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Aim. To develop a new invariant descriptor for the characterization of protein surfaces, suitable for various analysis tasks, such
as protein functional classification, and search and retrieval of protein surfaces over a large database. Methods. We start with a
local descriptor of selected circular patches on the protein surface. The descriptor records the distance distribution between the
central residue and the residues within the patch, keeping track of the number of particular pairwise residue cooccurrences in the
patch. A global descriptor for the entire protein surface is then constructed by combining information from the local descriptors.
Our method is novel in its focus on residue-specific distance distributions, and the use of residue-distance co-occurrences as the
basis for the proposed protein surface descriptors. Results. Results are presented for protein classification and for retrieval for three
protein families. For the three families, we obtained an area under the curve for precision and recall ranging from 0.6494 (without
residue co-occurrences) to 0.6683 (with residue co-occurrences). Large-scale screening using two other protein families placed
related family members at the top of the rank, with a number of uncharacterized proteins also retrieved. Comparative results with
other proposed methods are included.

1. Introduction

The Protein Data Bank (http://www.pdb.org/pdb/home/
home.do) (PDB) currently has more than 3000 protein struc-
tures classified as uncharacterized or as proteins of unknown
function. This is about 5% of the total structures in PDB.
The Pfam database was recently reported to contain over
2200 gene families with unknown function [1]. It has been
argued that there are even more local regions on the protein
structures that are not completely characterized, and whose
functions are not known [2]. Therefore, with the increasing
rate at which protein structures are being generated, the
problem of protein function annotation has become a major
challenge in the postgenomic era [3–5]. The function of a
given protein is largely determined by its three-dimensional
structure [6]. The specific shape and orientation of a protein
in 3D space are key elements that determine how the protein
interacts with its environment, and hence the function of
the protein. Although related proteins often have similar
functions, it is well known that sequence similarity between

proteins does not always lead to functional similarity [7, 8].
Even different functions have been observed for structures
with the same fold [9]. Conversely, sequences have been
observed with low sequence similarity, but highly structural
and functional similarity [10]. The trypsin-like catalytic triad
[9] is one example of proteins with different folds, but
similar functions. A similar argument can be made between
sequence and surface, and between surface and fold. While
residues on the protein surface typically make up a small
percentage of the total residues in a protein, they often
represent the most conserved functional elements of the
protein [11]. Therefore, analyzing protein structures using
information about their 3D surfaces is essential in the quest
for protein function annotation, especially in the study of
functional similarities between nonhomologous proteins.

At the core of most activities in the analysis of protein
structures and protein function is similarity measurement
between structures. Such measurements must deal with dif-
ferent levels of structural similarity, arbitrary mutations,
deletions, and insertion of residues, local surface similarities,
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and so forth. When the problem is similarity measurement
between protein surfaces, a major issue becomes how the
protein surface is represented, and how the representation
can be used for the required similarity measurement.
Another problem is that of computation. Structure align-
ment, the basis for most approaches to protein 3D structure
analysis is known to be NP-hard [12]. A major diffi-
culty in comparing protein surfaces locally is the problem
of matching 3D structures, since structures need to undergo
an exhaustive amount of rotation and translation in order
to obtain an adequate structural alignment and to perform
an accurate matching [8]. Clearly, a method that avoids the
step of local structural alignments can have a significant
advantage, especially in screening of similar surfaces over a
large database.

In this paper, we introduce an invariant descriptor for the
characterization of protein surfaces. We then use this charac-
terization to study the problem of classifying proteins into
their functional families based primarily on their surface
characteristics. This is a challenging problem, but one that
is important in the quest for functional annotation of pro-
teins, using information from potentially nonhomologous
proteins. We also show how we can use such a descriptor in
various related analysis activities, such as in effective retrieval
of similar protein surfaces from very large databases, such as
the Protein Data Bank (PDB).

2. Background and Related Work

2.1. Protein Sequences, Structure, and Surface. Although pro-
teins could vary significantly in their functions and 3D
shapes, they also share a general common structure. Proteins
are composed of 20-amino acids that are connected via
peptide bonds [13]. Each protein is composed of an ordered
sequence of amino acids. The order in which these amino
acids are connected is called the protein sequence, or the
primary structure of the protein [14]. This primary sequence
determines the 3D structure of the protein. All proteins
are composed of four common structural types: primary
structure, secondary structure, tertiary structure, and qua-
ternary structure. The primary structure is simply the amino
acid sequence. The secondary structure is formed by patterns
of intermolecular bonding of hydrogen and is determined
primarily by the location and the directions of these patterns
[14, 15]. This is often described in terms of secondary
structural elements (SSEs), such as α-helixes, β-sheets, and
turns. The overall 3D shape of the secondary structures
determines the tertiary structure of the protein. When two or
more chains combine to form a larger molecule, the whole
structure is called the quaternary structure. Figure 1 shows an
example of some of the common protein structural types (the
sequence is not included).

A common method for protein function prediction is
by annotation transfer from known homologous proteins
[17]. Functions of novel proteins can be determined by se-
quence comparisons, for instance using sequence alignment.
When proteins evolve, the protein structure remains more
highly conserved when compared to the sequence. Protein

sequences change more easily during evolution due to re-
sidue mutations, for instance by substitution, insertion, or
deletion. Hence, proteins that belong to the same family
(homologous proteins) may not be identified using se-
quences alone. Orengo et al. [17] reported that proteins
related to the same family could share fewer than 15%
identical residues. The protein structure retains a significant
portion of similarity even between distant homologs. In
general, the degree of structural or sequence similarity varies
substantially between protein families. Some families can
handle more changes than others. This so-called structural
plasticity [17] has a considerable impact on the functionality
of some proteins, or members of a protein family. A consid-
eration of the protein structure and its variability becomes
important in such situations for further analysis of functional
similarity between proteins.

A classical approach for deriving the protein function is
by first determining its 3D structure, which can then provide
some ideas about its function [17]. Protein 3D structures
provide information about the binding sites, active sites,
and how proteins interact with each other, and thus could
provide an insight into the function of the protein [17]. How
proteins interact with each other and with other molecules
(e.g., ligands) is determined primarily by the amino acids on
the protein surface [18]. Therefore, knowledge of the protein
surface residues could help in a better understanding of what
molecules are binding together, and in some cases, why they
bind [18]. The protein surface could also provide significant
information about protein functions which cannot be easily
detected, even in the presence of sequence or fold simi-
larity. Therefore, the analysis of protein surfaces is impor-
tant in the study of intermolecular interactions. Clearly,
advances in our understanding of protein surfaces could have
important implications in various biomedical fields, such as
personalized medicine, drug discovery, drug design, and so
forth.

2.2. Protein Surface Characterization Methods. Given the
foregoing, it is not surprising that different methods have
been proposed to characterize the protein surface. Popular
examples include those based on surface shape distributions
[19], Gauss integral [20], Fourier transform [21], spherical
harmonics [22, 23], alpha-shapes [2, 24], and Zernike poly-
nomials [7]. Contact maps between protein surfaces were
studied in [25], while similarity networks between surface
patches from protein binding sites were studied in [26,
27]. Protein surface similarity using varying resolutions of
structural data have also been studied, for instance, using
medium-resolution Cryo-EM maps in [26] and low resolu-
tion protein structure data in [28]. SHARP [29] provides a
mechanism to predict protein-protein interaction by analyz-
ing overlapping protein 3D surface regions. SURFACE [5] is
a database of protein surface regions that can be useful for
annotation.

Much earlier, Jones and Thornton [30] analyzed protein-
protein interaction by using surface patches, where patches
are defined based on the Cα atoms that have a predetermined
accessible surface area, and adhere to defined constraints
on the solvent vectors. Each patch is then described using
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Figure 1: Protein structures for a sample protein (PDB id: 2UDI). (a) Secondary structure elements—α-helixes (magenta), β-sheets (gold),
and turns (gray); (b) two chains: chain E (blue), chain I (green); (c) surface and 3D shape for chain E; (d) surface and 3D shape for chain I;
(e) quaternary structure for the protein. Figures are produced using PMV [16].

six parameters, namely, solvation potential, residue inter-
face propensity, hydrophobicity, planarity, protrusion, and
accessible surface area. Ferrè et al. [5] analyzed locally
similar structures by matching surface patches composed of
subsets of amino acids. Each residue on the protein surface
is represented using a vector joining its Cα atom and the
centroid of its side chain atoms. Surface patches are then
compared for similarity by comparing the residue vectors for
all possible pairs of residues from the query and target surface
patch. Matches are determined based on the root mean
square distance, and the residue similarity as determined
using a standard substitution matrix. The results of using this
method on a nonredundant list of protein chains as recorded
in the SURFACE database [5], a collection of protein surface
regions that can be useful for annotation. Below, we describe
three approaches that are more closely related to our work.
See [28, 31] for reviews on surface comparison methods.

Distance Distributions. Distances, geometry, and topology
have for long been used in the analysis of general protein
3D structures [32]. Residue distances have been used in
standard texture-based analysis of 2D textures (distance
matrices) formed by the distances between residues in a
protein structure [33]. The use of topological invariants, as
captured using Gaus integrals for the automated analysis
and representation of general protein 3D structures was
described in [20]. Much earlier, Connolly [19] proposed
the analysis of protein surfaces using the notion of surface
shape distributions. Essentially, surface shapes correspond
to different geometric configurations defined on the protein
surface. Binkowski and Joachimiak [11] proposed the use
of surface shape signatures (SSSs) as a method to describe
protein surfaces by exploiting global shape and geometrical
properties of the surfaces. Shape signatures are computed
based on the distances measured between each unique atom
pairs on the surface. Distances are then sorted based on
which their distributions are generated. With the distri-
butions, the problem of matching between two surfaces
is now reduced to that of comparing their distributions.
Comparison between two distributions is performed using
the Kolmogorov-Smirnov (KS) test. The use of the shape
distribution is fast and relatively resilient to scale, rotation,
and mirroring. However, the discrimination ability is still a
problem, as the SSS tends to lose important surface details.

Zernike Polynomials. Following earlier work by Canterakis
[34] on the use of 3D Zernikes for the analysis of general 3D
objects, Sael et al. [7] introduced 3D Zernike to the area of
protein structural similarity matching. Here, the protein 3D
structure is represented as a series expansion of 3D Zernike
functions. The triangulated Connolly surface of the protein
is computed, and subsequently the protein is placed into
a 3D cubic grid and voxelized. Each voxel has a value of
1 or 0, depending on whether the voxel is on the protein
surface or in the interior. The 3D Zernike function is then
applied to the voxelized 3D protein shape to obtain the 3D
Zernike descriptors. Therefore, the problem of comparison
of 3D surfaces is reduced to that of comparing two vectors
representing the 3D Zernike descriptors for each protein
surface. Several distance measures were tried, such as the
Euclidean distance, Manhattan distance, and a correlation-
based distance defined as the complement of the correlation
coefficient between two Zernike descriptors. Venkatraman
et al. [23] studied the use of both spherical harmonics
and 3D Zernike descriptors in the retrieval of functionally
similar proteins. In a more recent work, Sael and Kihara
[28] used the Zernike descriptor to study protein surfaces
in low resolution data. Computation of the required Zernike
polynomials is, however, known to be a major computational
huddle [35]. This problem is even worse for the 3D Zernike
polynomials needed for protein surfaces. Thus, the required
preprocessing before matching is performed may be a
problem for indexing and real-time search of large-scale
datasets.

Fingerprints. A recent work [8] used the idea of extracting
invariant fingerprints from patches on the protein surface.
Patches are obtained by generating the dot surface of the
protein and constructing a graph to approximate the protein
surface. Afterwards, circular patches are generated as a
contiguous surface area from a center point, where the radius
of the patch is within a predetermined cutoff. Patches are
created for each single point on the surface, after which
a fingerprint representation of the patch is computed as
a geodesic distance-dependent distribution of directional
curvature. Geodesic distances are computed from the central
vertex in each patch. Comparisons between fingerprints were
performed using the average fingerprint similarity score
(AFSS) and the direct fingerprint similarity score (DFSS).
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Final scores are computed after an alignment procedure
based on the AFSS. Clearly, computational complexity will
be a major problem here, especially given the computation
of the patch representation for each vertex on the surface
graph (number of vertices is much more than the number of
surface residues). The need for a later stage of alignment for
the final computation of matching scores only compounds
the computational burden (see [12], for example).

The key difference in our method is the use of the local
patch descriptors as defined by the distribution of distances
between Cα atoms within each surface patch, conditioned on
the specific residue at the center of the patch, and the partic-
ular residues found within the patch. Our method computes
the residue-specific distance distributions, and residue-
distance cooccurrences for the protein surface patches using
only the Cα atoms on the protein surface. Residues in the
interior of the protein are discarded. Unlike the approach
in [8], we avoid the time complexity of generating a graph
representation of the surface before the surface can be
scanned to generate the patches and then compute the
distance distribution. Further, ours does not depend on the
time-consuming process of initial surface alignment.

3. Methods

We present an invariant descriptor for characterizing protein
surfaces. We start with a local descriptor of selected circular
patches on the protein surface. For a given surface patch, the
local descriptor is computed based on the residue distances
from the center of the patch. The descriptor records the
distance distribution between the central residue and the
residues within the patch, keeping track of the number of
particular pairwise residue cooccurrences in the patch. A
global descriptor for the entire protein surface is then con-
structed from the local descriptors by combining informa-
tion from local descriptors with similar central residues. The
proposed descriptor is invariant to rotations of the surface
and mirroring.

Using a fixed patch size, we obtain a descriptor for the
protein surface, independent of the size of the protein struc-
ture. Thus, the descriptor can facilitate the rapid matching of
protein chains, and will eliminate the need for the exhaustive
alignment of the protein 3D structures. For a given protein
structure or protein chain from a database, such as the PDB,
the proposed method can be summarize in the following
steps:

(1) generate the Connolly surface [36] for the protein
chain;

(2) generate the surface patches and compute the local
invariant descriptor for each patch on the surface;

(3) compute the global invariant surface descriptor for
the protein chain, by combining information from
the local patch descriptors;

(4) perform surface matching and comparison using the
descriptors;

(5) classify the protein into its potential functional fam-
ily, or perform protein surface retrieval using the in-
variant descriptors.

Figure 2 shows a schematic diagram of the general approach.
The method has been applied on three protein families:
uracil-DNA glycosylase, estrogen receptor, and cell division
protein kinase 2. These are the same protein families used in
a recently published work [8]. We also tested on epidermal
growth factor (EGF) and cyclooxygenase-2 (COX-2), two pro-
tein families that are known to play a role in cancer. Below,
we provide more details on the steps enumerated above.

3.1. Surface Generation. For a given protein, we first generate
its Connolly surface [36] at a given atomic radii, using the
MSMS program [37], based on which the dot surface is
generated. This dot surface is stored in a vertex file. We have
used a probe radius of 1.4 Å in all our experiments. Next,
MATLAB Bioinformatics Toolbox (Mathworks Inc, Natick,
Mass, USA) was used to extract the protein chains and to
generate the residue coordinates in each chain. In this step,
the chains are extracted while preserving the coordinates of
the Cα atoms and their respective residue types by extracting
the information from the PDB and the vertex files.

3.2. The Invariant Descriptor

3.2.1. Surface Patches. To capture protein structure similarity
and to avoid the computational complexity and the time-
consuming problem of aligning 3D protein structures, we
propose the use of a global rotational-invariant descriptor
to represent overlapping patches on the protein surface. A
patch is defined as a circular region with a specified radius,
centered on the Cα position of a surface residue. For each
residue on the surface (the central residue), we construct a
surface patch by recording its residue type, and consider all
residues within a certain distance threshold (τp) as part of the
patch (see Figure 2). Thus, the proposed surface descriptor
is composed of 20 distinct descriptions, one for each protein
residue type. For the local descriptor, this is constructed from
only information from the patch. For the global descriptor,
this is constructed by combining information from patches
with the same central residue.

The local invariant descriptor for the patch is created by
calculating the distribution of distances between the central
residue and all other surface residues within the patch.
Additionally, the residue cooccurrences within the patch are
also recorded as a part of the local descriptor. Each local
descriptor is represented in a matrix DA of size (20 + 1) ×
(b + 1), where the rows correspond to the 20 distinct protein
residue types, plus an extra row to describe the summary dis-
tance distribution within the patch. The columns represent
the individual bins used to capture the distance distributions
(total of b bins), plus an extra column to represent the
summary of the residue cooccurrences. To reduce the
computational time and space requirement, unlike in [8] we
define patches only for surface residue positions, rather than
for each vertex on the dot surface (the number of vertexes
is much more than the number of residues). Therefore, for
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Figure 2: Schematic diagram for the protein surface characterization using an invariant descriptor. Protein structures in the figure are
produced using PMV [3].

a given chain, the number of local invariant descriptors will
be equal to the number of surface residues. Yet, this number
can vary from tens to hundreds and sometimes to thousands
of surface residues. Using a huge number of local invariant
descriptors for one chain to perform matching will be
very time-consuming. To further reduce the computational
requirements, for a given chain, we compute a global rota-
tional-invariant descriptor by combining the 20 distinct
residue-specific descriptors. For a given residue type, the
global descriptor is constructed by taking the average of all
patch descriptors with a given residue type as the central
residue (see Figure 2). We consider three ways to represent
and use the global surface descriptor, as explained below.

3.2.2. Distance Distribution (DD2). The basic idea of using
the distance distribution is that similar functional proteins
should have a similar distribution of distances between the
residues on their surfaces. The patch descriptor captures
the distribution in two forms. The first form is a detailed

distance distribution between the central residue in the
surface patch and each of the other residues on the patch.
To achieve this, a uniform distribution of the distances is
assumed and the total number of bins b is used to estimate
the probability distribution of finding a pair of residues at
one of the b ranges. The second form is the global distance
probability distribution. In this form we estimate the prob-
ability of observing any given residue within a patch in a
particular distance range from the central residue. In this
paper, we study the use of the global distance distribution
in identifying similar protein surfaces, and possibly pro-
teins with similar functions. Consequently, the question to be
answered is, given a central residue of a specific type, what is
the distance distribution for the residues around this central
residue? That is, we seek Pr{d | Rc}, the probability of
observing distance d between a central residue of type Rc and
any other residue. We expect that the distance distribution
should be similar for surface patches from functionally
similar proteins.
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3.2.3. Residue Cooccurrences (RCs). Given that surface struc-
tures are more conserved than sequence over evolution [15,
17], we expect that functionally similar proteins are likely
to have similar surface residues, even though the order of
such residues may have changed. This intuition is captured
using residue cooccurrences on the protein surface. Using
the distance distribution globally provides an idea of how
the distances from the central residue are distributed in the
protein surface patch. However, there is no constraint on, or
indication of, which residues are involved in the formation
of these distributions. The co-occurrence of a given residue
with the central residue is calculated as the number of times
the residue occurs on a patch with the same central residue.
Thus, the main problem would be to find the probability
of observing residue say, Ri, given a central residue, say Rc.
Again, we expect the probability Pr{Ri | Rc}, to be similar
for protein surfaces from functionally similar proteins. We
note that the surface co-occurrence does not depend on the
specific distance between the residues involved, as far as Ri is
within the patch.

3.2.4. Distance-Residue Cooccurrences (DRCs). The above
have considered the distance and the co-occurrence sepa-
rately. The DRC combines the general distance distribution
(represented as a row vector, sum C in matrix DA) and
the residue cooccurrences (represented as a column vector,
sum R in matrix DA) in describing the protein surface
(see Figure 2). The residue-distance co-occurrence vector is
defined as follows: DRC = (sum C ◦ sum RT), where ◦ is the
concatenation operator and XT stands for the transpose of
X. DRC is used to compute the conditional probability Pr{d |
Rc,Ri}, that is, the probability of observing the distance d
between residues Rc and Ri given that Rc is the central residue
in the patch. We expect that the residue co-occurrence
(sum R, or RC) should carry more distinctive functionally
relevant information than the general distance distribution
(sum C, or DD2), since surface residue cooccurrences are
likely to be more conserved over evolution. By combining
both vectors, we can account for both the geometry of
the protein surface and the distribution of specific residues
within specific distances on the surface. Using both vectors
brings in some biological relevance in the analysis and is
likely to lead to improved results in the identification of
functionally similar protein surfaces.

3.3. Matching and Classification. Given two proteins, say
Protein 1 and Protein 2 we characterize them using their
global descriptors, say Dg1 and Dg2 respectively. In this
work, the global descriptor could be the distance distribution
(DD2), residue cooccurrences (RCs), or the distance-residue
cooccurrences (DRCs).

Distance Distribution. For matching using the distance dis-
tribution we create a vector Dg1d that is composed of the 20
global distance distributions represented by all sum C vectors
from each descriptor. Dg1d is defined as Dg1d = (Dd1 ◦
Dd2 ◦ · · · ◦ Dd20), where Dd1,Dd2, . . . ,Dd20 are the distance
distributions from each residue type on the surface of Protein

1. Repeat the same process for Protein 2 to create Dg2d. Then
we perform matching using the simple Euclidean distance:

D12 =
√∑n

i=1 [Dg1d(i)−Dg2d(i)]2 .

Residue Cooccurrences. For Protein 1 we create a vector
Dg1c that combines the 20 residues co-occurrence vectors
(denoted sum R), defined as Dg1c = (DT

c1◦ DT
c2◦· · ·◦DT

c20),
where DT

c1,DT
c2 , . . . ,DT

c20 represents sum RT
1 , sum RT

2 , and
sum RT

20. Similarly, we compute Dg2c. Matching is performed
using the Euclidean distance between Dg1c and Dg2c.

Distance-Residue Cooccurrences. Here, we create a vector
DRC that is comprised of all of the distance distributions
as well as the residue cooccurrences. For Protein 1, we have
DRC1 = (Dd1 ◦ DT

c1 ◦ Dd2 ◦ DT
c2 ◦ · · · ◦ Dd1 ◦ DT

c1).
Similarly we obtain DRC2 for Protein 2. Again for simplicity,
matching is performed using the Euclidean distance. Clearly,
other distance measures could be used.

Classification. Having computed the surface descriptors and
the distance between protein surfaces using the descriptors,
one may be interested in determining whether a given
unknown protein belongs to some known protein family.
Using some training data, we can compute surface descrip-
tors for the known family, and based on these perform
the required classification. Classification is performed using
Weka [38, 39], an open-source software for machine leaning
that provides a suite of classification algorithms.

4. Results and Discussion

4.1. Datasets and Environment. We performed experiments
to test the performance of the proposed protein surface
descriptor in two protein structure analysis tasks, namely,
classifying proteins into their most likely functional groups,
and ranking and retrieval of protein surfaces. We used two
datasets for the experiments. DATASET-A contained infor-
mation from three protein families: uracil-DNA glycosylase,
cell division protein kinase 2, and estrogen receptor. This
was created by scanning the PDB and selecting the protein
structures with protein chains belonging to one of the three
families. We were able to extract 416 chains that belong to
243 proteins in the PDB. The dataset is distributed as follows:
91 chains from 46 distinct proteins for uracil-DNA glycosylase
(Group1), 186 chains from 95 distinct proteins for estrogen
receptor family (Group2), and 139 chains from 102 distinct
proteins from cell division protein kinase 2 (Group3). We used
DATASET-A basically to train the system, and perform initial
testing. DATASET-B contained protein structures from two
families, namely cyclooxygenase-2 (COX-2) (51 proteins, 95
chains) and epidermal growth factor (EGF) (67 proteins,
71 chains). We then extracted protein structures from the
PDB that have 10 or less chains and ignored the rest. This
resulted in a total of 15,386 protein chains form 6,261 unique
proteins. DATASET-B included all structures in DATASET-A.
We used DATASET-B for a more comprehensive scan of the
PDB, in the quest for potentially novel structures that may
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Figure 3: Variation of classification rate (CR) with size of training set using the proposed descriptors DD2 (a), RC (b), and DRC (c). Results
are shown for the average over 10 runs, using logistic regression as the classifier.

be related to the two families. Experiments were performed
using a SONY VAIO personal computer, with Intel Core
2 Duo Processor T8100, running at 2.10 GHz, with 2 GB
of main memory. Programs were written using Matlab
(Mathworks Inc, Natick, Mass, USA) with the Bioinformatics
Toolbox. We set probe radius = 1.4 Å and patch distance
threshold τp = 10 Å. For distance distributions, we used a
fixed number of bins, b = 5. Classification was performed
based on algorithms implemented in Weka [38, 39] version
3-6-4.

4.2. Classification Performance. We divide DATASET-A into
training and testing sets and apply different classifiers on the
different descriptors proposed. In all our experiments, the
training sets were kept very separate from the testing sets,
with no overlap between the two. Classification performance
is measured in terms of classification rate based on the three
protein families in the dataset. We tested the method using
various classifiers implemented in Weka, such as Naı̈ve Bayes,
logistic regression, and simple logistic classifier. We report
results mainly for the logistic regression. First, we explore the
impact of the size of the testing set and of the training set on
the classification performance using the proposed approach.
We varied the size of the training set (from 50 to 300), while
keeping the size of the testing set fixed. We then checked the
performance using fixed testing sets of size 100, 200, and 300.
Figure 3 shows the results.

The figure shows that applying the distance distribution
(DD2) alone resulted in the lowest performance accuracy
as compared to using the residue cooccurrences (RCs) or
distance-residue cooccurrences (DRCs). Yet, our definition
of the distance distribution shows encouraging results. A
steady improvement in performance with increasing training
set size can be observed when using DD2 alone, peaking at

about 87% with a training size of 200 and testing size of
100. The distinctiveness of our approach is the use of residue
cooccurrences on the protein surface. This approach assumes
that functionally similar surface proteins have similar residue
cooccurrences within a small local surface region. Figure 3
(middle plot) shows that classification using residue cooc-
currences (RCs) provided a significant improvement in the
classification rate. A similar improvement was observed
using other classifiers, such as Naı̈ve Bayes. Using the RC
descriptor, we can achieve an accuracy rate of 94% using a
small training set (50 samples) and six times larger testing
set (300 chains). This shows the robustness of the residue
cooccurrences, even when using a few training samples. We
observe that the performance using DD2 was not as robust
(about 81% using small training set, peaking at about 87%
using 200 training samples).

The use of distance-residue co-occurrence presents a
steadier improvement in the classification rate. Using the
DRC raised the accuracy rate to 99% using the simple logistic
classifier on a training set of 150 and testing set of 100
(data not shown). We can observe the significant difference
between the results of DD2 (which did not use information
on residue cooccurrences) and RC and/or DRC (both of
which used residue cooccurrences). Figure 4 shows a cor-
responding performance measurement with varying size of
the testing set, while keeping the training set size fixed. As
expected, there is a general slight decrease in performance
with increasing size of the test set. The case of DRC using
a training set size of 100 seemed to increase slightly with
increasing testing set size. The increase is however within a
small range (from 0.91 to 0.93). This shows a steady perfor-
mance over increasing size of the testing set. Overall trends
are similar to Figure 3, with RC and DRC performing much
better than DD2. Similar trends were also observed using
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Figure 4: Variation of classification rate (CR) with size of testing set using the proposed descriptors DD2 (a), RC (b), and DRC (c). Results
are shown for the average over 10 runs, using logistic regression as the classifier.

other classification algorithms. The overall classification per-
formance is summarized in Figure 5, which shows the results
of the three proposed schemes using n-fold cross validation,
for different values of n.

4.3. Ranking and Retrieval. In this section, we explore the
effectiveness of our approach on the problem of search and
retrieval of protein surfaces. Given a query protein, we study
whether our approach has the robustness to place most of the
functionally similar proteins in the top hits of the retrieved
surfaces. Here, a query protein from each of the three groups
is used to screen the entire DATASET-A (416 samples) and
provide a ranking based on the similarity. Thus, each protein
structure is ranked against the query, (from 1 to 416), where
a lower rank (smaller distance) implies more similarity to the
query. After that, we search over the retrieved proteins to find
which ranks the functionally similar proteins (i.e., proteins in
the same functional group) have attained. Table 1 shows the
ranking produced using the proposed descriptor, for three
query samples, one for each group. Results are shown only
for DRC. RC produced a slightly better ranking (especially
for uracil-DNA glycosylase family (Group 1)), while DD2
was worse than both RC and DRC). Overall, for Group 2
and Group 3, the Top 30 ranked proteins belonged to the
corresponding family, while Group 1 was more difficult.

We further measured the performance of our approach
using the enrichment plot. The enrichment plot essentially
measures how well a given ranking or retrieval system per-
forms, when compared with a random selection of the data
samples. At a given percentage of database screening, the en-
richment factor is computed as the ratio Nobs/Nexp, where
Nobs = number of functionally similar proteins observed
or retrieved by the system, and Nexp = number of func-
tionally similar proteins expected by random selection. For
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Figure 5: Summary classification performance using n-fold cross
validation (the x-axis is for varying n).

an effective system, we expect that most of the functionally
similar proteins should be observed after a small percentage
of screening. That is, the top hits should contain mainly
functionally similar proteins, and hence the enrichment
factor should be high after a small percentage probe of the
database, and gradually decrease towards 1 (which corre-
sponds to random selection). Figure 6(a) shows a plot of the
average enrichment factor using 5 queries from Group 3.
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Table 1: Ranking the screened proteins according to their similarity
to the query protein. Results are shown for the Top 30 hits for one
query protein from each of the three groups, using DATASET-A
(416 protein chains).

(a) DRC on query protein 1UDI chain I (Group 1)

Protein PDB ID Chain Rank Distance

1UDI I 1 0

2ZHX B 2 2.1306

1LQM B 3 2.3509

1LQG C 4 2.4589

2UUG C 5 2.5353

1EUI C 7 2.5920

2ZHX L 8 2.6104

1UGH I 10 2.6349

2UGI A 15 2.6809

1UGI E 16 2.6872

2ZHX H 19 2.6969

2ZHX D 21 2.7006

2ZHX N 22 2.7017

2ZHX J 23 2.7141

1UGI G 25 2.7261

1EMJ A 42 2.7758

2BOO A 45 2.7808

1UGI D 47 2.7868

2OWR B 50 2.7952

2J8X D 61 2.8129

1LQG D 70 2.8263

1Q3F A 90 2.8533

2UUG D 99 2.8675

1UGI A 101 2.8689

2OWR C 110 2.8749

2ZHX F 116 2.885

2OWQ B 129 2.8977

1SSP E 141 2.9115

1UGI C 142 2.9117

2ZHX A 147 2.915

(b) DRC on query protein 1QKN chain A (Group 2)

Protein PDB ID Chain Rank Distance

1QKN A 1 0

2J7X A 2 1.3769

2J7Y A 3 1.5753

1QKM A 4 1.6793

1NDE A 5 1.7368

2GIU A 6 1.7371

1L2I A 7 1.7460

1U3R B 8 1.7670

3ERD A 9 1.7683

3OS9 A 10 1.7715

(b) Continued.

Protein PDB ID Chain Rank Distance

2IOG A 11 1.7738

3LTX C 12 1.7742

1YIM A 13 1.7854

3ERT A 14 1.7966

1U3Q D 15 1.8009

1YY4 A 16 1.8090

2OUZ A 17 1.8126

1YIN A 18 1.8152

1XP6 A 19 1.8260

2AYR A 20 1.8269

3OS8 D 21 1.8311

2QH6 A 22 1.8312

3OSA A 23 1.8367

1L2J A 24 1.8385

2JJ3 A 25 1.8438

1G50 A 26 1.8490

3OS8 A 27 1.8509

2FSZ A 28 1.8518

2QGW A 29 1.8604

1UOM A 30 1.8683

(c) DRC on query protein 1YKR chain A (Group 3)

Protein PDB ID Chain Rank Distance

1YKR A 1 0

2UZO A 2 1.0396

2R3O A 3 1.0810

3PXY A 4 1.0846

3PY1 A 5 1.0940

2WMA A 6 1.1389

2IW6 A 7 1.1609

3NS9 A 8 1.2043

3IGG A 9 1.2141

2WFY A 10 1.2179

2C5Y A 11 1.2270

3DDP A 12 1.2280

2J9M A 13 1.2284

2R3J A 14 1.2374

2R3L A 15 1.2402

3PXR A 16 1.2422

2DUV A 17 1.2534

1W8C A 18 1.2586

3DOG A 19 1.2793

2V22 A 20 1.2822

2R3P A 21 1.2883

2V22 C 22 1.2963

3IG7 A 23 1.3207

2JGZ A 24 1.3275

2R64 A 25 1.3303
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(c) Continued.

Protein PDB ID Chain Rank Distance

2WHB A 26 1.3381

2VTN A 27 1.3458

3LFN A 28 1.3476

2WIP A 29 1.3514

2BKZ A 30 1.3580

The enrichment plot shows that our proposed method
provides better results as we screen a small percentage of the
dataset. In most of the cases, our method retrieved about
three times better than the expected random retrieval in the
first 10% of screened proteins. As we increase the percent
of screening, the retrieval degrades, since we are more likely
to have retrieved most, if not all of the similar proteins
after a small percentage of the screening. Thus, subsequent
retrievals will lead to spurious results.

4.4. Screening Protein Surfaces in PDB. Encouraged by the
results in classification and ranking using the proposed
descriptors, we now performed a larger scale experiment,
by screening the entire protein structures in PDB, using the
protein chains in DATASET-B, with members of the COX-2
and EGF families as the query. The main objective was to see
how the proposed descriptors will perform on a large scale,
and to see if the methods could predict potentially novel
functional linkages between any of the families and other
proteins in PDB. For this task, we used only PDB files with 10
or less chains, and ignored the rest. This resulted in a total of
15,386 protein chains from 6,261 unique proteins. Table 2(a)
shows the ranking results produced by screening the PDB
files based on the proposed descriptors, using a member of
the EGF family as a query. Table 2(b) shows corresponding
results using a member of COX-2 family. Results are shown
only for the DRC descriptor. Generally, similar results were
obtained using RC. We can notice that some of the unknown
proteins (annotated as “uncharacterized”) were placed in the
Top-50 rankings, implying a possible relationship with the
respective families.

4.5. Comparison with Related Methods. The use of distance
distributions for protein surface analysis was studied by
Binkowski et al. [11]. As earlier discussed, they did not con-
sider the specific residues in constructing the distributions.
Their distance distribution (labeled as DD1 in this work) is
obtained by removing the reference to the specific residue
at the center of the patch (see Figure 2). Our use of surface
residue cooccurrences and combining these with the residue-
specific distance distributions are novel methods introduced
in this paper. Tables 3(a) and 3(b) compare the overall
classification performance using DD1 with those obtained
with the proposed descriptors.

Figure 6 also shows the comparative performance using
both the enrichment plots, and precision and recall. We de-
fine precision and recall at a given distance threshold as
follows: precision = (number of correct retrievals at the
threshold)/(number of total retrievals at the threshold).
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Figure 6: Ranking and retrieval performance for the proposed
methods. (a) Enrichment plot for screening protein structures
using the proposed descriptors. Results are average for 5 query
proteins from cell division protein kinase 2 family (Group 3), using
DATASET-A (416 protein chains). (b) Average precision and recall
for three queries, one for each group in DATASET-A. DD1 corre-
sponds to the distance distribution proposed in [11], as described
in Section 2 (see Section 4.5 on comparison with related methods).

Recall = (number of correct retrievals at the threshold)/
(number of total true matches expected at the threshold).
Here, using the ranked results, for a given query and a given
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Table 2

(a) Top 50 hits using DRC for a query protein structure from the EGF family on DATASET-B. Annotations in bold correspond to members of the EGF family,
predicted proteins, or uncharacterized proteins

Protein Chain Distance Protein name annotation Rank

2a2q L 0.0000 COAGULATION FACTOR VII 1

2fir L 1.4925 COAGULATION FACTOR VII LIGHT CHAIN 2

2zp0 L 1.5545 FACTOR VII LIGHT CHAIN 3

1wtg L 1.5628 COAGULATION FACTOR VII 4

1wun L 1.5844 COAGULATION FACTOR VII 5

2b8o L 1.6305 COAGULATION FACTOR VII LIGHT CHAIN 6

2zwl L 1.6379 FACTOR VII LIGHT CHAIN 7

2zzu L 1.6536 FACTOR VII LIGHT CHAIN 8

1wqv L 1.6816 COAGULATION FACTOR VII 9

2ec9 L 1.6832 COAGULATION FACTOR VII 10

1dan L 1.7655 BLOOD COAGULATION FACTOR VIIA 11

1wss L 1.7659 COAGULATION FACTOR VII 12

2puq L 1.7692 COAGULATION FACTOR VII 13

1fak L 1.7934 PROTEIN (BLOOD COAGULATION FACTOR VIIA) 14

2b7d L 1.8024 COAGULATION FACTOR VII 15

6acn A 1.8061 ACONITASE 16

2aer L 1.8120 COAGULATION FACTOR VII 17

2aei L 1.8164 COAGULATION FACTOR VII 18

2flr L 1.8196 COAGULATION FACTOR VII 19

3ela L 1.8668 COAGULATION FACTOR VII LIGHT CHAIN 20

1z6j L 1.8859 COAGULATION FACTOR VII 21

2f9b L 1.9027 COAGULATION FACTOR VII 22

3phs A 1.9169 CELL WALL SURFACE ANCHOR FAMILY PROTEIN 23

3n54 B 1.9263 SPORE GERMINATION PROTEIN B3 24

3qbp B 1.9264 FUMARASE FUM 25

3ma9 L 1.9367 TRANSMEMBRANE GLYCOPROTEIN 26

3mt0 A 1.9921 UNCHARACTERIZED PROTEIN PA1789 27

3lgu A 2.0004 PROTEASE DEGS 28

3m7i A 2.0071 TRANSKETOLASE 29

1qfk L 2.0096 PROTEIN (COAGULATION FACTOR VIIA (LIGHT CHAIN)) 30

3n9t A 2.0169 PNPC 31

3pxz A 2.0235 CELL DIVISION PROTEIN KINASE 2 32

2flb L 2.0257 COAGULATION FACTOR VII 33

3lh1 A 2.0289 PROTEASE DEGS 34

3nlc A 2.0300 UNCHARACTERIZED PROTEIN VP0956 35

3no5 C 2.0302 UNCHARACTERIZED PROTEIN 36

3msq C 2.0347 PUTATIVE UBIQUINONE BIOSYNTHESIS PROTEIN 37

3ryk A 2.0389 DTDP-4-DEHYDRORHSMNOSE 3,5-EPIMERASE 38

3m4a A 2.0444 PUTATIVE TYPE I TOPOISOMERASE 39

3n3n B 2.0444 CATALASE-PEROXIDASE 40

2R3G A 2.0456 CELL DIVISION PROTEIN KINASE 2 41
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(a) Continued.

Protein Chain Distance Protein name annotation Rank

2R3I A 2.0465 CELL DIVISION PROTEIN KINASE 2 42

3o0r L 2.0473 ANTIBODY FAB FRAGMENT LIGHT CHAIN 43

3n3p B 2.0490 CATALASE-PEROXIDASE 44

3nfh A 2.0492 DNA-DIRECTED RNA POLYMERASE I SUBUNIT RPA49 45

3qfk A 2.0501 UNCHARACTERIZED PROTEIN 46

3n5h F 2.0517 FARNESYL PYROPHOSPHATE SYNTHASE 47

3n3o B 2.0529 CATALASE-PEROXIDASE 48

3o78 B 2.0548
CHIMERA PROTEIN OF PEPTIDE OF MYOSIN LIGHT CHAIN
SMOOTH MUSCLE, GREEN FLUORESCENT PROTEIN, GREEN
FLUORESCENT CALMODULIN

49

3luy A 2.0570 PROBABLE CHORISMATE MUTASE 50

(b) Top 50 hits using DRC for a query protein structure from the COX-2 family on Dataset-B. Annotations in bold correspond to members of the COX-2
family, predicted proteins, or uncharacterized proteins

Protein Chain Distance Protein name annotation Rank

2zxw B 0.0000 CYTOCHROME C OXIDASE SUBUNIT 2 1

2eil B 1.3914 CYTOCHROME C OXIDASE SUBUNIT 2 2

2eij B 1.5853 CYTOCHROME C OXIDASE SUBUNIT 2 3

3ag4 B 1.6147 CYTOCHROME C OXIDASE SUBUNIT 2 4

2dys B 1.6991 CYTOCHROME C OXIDASE SUBUNIT 2 5

3ag1 B 1.8159 CYTOCHROME C OXIDASE SUBUNIT 2 6

2eim B 1.8824 CYTOCHROME C OXIDASE SUBUNIT 2 7

3ag2 B 2.0173 CYTOCHROME C OXIDASE SUBUNIT 2 8

2occ B 2.0631 CYTOCHROME C OXIDASE 9

3abl B 2.1404 CYTOCHROME C OXIDASE SUBUNIT 2 10

2eik B 2.1413 CYTOCHROME C OXIDASE SUBUNIT 2 11

3abm B 2.1454 CYTOCHROME C OXIDASE SUBUNIT 2 12

1v55 B 2.1489 CYTOCHROME C OXIDASE POLYPEPTIDE II 13

2dyr B 2.2044 CYTOCHROME C OXIDASE SUBUNIT 2 14

2ein B 2.2628 CYTOCHROME C OXIDASE SUBUNIT 2 15

1v54 B 2.2976 CYTOCHROME C OXIDASE POLYPEPTIDE II 16

3n56 B 2.4226 INSULIN-DEGRADING ENZYME 17

3abk B 2.4502 CYTOCHROME C OXIDASE SUBUNIT 2 18

3p42 A 2.4785 PREDICTED PROTEIN 19

3r2u B 2.4846 METALLO-BETA-LACTAMASE FAMILY PROTEIN 20

3msu B 2.4920 CITRATE SYNTHASE 21

3ag3 B 2.4950 CYTOCHROME C OXIDASE SUBUNIT 2 22

3ntd B 2.5052
FAD-DEPENDENT PYRIDINE NUCLEOTIDE-DISULPHIDE
OXIDOREDUCTASE

23

3ngi A 2.5055 DNA POLYMERASE 24

7xim B 2.5198 D-XYLOSE ISOMERASE 25

3mjy A 2.5206 DIHYDROOROTATE DEHYDROGENASE 26

3nva B 2.5391 CTP SYNTHASE 27

3lm3 A 2.5433 UNCHARACTERIZED PROTEIN 28

3ppn B 2.5511 GLYCINE BETAINE/CARNITINE/CHOLINE-BINDING PROTEIN 29

3o98 B 2.5557
BIFUNCTIONAL GLUTATHIONYLSPERMIDINE
SYNTHETASE/AM

30
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(b) Continued.

Protein Chain Distance Protein name annotation Rank

3pom B 2.5558 RETINOBLASTOMA-ASSOCIATED PROTEIN 31

3nt6 B 2.5656
FAD-DEPENDENT PYRIDINE NUCLEOTIDE-DISULPHIDE
OXIDOREDUCTASE

32

5lym B 2.5690 LYSOZYME 33

3n1y B 2.5728 TOLUENE O-XYLENE MONOOXYGENASE COMPONENT 34

1occ B 2.5772 CYTOCHROME C OXIDASE 35

3lxt D 2.5860 GLUTATHIONE S TRANSFERASE 36

2q70 B 2.5922 ESTROGEN RECEPTOR 37

3l49 B 2.5930
ABC SUGAR (RIBOSE) TRANSPORTER, PERIPLASMIC
SUBSTRATE-BINDING SUBUNIT

38

3pvq A 2.5944 DIPEPTIDYL-PEPTIDASE VI 39

3puf B 2.6032 RIBONUCLEASE H2 SUBUNIT B 40

3mve B 2.6077 UPF0255 PROTEIN VV1 0328 41

3ld2 B 2.6143 PUTATIVE ACETYLTRANSFERASE 42

3ne6 A 2.6160 DNA POLYMERASE 43

3qae A 2.6179 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE 44

3qh8 A 2.6197 BETA-LACTAMASE-LIKE 45

3m3r A 2.6215 ALPHA-HEMOLYSIN 46

3nrb B 2.6234 FORMYLTETRAHYDROFOLATE DEFORMYLASE 47

3n05 B 2.6240 NH(3)-DEPENDENT NAD(+) SYNTHETASE 48

3m2l A 2.6324 ALPHA-HEMOLYSIN 49

3pns B 2.6357 URIDINE PHOSPHORYLASE 50

Table 3

(a) Overall classification rate using different classifiers (300 training sam-
ples, 100 testing samples from DATASET-A)

Classifier
Descriptor

DD1 DD2 RC DRC

Naı̈ve bayes 58% 86% 94% 91%

Logistic 58% 85% 99% 97%

Simple logistic 58% 89% 98% 91%

(b) Overall classification rate using different classifiers (100 training sam-
ples, 300 testing samples from DATASET-A)

Classifier
Descriptor

DD1 DD2 RC DRC

Naı̈ve bayes 55% 74% 94% 93%

Logistic 62% 88% 89% 94%

Simple logistic 63% 85% 91% 90%

rank, the number of expected true matches will be min{rank,
query group size}. This is similar to the definition used in
[28]. We performed queries on DATASET-A using query pro-
teins from each of the three groups and computed the average
precision and recall for each descriptor. We then computed
the area under the curve (AUC) for the average precision-
recall plots. The results were as follows: DD1 (0.501052),

DD2 (0.649412), RC (0.668303), and DRC (0.66759). Al-
though the databases used are different, these results com-
pare well with the results reported by Sael and Kihara [28],
where they evaluated the retrieval performance of four sur-
face characterization methods, based on the Zernike repre-
sentation. The maximum AUC reported using standard reso-
lution surfaces was 0.608 (without length filtering) and 0.628
(with length filtering). Yin et al. [8] proposed a fingerprint-
based method, using surface alignment on selected surface
patches. Their method constructs an initial patch on every
vertex on the dot surface, and requires computation of
geodesic distances on the surface, two very time-consuming
processes. Our method neither requires surface alignment,
nor expensive computations on the surface, beyond the
surface generation process. Patches are generated only on
positions of the surface residues, rather than over all the
vertices on the generated protein surface.

4.6. Computation Time. The most time consuming part was
for preprocessing, as needed to construct the protein surfaces
and extract the protein chains. The construction of the
protein surface from the original PDB files required about
4.065 seconds, running on Cygwin (a version of Linux for
Microsoft Windows). Extraction of the protein chains and
the Cα atoms was performed using Matlab Bioinformatics
Toolbox (Mathworks Inc., Natick, Mass, USA), and required
32 seconds per PDB file. Construction of the descriptors after
the above steps took an average of 0.7 seconds per PDB file.
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Querying DATASET-B (15,386 chains, 6,261 unique PDB
files) using the DRC descriptor required an average time of
0.28 seconds for each query PDB file.

5. Conclusion

We have introduced a novel approach to the description and
characterization of protein surfaces. The proposed approach
captures the surface structure of the protein by utilizing local
patches defined only on the positions of surface residues,
rather than over all surface vertices, or over all the surface
atoms. We make residue cooccurrences on the surface a cen-
tral part of the descriptor. The novelty of this approach can
be observed by the ease of handling both local and global
variation on the surface (using local and global descriptors).
Moving from local to global not only reduces the computa-
tional problem of matching 3D structures, but also facilitates
direct comparison between protein structures of different
sizes. By avoiding the construction of the complete 3D sur-
face and retaining only the surface Cα to do the analysis, the
need for surface alignment of the 3D structure is eliminated.
Further, we do not need to perform any geometrical trans-
formation to insure reliable matching. This is very important
for rapid analysis over a large database, such as the PDB.

We showed results on the performance of the proposed
methods in functional classification of proteins into their
putative families, based on the surface information. We
further compared the results using enrichment plots, and
the standard measures of precision and recall. For the three
protein families used, we obtained an area under the curve
for precision and recall of 0.6494 (DD2), 0.6683 (RC), and
0.6676 (DRC). A screening of the PDB using COX-2 and EGF
family members showed that the proposed methods ranked
related family members in the Top-20 hits, with a number of
uncharacterized proteins also retrieved. It will be interesting
to perform further biological lab experiments to verify if any
of the retrieved uncharacterized proteins are truly related to
the respective families to which they share similar surfaces
(as determined by our surface descriptors).
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“Protein structure: geometry, topology and classification,”
Reports on Progress in Physics, vol. 64, no. 4, pp. 517–590, 2001.

[33] I. G. Choi, J. Kwon, and S. H. Kim, “Local feature frequency
profile: a method to measure structural similarity in proteins,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 101, no. 11, pp. 3797–3802, 2004.

[34] N. Canterakis, “3D zernike moments and zernike affine invari-
ants for 3D image analysis and recognition,” in Proceedings of
the 11th Scandinavian Conference on Image Analysis, pp. 85–93,
1999.

[35] R. Mukundan and K. R. Ramakrishnan, “Fast computation of
Legendre and Zernike moments,” Pattern Recognition, vol. 28,
no. 9, pp. 1433–1442, 1995.

[36] M. L. Connolly, “Solvent-accessible surfaces of proteins and
nucleic acids,” American Association for the Advancement of
Science, vol. 221, no. 4612, pp. 709–713, 1983.

[37] J. Smith, “Computing a triangulated surface with MSMS. In
Vanderbilt University Center for Structural Biology,” 2011,
http://structbio.vanderbilt.edu/comp/soft/msms/tutorial.php.

[38] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The WEKA data mining software: an
update,” SIGKDD Explorations, vol. 11, no. 1, 2009.

[39] R. R. Bouckaert, E. Frank, M. A. Hall et al., “WEKA—ex-
periences with a Java open-source project,” Journal of Machine
Learning Research, vol. 11, pp. 2533–2541, 2010.

http://structbio.vanderbilt.edu/comp/soft/msms/tutorial.php

	Introduction
	Background and Related Work
	Protein Sequences, Structure, and Surface
	Protein Surface Characterization Methods
	Distance Distributions
	Zernike Polynomials
	Fingerprints


	Methods
	Surface Generation
	The Invariant Descriptor
	Surface Patches
	Distance Distribution (DD2)
	Residue Cooccurrences (RCs)
	Distance-Residue Cooccurrences (DRCs)

	Matching and Classification
	Distance Distribution
	Residue Cooccurrences
	Distance-Residue Cooccurrences
	Classification


	Results and Discussion
	Datasets and Environment
	Classification Performance
	Ranking and Retrieval
	Screening Protein Surfaces in PDB
	Comparison with Related Methods
	Computation Time

	Conclusion
	Acknowledgment
	References

