinogenesis. Curcumin has been used, moreover, as a
component of dietetic formulations for CRC chemoprevention. These combinations showed in vitro
and in vivo anticarcinogenetic properties in inflammation-related and genetic CRC. A synergic effect
was suggested using an individual constituent dosage, which was lower than that experimentally
used “in vivo” for single components. In conclusion, curcumin falls within the category of plant origin
substances able to prevent CRC in animals. This property offers promising expectations in humans.
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1. Introduction

Curcumin is a phytochemical derived from turmeric (Curcuma longa) which is a plant similar
to ginger [1]. From a chemical point of view, it is a natural phenol with a typical yellow color. It is
easily soluble in acetic acid, ketone, alkali, and chloroform, while it is insoluble in water at acidic
and neutral pH [2]. Due to its hydrophobic properties, it is able to diffuse through cell membranes
into the endoplasmic reticulum, mitochondria, and nucleus; in all these sites it can exert its action [3].
Curcumin is commonly utilized as an element of dietary supplements, a component of cosmetics, and a
flavoring for foods and beverages especially in South and Southeast Asia. However, curcumin has a
known antioxidant property, therefore its use has been advocated for chemopreventive, antimetastatic,
and anti-angiogenic purposes [4].

Colorectal cancer (CRC) is one of the most widespread tumors worldwide, and it is considered to
be the second leading cause of death among cancer groups [5]. The peak in the incidence of CRC in
Western countries could be related to changes in lifestyle, and in particular, shifts in dietary habits
could explain such a trend [6,7]. Indeed, the development of colonic carcinogenesis is highly influenced
by environmental factors, notably carcinogenesis of the alimentary tract. From this perspective, a diet
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rich in polyunsaturated fats and red meat and poor in vegetables has been considered to be a major
risk factor for CRC [8]. For this reason, modulation of diet composition could be invoked as a strategy
to chemically prevent the onset of CRC, and curcumin could be an attractive food constituent. Indeed,
it has been suggested as an anticarcinogenetic agent for several tumors, including prostate, pancreas,
breast, stomach, liver carcinomas, and leukemia [9–11]. Among the proposed mechanisms of action,
induction of epithelial apoptosis seems to be the most investigated [12]. Indeed, it has been shown that
curcumin can promote the synthesis of proteins related to apoptotic processes and could interplay
with the pathways of inflammation-related programmed death [13–16].

On the basis of this, the use of curcumin in chemoprevention and as a complementary treatment
of CRC is promising. Herein, we carried out a literature review that aims to summarize the studies
investigating the relationship between curcumin and CRC in vitro, animal models, and human trials.

2. In Vitro Studies: The Effect of Curcumin on Colon Cancer Cell Lines

Curcumin has been reported as an agent that is able to prevent CRC growth by blocking the cell
cycle and accelerating apoptosis. In vitro studies, performed on different human colon cancer cell
lines, showed that curcumin significantly inhibited cell growth by interacting with multiple molecular
targets, thus, resulting in the modulation of several distinct signaling pathways.

In the human colon cancer cell line HCT-116, Mosieniak et al. demonstrated that curcumin
inhibited cell proliferation by cell cycle arrest at the G2/M phase, and partially the G1 phase [17].
Moreover, Lim et al. [18] found that curcumin negatively regulated cyclin D1 and induced cell cycle
interruption at the G1 phase in the same colon cancer cell line. Cyclin D1 is known to bind both CDK4
and CDK6, thus, forming an active complex which further phosphorylates Rb protein at Ser780 and
regulates the transition from G1 to S phase as a final result [19].

A study performed by Kim and Lee revealed that curcumin inhibited cell proliferation of HCT-116
through the induction of reactive oxygen species (ROS) generation, and downregulation of E2F4 and
related genes, such as cyclin A, p21, and p27 [20]. Another study by Watson et al. about curcumin
cytotoxicity on HCT-116 and HT29 cell lines revealed that a sequential time and dose dependent
inhibition of cell proliferation was observed when p53 was upregulated [21].

As reported above, one of the main mechanisms through which curcumin blocks cell growth is
the induction of apoptosis. This process in the CRC cells involves multiple molecular targets including
enzymes (cyclooxygenase-2 (COX 2)), transcription factors (NF-kB and beta-catenin), Bcl-2 family
members (Bcl-2, Bax, and Bcl-xL), death receptors (death receptor 5 (DR5) and Fas), protease enzymes
(caspase 3 and caspase 8), and ROS.

A COX-2 increased expression has been seen in many tumors, including CRC [22]. In detail,
an enhanced expression of COX-2 was detected in 77% of cases of CRC as compared with the normal
surrounding mucosa [23]. Further evidences demonstrated that curcumin downregulated COX-2
expression in CRC [24,25]. Moreover, curcumin exerted apoptotic effects on HT-29 colon cancer cell
lines by means of COX-2 and apoptosis-related pAKT kinase reduction, as well as by increased p-AMP
protein kinase (AMPK) signal [26].

NF-kB has been extensively investigated due to its involvement in CRC [27]. In this regard,
curcumin can reduce the expression of NF-kB in CRC cells [28]. Collect and Campbell [29] described
that curcumin promoted apoptosis in the HCT-116 line through the inhibition of NF-kB.

Beta-catenin transcription factor plays a critical role in the pathogenesis of CRC due mainly to APC
inactivation and beta-catenin mutations. Both processes promote beta-catenin nuclear accumulation and
transcription of many oncogenes [30]. Beta-catenin is the key nuclear effector of the well-recognized
Wnt signaling in the nucleus and the integral structural component of cadherin-based adherens
junctions [31]. A study performed by Narayan on human colon cancer cells showed that curcumin
inhibited the Wnt/beta-catenin pathway by suppressing c-myc expression and inducing caspase 3
mediated cleavage of beta-catenin, E-cadherin, and APC. All these processes are linked to apoptosis
and the G2/M phase arrest in HCT-116 colon cancer cells [32]. Finally, a study by Park et al. on both
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colon cancer SW480 and HCT-116 cell lines reported that curcumin inhibited the beta-catenin/Tcf
signaling through decreased levels of nuclear beta-catenin and Tc-4 protein [33].

Many cancer histotypes, including CRC, have been associated with an impaired expression of
Bcl-2 family molecules [34]. It has been shown that curcumin promotes Bax expression and reduces
Bcl-2 in colon adenocarcinoma all through the phosphorylation at Ser15 and activation of p53 [35]
Enhanced Bax expression could influence Bcl-2/Bax or Bcl-xL ratio, thus driving neoplastic cells to
apoptosis. Curcumin-induced inhibition of Bcl-2 and upregulation of Bax have been reported even in
other colon cancer lines like HCT-116 [36] and COLO-205 [37].

Death receptors, such as DR5 or Fas, play a pivotal role in the transmission of death signal from
the cellular membrane to the cytoplasmic signaling pathways [38]. It has been reported that curcumin
can upregulate DR5 protein, which is a receptor which is fundamental for apoptosis in HCT-116 and
HT-29 colon cancer cells [39]. Furthermore, curcumin was discovered to trigger caspase 8 activation,
which is a process that initiates Fas-mediated apoptotic pathway [40]. Procaspase 8 generates with
Fas ligand a complex that constitutes the death-inducing signaling complex (DISC), thus activating
caspase 8 by mutual splitting and promoting caspase 3, caspase 7, and Bid.

Curcumin plays its cytotoxic effect by also producing reactive oxygen species (ROS). Although
curcumin is a powerful scavenger of free radicals, there are evidences that have also showed its possible
role in promoting the generation of free radicals [41]. Curcumin has been found to trigger apoptosis by
enhancing ROS production, hence inducing oxidative reactions and lysis of mitochondrial membranes
in CRC cancer cells [42].

In conclusion, the anticancer effect of curcumin can be mediated by several mechanisms, which
result in reduced cell growth and increased apoptosis. All these studies strongly encourage attempting
to translate in vivo to what was observed in vitro.

3. In Vivo Studies: The Effect of Curcumin on Colorectal Cancer in Animal Models

In an animal model (mouse), Perkins et al., in 2002 [43], demonstrated that an intake of curcumin
at 0.2%, which corresponded to 300 mg/kg, prevented or delayed adenoma development. In detail,
small- and medium-sized adenomas were most sensitive to the chemopreventive effect of curcumin.
The reduction of the number of adenomas was more evident in the central and distal regions of the
intestinal tract. This study used C57BL/6J Min/+ (ApcMin/+) mice for a model simulating human
familial adenomatous polyposis (FAP). The mice received a standard diet enriched with curcumin
at concentrations of 0.1%, 0.2%, and 0.5% for 15 weeks. The substance at 0.1% did not show any
effect, whereas concentrations of 0.2% and 0.5%, reduced the intestinal tumor number significantly by
39% and 40%, respectively. Successively, Park et al. positively commented on the relevance of this
result [44].

Moreover, McFaden et al. [45] used a well-documented model of a study on the development
of colitis-associated CRC. This study was performed using specific pathogen-free wild-type (WT)
129/SvEv mice and germ-free interleukin (IL)10−/−mice. Starting from 10 weeks of age, WT or IL10−/−

mice received once weekly intraperitoneal injections of azoxymethane (AOM) or saline for six weeks,
and, simultaneously, started a curcumin-supplemented diet. This study showed several highlights.
This study demonstrated an almost complete reduction of CRC burden in IL-10 KO/AOM mice. These
chemopreventive effects appeared to be indirectly related to a normalizing effect of curcumin on colonic
microbial flora more than its anti-inflammatory effect. Interestingly, the study suggested the property
of restoring the healthy gut homeostasis and microbial-host relationship. However, all transgenic mice
experiencing AOM and treated with curcumin died, whilst only a 50% mortality was seen in the control
group. Furthermore, the mice fed with curcumin tended to eat less and lose weight. Nevertheless,
curcumin entirely prevented body weight loss in AOM-treated IL10−/−mice without a difference from
the AOM-treated WT mice on the control diet. This event could have impacted on their AOM uptake
and effect, as well as microbiota composition. Additionally, no polypoid lesions were observed in
the AOM-treated WT mice exposed to curcumin. Finally, it normalized the beta-catenin expression
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pattern in the colonocytes. Of note, the two different housing types (IL10-KO and wild-type) made the
comparison of results quite difficult, although they were treated with the same protocol.

Epigenetic mutations are of great interest for their role in carcinogenesis. DNA methylation is
a common epigenetic mechanism associated with aberrant gene expression in cancer. Epigenetic
modifications are highly associated with dietary factors [46]. In this regard, Yue Guo et al. [47] studied
DNA methylome and transcriptome alterations and cancer prevention by curcumin in colitis-associated
CRC in mice. Four-week-old male C57BL/6 wild-type mice received a chemical treatment of AOM and
dextran sulphate sodium (DSS). They were fed a specific diet containing curcumin from 5 weeks of age
until the end of the experiment. Decreased methylation was observed. Additionally, the curcumin
attenuated colon shortening due to fibrosis consequent to long standing inflammation. Adenoma or
adenocarcinoma were not observed in the group that consumed the AOM/DSS curcumin as compared
with the animals fed a standard diet.

As reported above, curcumin is poorly water soluble and its bioavailability may be low due to the
extreme conditions of the intestinal tract. To overcome these drawbacks, it has been recently associated
with substances or small particles that allow transporting and increasing its absorption. [48]. For this
purpose, Han et al. [49] tried out orally deliverable nanotherapeutics by combining water-insoluble
curcumin and 7-ethyl-10-hydroxycamptothecin (SN38) which is the active metabolite of irinotecan.
They studied the effects of this formulation on inflammatory bowel disease (IBD) and CRC in a
mouse model. Compared with the individual drug form, the combination of curcumin and SN38
nanoparticles exerted synergistic beneficial effects on intestinal inflammation. The effects could be due
to the synergistic effect of SN38-curcumin, rather than to the improved drug absorption. Of interest,
oral administration of the combined formulation by drinking water was more effective than parenteral
injection. The disease activity index, body weight loss, stool consistency, and intestinal bleeding, as
well as mortality were reduced by curcumin-SN38. Simultaneously, the tumor number per mouse,
as well as diameter and size were much reduced and histological analysis revealed that the majority
of polypoid lesions were adenomas with low-grade dysplasia. The combination of curcumin and
SN38 inhibited the progression of CRC acting on cell cycle and apoptosis. Indeed, cyclin D1 and D3
were significantly downregulated and proapoptotic proteins (cleaved forms of caspase 3, 7, 9 and
cleaved-PARP) upregulated by curcumin and SN38. Finally, a reduction of anti-apoptotic Bcl-2 protein
expression was seen.

The main mechanisms by which curcumin can prevent colorectal cancer development in animal
models are summarized in Figure 1.
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4. Effect of Curcumin as a Component of Dietetic Formulations of Plant Origin

Several molecules derived from plants have been described to have an effect in reducing intestinal
cancer onset, in particular in animal models. Silymarin can hamper intestinal carcinogenesis by both
antioxidant and estrogen receptor-beta (ER-beta) agonist functions [50,51]. Additionally, boswellic
acids and especially acetyl-11-keto-beta-boswellic acid (AKBA) are constituents of gum resin of Boswellia
serrata and they are considered to be promising agents for gut carcinogenesis prevention [52].

On the basis of the possibility that a phytochemical combination could exert beneficial effects
under what was provided by a single plant substance [53], the effect of every component of a nutritional
combination of silymarin, ABKA, and curcumin was compared “in vitro” with the complete mixture
on cultured cancer cell proliferation (DLD-1). Each substance showed a relevant antiproliferative effect
on colonic cancer cultured cells as compared with a control sample. Moreover, the effect of the mixture
of the three components was much higher than their single or double combination [54].

Then, this enriched nutritional formulation was tested to prevent inflammation-associated CRC
in an AOM/DSS animal model [54]. Anti-inflammatory and chemopreventive effects were estimated
by lesion number and size, as well as by the detection of histological inflammation, dysplastic,
and neoplastic areas. In addition, proinflammatory cytokine mRNA molecular pattern, ER-beta and
bromodeoxyuridine immunohistochemistry, and TUNEL immunofluorescence labeling have been
performed. Enriched, but not standard formulation, prevented the shortening of the colon (a hallmark
of a long-standing inflammation). Moreover, dietetic formulation reduced polypoid lesion number and
size, histological inflammation score, proinflammatory cytokine mRNA expression, and the number
of low- (LGD) and high-grade dysplasia areas. Finally, CRC was observed in 69.6% of the standard
and 23.5% of the enriched formulation consuming animals. The enriched formulation induced higher
ER-beta expression in LGD and increased apoptosis in LGD. For the well-known anticancer effect
of ER-beta, this study suggested that LGD could represent the checkpoint for neoplastic evolution
and ER-beta agonist function of supplemental formulation could promote apoptosis, thus slowing
the progression towards carcinoma. Indeed, the concurrent increased TUNEL expression, reported in
LGD, suggested a direct relationship between ER-beta and apoptosis. This result is in agreement with
what was previously found by our group, i.e., the colocalization of ER-beta and caspase 3, which is a
recognized early apoptotic marker [55,56]. Furthermore, the epithelial cell migration was observed
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in the normal epithelium from the base of the crypt to the top of the villi, in order to evaluate the
effect of dietetic formulation on this physiological process. The finding that epithelial migration in
normal tissue was faster in the enriched as compared with the standard diet group suggested a reduced
cellular half-life, which decreased the time of exposure of DNA synthesizing cells to mutation risk.
Indeed, the reduced half-life of cells led to an accelerated turnover and, therefore, to an early cellular
death, which are all events that prevent the tumor growth and the accumulation of DNA mutations
that promote carcinogenesis.

The chemopreventive effects of the same dietetic formulation was investigated also in ApcMin/+

mice [57]. Compared to standard diet, the enriched diet reduced the total and mean number of polypoid
lesions as well as areas of LGD and CRC. In addition, the polyp size was significantly reduced in the
enriched diet group (Figure 2). The ER beta protein showed a marked signal associated with dietetic
supplementation, and in normal mucosa, cleaved caspase 3 showed a stronger signal in the enriched
than in the standard diet. This result confirmed the strong relationship between ER beta and apoptosis.
Cyclin D1 (marker of cell proliferation) was more expressed in the standard than the enriched diet
group of both the normal and the polypoid tissue. Epithelial migration in normal tissue showed a
pattern similar to the AOM/DSS model previously described. The effect of dietary formulation intake
appeared to be mediated by the reduction of epithelial proliferation, the increase of apoptosis, and the
acceleration of villous cell renewal with a reduced risk of DNA mutations.
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Figure 2. Percentage of small (<3 mm), intermediate (3–7 mm) and large (>7 mm) polypoid lesions in
ApcMin/+ mice assuming standard or enriched diet. Statistical analysis (Chi square for trend, p < 0.001).

These studies suggest the potential usefulness of the combination of different phytochemicals
in CRC chemoprevention in animal models. The advantage of the mixture seems to be related to a
synergic effect suggested by the dosage used for the individual nutritional components, which turns
out to be lower than that used for the single substances for “in vivo” experiments on the same animal
models [43,58,59].

5. Human Clinical Studies

Curcumin has been tested in early preclinical studies in order to evaluate the best tolerated dose.
Indeed, it is known that curcumin at a high dose or with prolonged exposure can cause hepatobiliary
adverse events by interfering with colecistokinin signaling.

Storka et al. [60] tested curcumin safety at doses ranging from 10 to 400 mg/m2. Liposomial
curcumin at 120 mg/m2 was the best tolerated dose and avoided the appearance of, and increase in,
the mean red blood cell volume in the blood, observed at higher dosages.

Other preclinical studies aimed to ascertain whether, after curcumin ingestion, some of its
metabolites (curcuminoids) could be found in colonic epithelial tissues. For instance, echinocytes in a
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group of 26 subjects consuming 2.35 g/day for 14 days, curcuminoids were found in 28 out of 35 biopsy
samples, thus, confirming that curcumin is absorbed and binds to colonocytes [61].

Curcumin has also been tested in healthy subjects to evaluate its protective effect against oxidative
stress. In this regard, it has been demonstrated that a dose of 3.6 g/day was able to reduce DNA adducts
on colon biopsy samples [62]. Similarly, it was given to smokers at dosages of either 2 g or 4 g/day for
30 days showing that only a high dose was able to reduce the number of aberrant crypt foci in the
colon [63]. The same study, however, failed to find a reduction of proliferation epithelial index by Ki67.

Additionally, some applications of curcumin for patients with inherited polyposis, such as familial
adenomatous polyposis (FAP) have been described. In a small group of five FAP patients with rectal
remnant after subtotal colectomy, Cruz-Correa et al. [64] administered a mixture of curcumin 480 mg
plus quercetin 20 mg t.i.d for six months, thus, demonstrating by endoscopy a 60% reduction in
polyp number and a 50% reduction in polyp size. Successively, the same group, in a randomized
placebo-controlled trial, tested a high dose (1500 mg b.i.d) for one year in 44 FAP patients [65].
Surprisingly, a difference in polyp size and number between placebo and curcumin was not found.
Furthermore, a case report [66] of a patient with 54 polyps at index colonoscopy, with all genetic tests
negative for genetic polyposis demonstrated an interesting result. Indeed, after the removal of about
40 polyps, the patient was given curcumin 400 mg/day for three months. After about two years, only
three polyps were detected at surveillance colonoscopy.

Finally, curcumin has been used as an adjunctive treatment to traditional chemotherapy for
advanced colorectal carcinoma with promising results. For instance, patients undergoing FOLFOX
regimen were randomized to curcumin 2 g/day or no supplementation for 12 cycles [67]. This was a
phase II open-labelled randomized controlled trial which showed an improved overall survival in
the curcumin group, despite no improvement in quality of life or neurotoxicity was found. A similar
study is ongoing [68]; in this case patients with inoperable CRC will be randomized to curcumin
versus placebo in addition to FOLFOX regimen. In this case, various doses of curcumin between 0.5
and 2 g/day will be used. Finally, a phase I study on a small group of patients with metastatic cancer
consuming liposomal curcumin (300 mg/m twice weekly for 8 weeks) did not show any antitumoral
activity in reducing cancer size according to RECIST criteria [69]. In conclusion, the analyzed studies do
not provide univocal results. However, we believe that most of the negative results have been observed
in extreme conditions, i.e., patients with advanced cancer and patients in which the genetic burden
is very high (FAP subjects). Therefore, it is likely that a phytochemical could not exert a sufficiently
strong effect to overcome these conditions. As a consequence, studies performed on subjects with
generic risk of CRC with the aim of proving the effect on precancerous lesions could supply more
interesting conclusions. The results provided by such studies are reported in Table 1.

Table 1. The main human studies that investigating curcumin effect in colorectal cancer.

Study Type of Study Main Results

Storka et al., 2015 [60] Safety study
120 mg/m2 was the best tolerated
dose. Echinocytes appeared at
higher doses

Irving et al., 2013 [61]
In vivo study to verify ability of
curcumin to be absorbed in
colonocytes

Curcuminoids were found in 28
out of 35 biopsy colon samples

Garcea et al., 2005 [62] In vivo study to explore
antioxidant properties Reduction of DNA adducts

Carroll et al., 2011 [63] Evaluation of dysplasia after
curcumin administration

Reduction of the number of
aberrant crypt foci in the colon
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Table 1. Cont.

Study Type of Study Main Results

Cruz-Correa et al., 2006 [64] FAP patients receiving curcumin
60% reduction in polyp number
and a 50% in polyp size at
endoscopy

Cruz-Correa et al., 2018 [65] FAP patients receiving curcumin
No difference in polyp size and
number between placebo and
curcumin

Alfonso-Moreno et al., 2017 [66] Case report of a patient with
sporadic polyposis

Reduction in polyp number at
surveillance endoscopy

Howells et al., 2019 [67] Curcumin as adjuvant regimen to
FOLFOX

Improved overall survival in the
curcumin group

Greil et al., 2018 [69] Phase I study on patients with
metastatic cancer

No variation in tumor size
according to RECIST criteria

6. Side Effects of Curcumin

The safety of curcumin has been extensively investigated. Turmeric extracts and curcumin have
not shown any major toxic effects when given to rodents; in addition, no mutagenic or genotoxic effects
have been observed in pregnant animals [70]. Moreover, oral administration of curcumin for 70 days,
at doses up to 10,000 ppm have been found not to be toxic in rats [71]. According to animal studies,
standardized fine particles and extract of curcumin have been demonstrated to be safe for human use
even at high doses (1.5 g/day curcumin) and for periods up to six months [70].

Five randomized controlled trials have described adverse events. Rahmani et al. [72] reported
that two patients had simultaneously abdominal pain and nausea, and another patient complained
only of abdominal pain. Amin et al. [73] reported some side effects such as nausea and dyspepsia,
although the precise number of subjects who encountered these events was not detailed. In a report
by Chuengsamarn et al. [74], the following curcumin-related adverse events were revealed in four
subjects: constipation (two cases), hot flashes (one), and nausea (one). Nevertheless, in the last study,
four subjects reported the following side effects in the placebo group: vertigo and itching, constipation,
and hot flashes each in one patient. Selvi et al. [75] found mild diarrhea in two cases.

Twelve systematic reviews reported adverse effects, which were classified as mild and similar to a
placebo. The most frequent adverse events included abdominal pain, nausea, and dyspepsia [76].

Of interest, Medina-Caliz et al., in an analysis of cases of herbal and dietary supplement-induced
liver injury in Spain, found that herbal and dietary supplements were responsible for 4% (32 cases) of
the 856 drug induced liver injuries [77]. Such events occurred more frequently among young women
and were associated with hepatocellular injury and a rise of transaminase levels. Herbal and dietary
supplements caused a more severe liver injury than that observed in other types of drug-induced hepatic
damage. Additionally, the recurrence of liver malfunction was more likely after a second re-exposure.
Incidentally, Iman et al. described a case of curcumin-induced hepatocellular damage in a 78 year
old woman admitted with jaundice, with a latency time of one month [78]. Laboratory investigations
failed to find any other cause of acute hepatitis. The Roussel Uclaf Causality Assessment Method
(RUCAM) score was six, suggesting a probable association. Peak levels of aspartate aminotransferase
(AST) and alanine aminotransferase (ALT) were more than 20 times the normal upper limit. A halving
of AST and ALT was seen one week after supplement withdrawal, while reversal of transaminases
peak was reported after 42 days. No rechallenge was performed.

In conclusion, curcumin appears to be safe, but long-term studies, especially in children and
adolescents or pregnant women, as well as trials that focus on nanoformulations are necessary to
completely support its security.
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7. Conclusions

In conclusion, several evidences demonstrate that curcumin falls within the category of plant
origin substances able to prevent CRC. Different possible mechanisms have been demonstrated in
studies performed both in vitro and in vivo in animal models. Additionally, evidence of clinical benefits
have been observed in mice with inflammatory and genetic CRC. Curcumin has been administered
alone or associated with substances or small particles that allow transporting and increasing its
absorption when orally administered. Furthermore, curcumin has been used as a component of dietetic
formulations of substances of plant origin. This property offers promising expectations in humans.
Nevertheless, there is no clear evidence that the results obtained on cultured cells or animal models
can be translated in humans. Indeed, on the one hand, human clinical studies are very few and have
shown controversial results. On the other hand, open questions regarding dosage, bioavailability,
optimal indication, and potential toxicity need to be clarified in future studies with large samples.
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