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Abstract

Sensory hair cells are mechanoreceptors required for hearing and balance functions. From

embryonic development, hair cells acquire apical stereociliary bundles for mechanosensa-

tion, basolateral ion channels that shape receptor potential, and synaptic contacts for con-

veying information centrally. These key maturation steps are sequential and presumed

coupled; however, whether hair cells emerging postnatally mature similarly is unknown.

Here, we show that in vivo postnatally generated and regenerated hair cells in the utricle, a

vestibular organ detecting linear acceleration, acquired some mature somatic features but

hair bundles appeared nonfunctional and short. The utricle consists of two hair cell subtypes

with distinct morphological, electrophysiological and synaptic features. In both the undam-

aged and damaged utricle, fate-mapping and electrophysiology experiments showed that

Plp1+ supporting cells took on type II hair cell properties based on molecular markers, baso-

lateral conductances and synaptic properties yet stereociliary bundles were absent, or small

and nonfunctional. By contrast, Lgr5+ supporting cells regenerated hair cells with type I and

II properties, representing a distinct hair cell precursor subtype. Lastly, direct physiological

measurements showed that utricular function abolished by damage was partially regained

during regeneration. Together, our data reveal a previously unrecognized aberrant matura-

tion program for hair cells generated and regenerated postnatally and may have broad impli-

cations for inner ear regenerative therapies.

Introduction

Inner ear hair cells are mechanoreceptors critical for auditory and vestibular functions, and

their degeneration are primary causes of hearing and balance dysfunction. In mammals,

cochlear hair cell loss is irreversible, leading to permanent hearing loss [1]. By contrast,
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spontaneous yet limited hair cell regeneration occurs in both the neonatal and mature mam-

malian utricle [2–10], a vestibular sensory organ that functions to detect linear acceleration

such as gravity.

During utricular development, hair cells are specified between embryonic day (E) 11.5–12.5

[11]. At birth, some hair cells exhibit mature-appearing stereociliary bundles bearing the

actin-bundling protein espin [12]. Electrophysiological measurements show that vestibular

hair cells are mechanically sensitive as early as E16 [13]. Outward and inward rectifier voltage-

dependent conductances characteristic of type I and II hair cells are present before birth, and

their properties continue to mature during the first two postnatal weeks [14–16]. Formation of

a calyx, a specialized nerve terminal specific for type I hair cells, begins neonatally and is pre-

sumed to be mature within the first postnatal month [16]. Thus, within four weeks of specifica-

tion, utricular hair cells can first display mature bundle and then somatic

(electrophysiological, synaptic, and molecular) features representing specialization of hair cell

subtypes. These properties, which are presumed to be orderly and coupled, are used as refer-

ences for characterizing induced pluripotent stem (iPS) cell- and progenitor cell-derived hair

cells [17–20]. However, over 50% of utricular hair cells are added after birth, with most addi-

tion occurring during the first postnatal week when the organ gains detectable function

[21,22]. At present, the time course and extent of functional maturation acquired by postna-

tally developed hair cells are unexplored, leaving open the question of whether they display

properties similar to those born in the embryonic period.

Following damage to the mammalian utricle, hair cells bearing immature stereociliary bun-

dles reminiscent of nascent hair cells repopulate the sensory epithelium one to six months

later [3–6,8–10]. In the mature mouse utricle, the extent of regenerated hair cells is rather lim-

ited, whereas more robust regeneration occurs in utricles from younger animals [5,9]. Using

length of stereociliary bundles as a surrogate marker of maturation, most regenerated hair cells

appear nascent even months after damage [5]. Given this limited degree of hair cell regenera-

tion and bundle maturation, it is currently unclear whether the somatic properties (basolateral

conductances, synaptic/nerve terminal formation and molecular markers) of regenerated hair

cells mature and if the overall vestibular function is restored.

As in other vestibular organs, hair cells in the utricle specialize into type I and II subtypes,

which can be distinguished by molecular markers (Osteopontin for mature type I, Mapt for

mature type II and Annexin A4 for immature and mature type II) [23], morphology of cell

body (amphora-shaped with apical neck for type I and cylindrical or goblet-shaped for type

II), nerve terminals (calyces for type I and boutons for type II), and basolateral conductances

(low-voltage-activated, delayed rectifier potassium conductance [gKL] for type I and slow

inward rectifier non-specific cation conductance [gH] for both type I and II) [24,14,25–29].

Type I hair cells display larger mechanotransducer currents and are postulated to detect faster

acceleration stimuli [30–32], but both subtypes are deemed essential for organ function [33].

In the damaged mature mammalian utricle, regeneration of only type II hair cells has been

reported [3–6], whereas hair cells regenerated in the neonatal utricle displayed molecular char-

acteristics of both type I and II hair cells [9]. At present, the extent of maturity achieved by

postnatally generated and regenerated hair cells into hair cell subtypes—including their acqui-

sition of basolateral conductances, nerve terminals, and molecular markers—has not been

fully defined in either the neonatal or mature utricle.

Here, we found that postnatally generated hair cells displayed electrophysiological and

molecular characteristics of type II hair cells but had relatively immature stereociliary bundles.

Using lineage markers differentially expressed in extrastriolar (peripheral) and striolar (cen-

tral) supporting cells [9], we show that regenerated hair cells derived from Plp1+ supporting

cells displayed type II hair cell properties whereas those from the Lgr5+ lineage exhibited either
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type I or II hair cell properties, suggesting regional segregation of hair cell precursors. In con-

trast to somatic properties (morphology, hair cell subtype markers, synaptic markers, nerve ter-

minals, and basolateral conductances), regenerated hair cells showed relatively immature or

nonfunctional bundle characteristics (morphology and mechanotransduction [MET] channel

function). Collectively, our study reveals that postnatally generated and regenerated hair cells

acquire many somatic properties but retain relatively immature bundle features, thus displaying

previously unrecognized aberrant maturation programs distinct from embryonic hair cells.

Results

Fate-mapping early and late postnatally generated hair cells

In the postnatal mouse utricle, most hair cells are added during the first week after birth in

both the striolar and extrastriolar regions [21]. To label the postnatally generated hair cells

(HCPG), we fate-mapped supporting cells in Plp1CreERT/+; Rosa26RtdTomato/+ (Plp1-Tomato)

mice (S1A Fig) [9]. Tamoxifen (0.075 mg/g intraperitoneal [IP]) administration at postnatal

day (P) 3 induced tdTomato labeling of 73.0 ± 10.3% and 14.1 ± 4.0% supporting cells in the

extrastriolar and striolar regions, respectively, two days later (n = 4, Fig 1A–1C, S1A and S1B

Fig). Hair cells were rarely tdTomato-labeled at this age (0.5 ± 0.3 and 0.3 ± 0.5%, n = 742

extrastriolar and 663 striolar hair cells from 4 mice) (Fig 1C and 1F, S1B and S1E Fig). At P30,

14.1 ± 3.7% of Myosin7a+ hair cells in the extrastriola and 5.2 ± 3.7% in the striola were tdTo-

mato-labeled (n = 2,507 extrastriolar and 1,858 striolar hair cells from 11 mice, Fig 1D and 1F,

S1C and S1E Fig), both significantly more than P5 (p< 0.001 in extrastriola and p< 0.01 in

striola). Control experiments using corn oil on P3 Plp1-tdTomato mice revealed no labeled

hair cells (n = 665 and 608 hair cells in the extrastriola and striola from 3 mice) and only rare

labeled supporting cells at P30 (0.5% of 954 extrastriolar and 0.1% of 946 striolar supporting

cells from 3 mice, S1F Fig). This suggests that P3 Plp1+ supporting cells contribute to postna-

tally generated hair cells, which we term HCPG3 hereon.

The number of hair cells in the mouse utricle continues to increase during the first postna-

tal week, with marginal increases thereafter [21]. To identify these late postnatally generated

hair cells, we administered tamoxifen (0.075 mg/g IP) to P8 Plp1-Tomato mice and found

4.6 ± 2.0% and 2.5 ± 2.5% of Myosin7a+ hair cells tdTomato-labeled in the extrastriola and

striola, respectively, at P30 (n = 3,002 extrastriolar and 2,561 striolar hair cells from 16 mice,

Fig 1E and 1F, S1D and S1E Fig). There were significantly fewer late traced hair cells (HCPG8)

than HCPG3 (Fig 1F, S1E Fig, S1 Data), consistent with the decline in hair cell production after

the first postnatal week [21]. To assess the electrophysiological properties of HCPG3 and

HCPG8, we probed both cohorts at P30, allowing time for both groups of hair cells to mature.

Traced hair cells (HCPG3 and HCPG8) and untraced hair cells (controls), which likely contained

more mature hair cells derived from supporting cells earlier than P8, were probed for delayed

rectifier potassium currents (IDR). Normally found in nascent and mature vestibular hair cells

[14,16], IDR were observed in all three groups of hair cells (n = 13 HCPG3, 9 HCPG8, 9 untraced

hair cells, Fig 1G–1I). From conductance-voltage plots, we found that values for maximal con-

ductance, half-activation voltage and slope of the Boltzmann function were similar among

groups (Fig 1J–1L, S1 Data), with small but significant differences among the latter two mea-

surements possibly attributed to splice variants or phosphorylation state. Lastly, we used two

additional measurements to estimate hair cell maturation: 1) cell capacitance as a proxy for

cell size and 2) resting potentials which become more negative as hair cells mature [15]. We

found that traced hair cells (HCPG3 and HCPG8) most closely matched perinatal hair cells in

both size and resting potentials and estimate that they were comparably mature (S2 Table)

[15]. Together, these data show that both early and late postnatally generated hair cells exhibit
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Fig 1. Characteristics of postnatally generated hair cells in the mouse utricle. A) Plp1CreERT/+; Rosa26RtdTomato/+ mice were treated with tamoxifen at

P3 (early tracing) and P8 (late tracing) to fate-map supporting cells. Organs were examined at P5 and P30. B) Diagram illustrating the extrastriolar and

striolar regions of the utricle. C) Rare tdTomato+/Myosin7a+ hair cells were detected in the extrastriola 2 days after early tracing with tamoxifen given at

P3. D) Many traced hair cells (asterisks) were found in the extrastriola at P30. E) After late tracing initiated at P8, few traced hair cells (asterisks) were

detected in the extrastriola at P30. Representative high magnification images were selected from the extrastriola region (white boxes). F) Compared to P5,

the percentage of tdTomato+/Myosin7a+ cells was significantly higher at P30 after early tracing from P3. It is also significantly higher than that of late

tracing from P8 (n = 4–16 mice). G-I) Currents from hair cells were elicited using the delayed rectifier protocol described in the methods. J-L)

Conductance-voltage plots were generated and values for maximal conductance, half-activation voltage and slope of the Boltzmann function were

extracted (n = 9–13 cells). All examined hair cells from three groups displayed measurable conductances representative of gDR, with some significant

differences in half-activation voltage and slope. Data shown as mean ± SD, compared using Student t tests and one-way ANOVA by Kruskal Wallis-

Dunn’s multiple comparison tests. ���p< 0.001, ��p< 0.01, �p< 0.05. Scale bars: 50 μm. The underlying data can be found within S1 Data. P, postnatal

day.

https://doi.org/10.1371/journal.pbio.3000326.g001
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fundamental hair cell properties, leading us next to probe whether they acquire specialized

hair cell subtype characteristics.

Specialization of postnatally generated hair cells into type II hair cells

Vestibular hair cell subtypes can be identified based on morphology, molecular markers,

electrophysiological and synaptic properties. In addition, hair cell age can be intimated by the

complement of ion channels present, synaptic function, and the morphology and functional

state of hair bundles. Here, we first used molecular markers and electrophysiological proper-

ties to determine whether traced hair cells differentiate into hair cell subtypes.

Type I hair cells display amphora-shaped cell bodies and long thin apical necks, endowed

with a consistent and simple electrophysiological fingerprint: a hyperpolarized activating

delayed rectifier current (IKL) [16]. Type II hair cells are goblet-shaped with short, thick necks

and basolateral cytoplasmic processes, but are more complex in that they contain diverse ion

channels that vary with age and location, including the voltage-gated inward rectifying, non-

specific cation currents (IH) [26,16].

Since markers such as Calbindin and Oncomodulin are expressed in only striolar type I

hair cells [34,35,29], we immunolabeled for Osteopontin for type I hair cells and for Annexin

A4 and Mapt for type II hair cells [23]. We found that Osteopontin was expressed at the apical

neck of type I hair cells with Tuj1+ calyces, while Annexin A4 and Mapt were expressed in the

cell membrane of type II hair cells throughout the P30 utricle (Fig 2A–2D and 2K–2N, S2J and

S2K Fig).

When examining HCPG3 in the P30 Plp1-Tomato utricles, we found that most traced hair

cells expressed Annexin A4 (85.1 ± 25.8% of 117 and 94.9 ± 8.9% of 24 HCPG3 in the extra-

striola and striola from 3 mice, respectively) (Fig 2C, S1A and S1B Fig, S3 Table). Similarly,

most HCPG8 were Annexin A4+ (95.2 ± 8.2% of 24 and 100% ± 0% of 12 HCPG8 in extrastriola

and striola from 3 mice, respectively) (Fig 2D, S2A and S2C Fig, S3 Table). We examined 95

Annexin A4+ HCPG3 and 35 Annexin A4+ HCPG8 and found that 69–79% were goblet-shaped,

with other rare morphologic subtypes also present (Fig 2C and 2D, S2B, S2C and S2F Fig).

Lastly, Annexin A4+ HCPG8 also expressed Mapt, a marker of mature type II hair cells [23]

(82.4% of 17 extrastriolar cells and 76.5% of 17 striolar cells from 3 mice) (S2I–S2K Fig, S4

Table), suggesting that most postnatally generated hair cells from the Plp1 lineage have

acquired a type II hair cell phenotype.

To verify their identity as type II hair cells, we probed HCPG3 and HCPG8 from P30 Plp1-To-
mato utricles for both IKL, characteristic of type I hair cells, and IH non-specific cation cur-

rents [14,16]. The presence of IKL indicates a type I hair cell electrophysiological phenotype.

To account for possible variations in measurements, we compared traced hair cells to untraced

cells in a similar location within the sensory epithelium. To probe for IH we voltage-clamped

hair cells at -69 mV and hyperpolarized between -74 and -156 mV for 400 ms and then back to

-69 mV. Hair cells from each group (10/10 HCPG3, 9/9 HCPG8 and 5/5 untraced hair cells) dis-

played IH (Fig 2E–2G), with similar properties (peak conductance, half-activation and slope)

measured in all three groups (Fig 2H–2J, S1 Data).

To assess whether postnatally generated hair cells can acquire features of type I hair cells,

we immunostained for and found that a subset of HCPG3 and HCPG8 expressed Osteopontin

(21.2 ± 32.6% of 87 and 19.3 ± 26.2% of 49 HCPG3 in the extrastriola and striola, respectively,

from 3–4 mice, and 4.0 ± 6.8% of 81 and 1.7 ± 4.1% of 28 HCPG8 in the extrastriola and striola

from 7–8 mice) (Fig 2M and 2N, S2D and S2E Fig, S3 Table). Among 24 Osteopontin+ HCPG3

and 2 HCPG8 examined, most (75–100%) displayed the classic amphora shape (Fig 2M and 2N,

S2D, S2E and S2G Fig).

Probing postnatal hair cells
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Fig 2. Early and late postnatally generated hair cells primarily show type II hair cell characteristics. A) P30 whole mount

utricle (early tracing) labeled for Annexin A4 (ANXA4). B) Cartoon depicting nucleus level of ANXA4+ (green) type II hair

Probing postnatal hair cells
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To further investigate whether postnatally generated hair cells exhibit type I hair cell

electrophysiological properties, we probed and found no significant IKL in either HCPG3 or

HCPG8 (n = 10 and 8 cells, respectively), suggesting that these groups do not contain HCs with

a type I electrophysiological phenotype (Fig 2O, 2P and 2R). By contrast, IKL was detected in

75% of (9 of 12) untraced hair cells (Fig 2Q and 2R, S1 Data), with half-activation and slope

comparable to those in mature type I hair cells (Fig 2S and 2T, S1 Data) [16].

The presence of IH and the lack of IKL in fate-mapped HCPG3 and HCPG8 suggest a non-

type I hair cell phenotype. Although few postnatally generated hair cells displayed molecular

and morphologic features of type I hair cells, none displayed such electrophysiological proper-

ties. This is consistent with the previous results that most postnatally generated hair cells dis-

played molecular and morphologic features representing a type II hair cell phenotype.

Of note, several conductances were not explored in detail, in part because they were not

observed. Sodium conductances, often described in immature hair cells [14,36] were not

observed in either traced or untraced cells, likely suggesting that all cells had matured past this

developmental stage. A-type potassium conductances, which are often found in extrastriolar

hair cells and used as a marker for maturation [14,37,16], were not observed in traced or

untraced cells, likely indicating that we recorded from a location where this conductance was

not observed.

In summary, these data indicate that Plp1+ supporting cells primarily give rise to type II

hair cells, whereas few type I hair cells were generated in the postnatal period. In comparison,

untraced Myosin7a+ hair cells, which likely represent hair cells that arose earlier than P8, more

commonly expressed the type I hair cell marker Osteopontin (S3 Table) and the signature IKL

at P30.

Active presynaptic components in postnatally generated hair cells

To determine whether postnatally generated hair cells are neurally integrated, we first exam-

ined innervation in P30 Plp1-Tomato utricles. All HCPG3 (n = 127 extrastriolar and 18 striolar

hair cells from 3 mice) and HCPG8 (n = 73 extrastriolar and 18 striolar hair cells from 9 mice)

were juxtaposed to Tuj1+ neurites (Fig 3A–3C, S3A and S3B Fig). However, neither HCPG3

nor HCPG8 showed any Tuj1+ calyx-shaped nerve terminals, supporting the notion that post-

natally generated hair cells were primarily type II hair cells.

Ctbp2 is a major component of the hair cell presynaptic ribbon [38]. We found Ctbp2

expressed in all HCPG3 (n = 53 extrastriolar and 19 striolar hair cells from 3 mice) and HCPG8

(n = 56 extrastriolar and 25 striolar hair cells from 6 mice) examined (Fig 3A, 3D and 3E, S3C

and S3D Fig). No significant difference was found in the number of Ctbp2+ puncta between

HCPG3 and HCPG8 (Fig 3F, S3E Fig, S1 Data). In comparison to tdTomato-negative, untraced

cells. C-D) Almost all postnatally generated tdTomato+/Myosin7a+ hair cells from early and late tracing expressed ANXA4

(asterisks). Inset shows orthogonal view of traced goblet-shaped, ANXA4+ type II hair cells with basolateral processes. E-G)

Representative tracings of voltage-gated currents in response to the inward rectifier protocol from HCPG3, HCPG8 and

untraced hair cells (n = 5–10 cells). H-J) All three groups demonstrate similar inward rectifier electrophysiological (gH)

properties: peak conductances, half-activation and slopes. K) P30 utricle from early tracing labeled for OPN. L) Diagram

illustrating the nucleus level of OPN+ (green) type I hair cells. Occasional tdTomato+/Myosin7a+ hair cells from early M)

and late tracing N) expressed OPN on the apical neck (arrowhead). Inset shows orthogonal view of traced OPN+ type I hair

cells with amphora shape, and a long and narrow apical neck. O-Q) Examples of low voltage activated potassium current

(IKL) responses during the step displacements for HCPG3, HCPG8 and untraced hair cells (n = 8–12 cells). Green dashed

lines define zero current levels. R-T) Similar tail current and reversal potential analysis were performed with resultant data

for conductance, half-activation and slope. Data shown as mean ± SD, compared using one-way ANOVA by Kruskal Wallis-

Dunn’s multiple comparison test. Scale bars: A, K) 100 μm; C-D, M-N) 20 μm. The underlying data can be found within S1

Data. ANXA4, Annexin A4; HCPG, postnatally generated hair cell; OPN, Osteopontin; P, postnatal day.

https://doi.org/10.1371/journal.pbio.3000326.g002

Probing postnatal hair cells

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000326 July 1, 2019 7 / 35

https://doi.org/10.1371/journal.pbio.3000326.g002
https://doi.org/10.1371/journal.pbio.3000326


Fig 3. Synaptic properties of postnatally generated hair cells. A) Diagram illustrating hair cells with the presynaptic element Ctbp2 (red) and

associated Tuj1+ vestibular neurites (beige). B-C) Representative confocal images of tdTomato+/Myosin7a+ hair cells (asterisks and dashed lines)

from early and late tracing associated with Tuj1+ neurites (arrowheads in orthogonal views, n = 127 cells from 3 mice for early tracing and 73 cells

from 9 mice for late tracing). D-E) Expression of Ctbp2 on the basolateral surfaces of traced hair cells (arrowhead). Shown are high magnification

XY and orthogonal views of cells of interests in boxes (n = 53 cells from 3 mice for early tracing and 56 cells from 6 mice for late tracing). F)

Quantification of Ctbp2+ puncta in tdTomato+/Myosin7a+ hair cells in the extrastriola. No significant difference was found between early and late

tracing. G-I) Representative calcium currents from Plp1-traced HCPG3, HCPG8 and untraced hair cells. Calcium currents were isolated from

voltage-clamped hair cells by replacing intracellular potassium with Cs and tetra-ethyl ammonium. Currents in response to the calcium current

protocol were monitored and analyzed. J-K) Current-voltage plots were generated from peak current responses and maximal current and half

Probing postnatal hair cells
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hair cells, the number of Ctbp2+ puncta of HCPG3 and HCPG8 also were also not significantly

different (p> 0.05 for all).

We next examined whether HCPG3 and HCPG8 were capable of synaptic vesicle release. Cal-

cium currents were isolated (Fig 3G–3I, S1 Data), current-voltage plots were generated from

peak current responses, and the maximal current and half activating voltage were extracted

from these plots (Fig 3J and 3K, S1 Data). Like untraced hair cells (4/4), all 14 HCPG3 and 8

HCPG8 displayed calcium current responses supportive of the potential for presynaptic activity.

The presence of calcium currents is also supportive of traced cells taking on a hair cell pheno-

type. Slight differences in half-activation values may indicate different states of maturity and

warrants further investigation.

To assess functional activity of presynaptic sites, vesicle fusion was monitored using a dual

sine wave technique as previously described [39,40]. Three groups of hair cells (HCPG3,

HCPG8, and untraced hair cells) were depolarized to the voltage of maximal calcium current

for three seconds and changes in capacitance were monitored in real time (S3F–S3H Fig). We

found that most (13/17 HCPG3, 7/8 HCPG8, 4/4 untraced hair cells) of the recorded cells had

greater than 50 fF of capacitance change. Although quite variable, no differences in maximal

release were observed among the groups (S3I and S3J Fig, S1 Data), supporting the conclusion

that postnatally generated hair cells were presynaptically active. The presence of presynaptic

activity also supports the conclusion that traced cells behave as hair cells.

Immature stereociliary bundles and MET channels in postnatally generated

hair cells

Another defining feature of hair cell maturation is the acquisition of stereociliary bundles and

MET [14,41]. First, we marked these actin-rich structures using fluorescence-conjugated phal-

loidin and found that most HCPG3 and HCPG8 displayed either immature or no bundles (Fig

4A–4C). We categorized bundles based on established morphologic criteria (long, short and

absent) [42] and discovered that most HCPG3 and HCPG8 displayed short or no stereocilia

(74.8% and 21.3% of 127 HCPG3 from 4 mice and 72.9% and 19.8% of 96 HCPG8 from 8 mice;

Fig 4D–4G, S1 Data). By contrast, more than 80% of untraced hair cells displayed mature-

appearing (long) stereociliary bundles (n = 794–849 cells from 4–8 mice, Fig 4H, S1 Data).

Immature bundles were similarly prevalent in HCPG3 and HCPG8 residing in the striolar and

extrastriolar regions.

To test whether MET channels were functional in HCPG3 and HCPG8, we administered

Texas-Red conjugated gentamicin (GTTR, 0.85 mg/ml for 1 hr), which enters hair cells via

MET channels [43], to freshly harvested utricles. The presence of GTTR labeling indicates a

population of MET channels that have a non-zero open probability. From early tracing

(P3-P30) experiments, we found that GTTR labeled 83.7 ± 11.0% and 61.0 ± 7.8% of untraced

hair cells in the extrastriola and striola of undamaged P30 utricles (n = 649 and 700 from 3

mice, Fig 4I–4L, S1 Data). This starkly contrasts the Plp1-traced hair cells, of which only

31.0 ± 19.0% and 38.9 ± 9.6% were GTTR-labeled (n = 117 and 48 in the extrastriola and striola

regions from 3 mice). Similarly in the late tracing experiments (P8-P30), significantly more

untraced hair cells were GTTR-labeled (84.2 ± 7.2% of 951 and 73.4 ± 3.4% of 740 hair cells in

the extrastriola and striola from 4 mice) than traced hair cells (29.2 ± 6.7% of 30 and

39.2 ± 7.8% of 16 traced HCs in the extrastriola and striola from 4 mice, Fig 4I–4L, S1 Data).

activating voltage were extracted from these plots (n = 4–14 cells). Data shown as mean ± SD, compared using Student t tests and one-way

ANOVA by Kruskal Wallis-Dunn’s multiple comparison test. �p< 0.05. Scale bars: B-E) 20 μm, XY views in D-E) 5 μm. The underlying data can

be found within S1 Data. HCPG, postnatally generated hair cell.

https://doi.org/10.1371/journal.pbio.3000326.g003
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Fig 4. Bundle features of early and late postnatally generated hair cells. A) Diagram illustrating hair cell stereociliary bundles. B-C)

tdTomato+/Myosin7a+ hair cells (dashed circles) added from early and late tracing with long (asterisks), short (arrows) and absent
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In summary, postnatally generated hair cells exhibit relatively underdeveloped bundles and

MET channel activities in comparison to untraced hair cells.

Hair cell regeneration and recovery of vestibular function after hair cell

ablation

We previously characterized hair cell regeneration in the neonatal utricle and found that both

Plp1- and Lgr5-marked supporting cells contribute to the population of regenerated hair cells

[9]. To examine the properties of regenerated hair cells (HCR), we ablated hair cells using the

Pou4f3DTR/+ mouse [44], in which the hair cell promoter Pou4f3 drives the expression of

human diphtheria toxin receptor (DTR). Diphtheria toxin (DT) injection at P1 led to a loss of

91.5 ± 9.1% of hair cells two weeks later (P15, n = 6, Fig 5A, 5C and 5J, S4B and S4F and S4G

Fig, S1 Data). At P30 and P60, hair cell numbers were restored to 25.1 ± 14.4% and

42.5 ± 18.5% of aged-matched controls, respectively (n = 15 from P30, 11 from P60, Fig 5B,

5D–5F and 5J, S4A and S4C–S4H Fig, S1 Data). Compared to P15, Myosin7a+ hair cell num-

bers at P30 and P60 in both the extrastriola and striola significantly increased, in line with pre-

vious results [9].

We next assessed function of the regenerating utricle by measuring vestibular-evoked

potentials (VsEPs), which represent compound action potentials of the vestibular nerves and

central relays as a result of a transient linear acceleration applied along the naso-occipital axis

[45]. After DT-induced hair cell loss, all 51 P15 Pou4f3DTR/+ mice displayed elevated VsEP

thresholds with 48 of 51 (94.1%) displaying no detectable responses, whereas undamaged P15

wild-type animals uniformly displayed robust VsEP thresholds (0.43 ± 0.24 g/ms, n = 20, Fig

5G, 5H and 5K, S1 Data). Among the 48 P15 animals that demonstrated no detectable VsEP

thresholds, serial measurements showed that 35.9 and 59.3% regained thresholds at P30 and

P60 with average response thresholds of 0.83 ± 0.31 g/ms and 0.83 ± 0.34 g/ms, respectively

(n = 14 of 39 from P30 and 16 of 27 from P60). At these ages, the average responses signifi-

cantly improved compared to P15 damaged animals (p< 0.001 for both, Fig 5I and 5K), but

remained elevated compared to age-matched, undamaged animals (0.39 ± 0.12 g/ms and

0.43 ± 0.19 g/ms at P30 and P60, n = 22 and n = 15, Fig 5I and 5K, S1 Data). Thus, our data

suggest that a subset of animals partially restore their ability to detect linear acceleration.

In support of this notion, VsEP latencies, which represent timing of the population of acti-

vated neurons, also significantly improved from P15 to P30 and P60 in DT-treated Pou4f3DTR/+

mice (S4I Fig). Similarly, VsEP amplitudes, which correlate with the size and synchrony of the

population of activated neurons, also significantly improved from P15 to P30 and P60 of DT-

treated Pou4f3DTR/+ mice (S4J Fig, S1 Data). We correlated the number of hair cells and VsEP

thresholds and found the two to have a modest, inverse relationship (R2 = 0.62, S4K Fig, S1

Data). Together our data indicate that organ function is partially recovered following hair cell

ablation in the neonatal utricle.

bundles (arrowheads) in both the hair bundle and cell body level. D-F) High magnification images of representative cells with long (D,

asterisks), short (E, arrows) and absent bundles (F, arrowheads). G-H) Proportion of bundle morphology in traced and untraced hair

cells. The majority of traced hair cells had short bundles from early (n = 127 HCs from 4 mice) and late tracing (n = 96 from 8 mice),

whereas majority of untraced hair cells had long bundles (n = 849 HCs from 4 mice at P3, 794 HCs from 8 mice at P8). I-J) Representative

confocal images of GTTR+/tdTomato+/Myosin7a+ (arrowhead) and GTTR-/tdTomato+/Myosin7a+ (arrows) hair cells from early and late

tracing. I’) High magnification images of panel I. K-L) Significantly more untraced hair cells than traced hair cells were GTTR-labeled in

both early (n = 117 and 48 traced HCs, 649 and 700 untraced HCs from 3 mice in the extrastriola and striola) and late tracing

experiments (n = 30 and 16 traced HCs, 951 and 740 untraced HCs from 4 mice in the extrastriola and striola). Data shown as

mean ± SD, compared using Student t tests. ���p< 0.001, ��p< 0.01, �p< 0.05. Scale bars: B-C, I-J) 20 μm; D-F, I’) 10 μm. The

underlying data can be found within S1 Data. P, postnatal day.

https://doi.org/10.1371/journal.pbio.3000326.g004
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Fig 5. Hair cell number and vestibular function recovers after hair cell ablation. A) Pou4f3DTR/+ mice were treated with DT at P1 and

examined at P15 and P30 and P60. B-F) After DT treatment, both the hair cell number and area of sensory epithelium decreased at P15,
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Specialization of Plp1-traced regenerated hair cells into type II hair cells

We next sought to examine the properties of regenerated hair cells (HCR) in the regenerating

utricle in P30 Pou4f3DTR/+ mice. To identify HCR, we fate-mapped supporting cells in

Pou4f3DTR/+; Plp1CreERT/+; Rosa26RtdTomato/+ (Pou4f3-DTR; Plp1-Tomato) mice. To minimize

labeling of hair cells normally added postnatally, we administered tamoxifen at P8 (0.075 mg/

g, IP) to fate-map Plp1+ supporting cells in the damaged utricle (Fig 6A, S5A–S5C Fig). As

expected, we found significantly more fate-mapped, Myosin7a+ hair cells in both the extra-

striolar and striolar regions (17.4 ± 5.1% and 14.0 ± 5.5%, n = 762–798 hair cells from 10 mice)

than undamaged controls (4.6 ± 2.0% and 2.5 ± 2.5%, respectively, p< 0.001, n = 2,561–3,002

hair cells from 16 mice) (Fig 6B–6F, S1 Data). Consistent with published data [9], these results

indicate that Plp1-marked supporting cells regenerated hair cells in the damaged neonatal

mouse utricle.

In utricles from the P30 Pou4f3-DTR; Plp1-Tomato mice, almost all HCR expressed Annexin

A4 (95.8 ± 7.2% of 19 extrastriolar and 97.0 ± 5.2% of 22 striolar hair cells from 3 mice) and few

expressed Osteopontin (16.2 ± 13.0% of 85 extrastriolar and 15.6 ± 12.0% of 83 striolar cells

from 7 mice) (Fig 6G–6J, S3 Table). Most Annexin A4+ HCR, expressed the mature type II hair

cell marker Mapt (76.5% of 17 extrastriolar cells and 58.8% of 17 striolar cells from 4 mice, S5F

and S5G Fig, S4 Table). By contrast, the majority of untraced hair cells from damaged utricles

expressed Osteopontin (68.0 ± 9.2% of 266 and 68.5 ± 11.4% of 292 untraced hair cells from 4

mice in the extrastriola and striola, respectively, S3 Table). Thus, the composition of untraced

hair cells from damaged utricles, which likely represent surviving hair cells, is consistent with

the previously reported ratios of type I and II hair cells in the striola and extrastriola (1.47 and

1.19) [46], whereas HCR mainly displayed a type II hair cell phenotype. Unlike HCPG3 and

HCPG8, many regenerated Annexin A4+ hair cells displayed short, rounded cell bodies without

basolateral processes, while others displayed basolateral processes associated with classic type II

hair cells (n = 37 cells from 3 mice) (Fig 6G and 6H, S5D Fig).

All regenerated Osteopontin+ hair cells examined (18/18) were also morphologically dis-

tinct from undamaged counterparts, appearing pear-shaped with short necks (Fig 6I and 6J,

S5E Fig) and no amphora-shaped Osteopontin+, Plp1-traced hair cells were detected in the

damaged organs. These results suggest that Plp1-traced HCR, like HCPG3 and HCPG8, preferen-

tially acquire properties of type II hair cells and less commonly those of type I hair cells. How-

ever, many type II HCR and all type I HCR observed were morphologically distinct from

HCPG3 and HCPG8.

We next assessed the electrophysiological properties of Plp1-traced HCR and untraced hair

cells in P30 Pou4f3-DTR; Plp1-Tomato utricles (Fig 7A and 7C), and compared them to

Plp1-traced HCPG8 from undamaged Plp1-Tomato utricles (Figs 2F and 7B). IDR were

detected in all hair cells from the three groups (Fig 7A–7C, n = 17 HCR, 9 HCPG8 and 14

untraced hair cells, respectively) with similar corresponding maximal conductances (Fig 7D–

7F, S1 Data), despite differences in half-activation and slope. Cell capacitance was used as a

followed by a partial recovery at P30 and P60. G-I) Representative VsEP waveforms of normal responses of a P15 wild-type animal (0.4

g/ms threshold shown in red) (G), absent responses in a damaged P15 Pou4f3DTR/+ mouse (H), and an elevated response threshold in a

damaged P30 Pou4f3DTR/+ mouse (0.7 g/ms threshold shown) (I). J) Normalized Myosin7a+ hair cell counts at P30 are significantly

higher than P15 (n = 6 at P15 and 15 at P30). Damaged tissues normalized to age-matched controls. K) Many animals displayed partial

VsEP thresholds recovery (blue dots) at P30 and P60 although some still showed no responses (red dots). Compared to P15, the average

thresholds at P30 and P60 are significantly lower (n = 48 at P15, 39 at P30 and 27 at P60), but still significantly higher than age-matched

controls (n = 20 at P15, 22 at P30, and 15 at P60). Data shown as mean ± SD, compared using Student t tests and one-way ANOVA by

Tukey’s multiple comparison test. ���p< 0.001, ��p< 0.01, �p< 0.05. Scale bars: 50 μm in B-F. The underlying data can be found

within S1 Data. DT, diphtheria toxin; P, postnatal day; VsEP, vestibular-evoked potential.

https://doi.org/10.1371/journal.pbio.3000326.g005

Probing postnatal hair cells

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000326 July 1, 2019 13 / 35

https://doi.org/10.1371/journal.pbio.3000326.g005
https://doi.org/10.1371/journal.pbio.3000326


proxy for cell size, which serves as a marker for hair cell maturation. Traced hair cells, like

untraced hair cells, displayed capacitance measurements similar to those of postnatal utricular

hair cells (S2 Table) [14]. Similarly resting potential data varies with cell maturity and mea-

sured values suggest that HCR were at least as mature as postnatal hair cells previously

reported. Although the absolute level of maturity cannot be deduced from these parameters,

these data suggests that traced hair cells match untraced hair cells.

Fig 6. Plp1+ supporting cells regenerate hair cells after hair cell loss. A) Pou4f3DTR/+; Plp1CreERT/+; Rosa26RtdTomato/+ mice were treated with DT

at P1, followed by tamoxifen at P8 to fate-map Plp1+ supporting cells. Organs were examined at P30. B-E) Damaged P30 utricles had more

tdTomato+/Myosin7a+ hair cells (asterisks) than controls. F) Quantification shows that the percentage of tdTomato+/Myosin7a+ hair cells in

damaged utricles (n = 10) was significantly higher than in undamaged controls (n = 16). G-H) Almost all traced, regenerated hair cells (asterisks)

expressed the type II hair cell marker ANXA4 in both the extrastriola and striola. Inset shows orthogonal view of a traced, regenerated ANXA4+

hair cell with a short, round cell body and no basolateral processes. I-J) Occasionally traced, regenerated hair cells (arrowhead) expressed the type I

hair cell marker OPN in both the extrastriola and striola. Inset shows orthogonal view of traced, regenerated OPN+ hair cells appearing pear-

shaped, with a short neck. Data shown as mean ± SD and compared using Student t tests. ���p< 0.001. Scale bars: 20 μm. The underlying data can

be found within S1 Data. ANXA4, Annexin A4; OPN, Osteopontin.

https://doi.org/10.1371/journal.pbio.3000326.g006
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Fig 7. Plp1-traced, regenerated hair cells display electrophysiological features of type II hair cells. Three groups of hair cells were examined: 1)

traced (black, HCR) and 2) untraced hair cells (blue) from P30 Pou4f3DTR/+; Plp1CreERT/+; Rosa26RtdTomato/+ mice treated with DT at P1 and

Probing postnatal hair cells
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Next, we probed for and found IH in all three groups of hair cells (17/17 HCR, 9/9 HCPG8

and 11/11 untraced hair cells) (Fig 7G–7I). Although hair cells from the three groups showed

comparable voltages of half-activation and voltage dependence (slope), conductances of HCR

were lower than those of untraced hair cells suggesting fewer channels are present in these

newly formed cells (Fig 7J–7L, S1 Data) and perhaps indicating a less mature population. Con-

versely, IKL was not detected in any Plp1-traced HCR or HCPG8 (0/16 and 0/8, respectively,

Fig 7M and 7N) but was detected in 5/12 untraced hair cells examined (Fig 7O–7R, S1 Data).

These data indicate that Plp1-traced HCR displayed electrophysiological properties representa-

tive of non-type I hair cells, and together with the molecular markers support a type II hair cell

phenotype.

Regenerated hair cells display synaptic elements but immature bundles

We next examined HCR for formation of presynaptic terminals and innervation by immunos-

taining for Ctbp2 and Tuj1 in P30 Pou4f3-DTR; Plp1-Tomato utricles. In all HCR examined (n
= 106 cells in both extrastriola and striola from 5 mice) we found adjacent Tuj1+ neurites with

no calyces observed (Fig 8A and 8B). HCR also uniformly expressed Ctbp2, with the number

of Ctbp2+ puncta similar to those of HCPG8 (combined from both extrastriola and striola, n =
81 and 35 cells from 6 control and 3 damaged mice, Fig 8C–8E, S1 Data). These data suggest

that HCR had presynaptic machinery and innervation consistent with a hair cell phenotype.

To further characterize HCR for the presence of functional presynaptic elements, we

assessed calcium currents and monitored presynaptic vesicle fusion via capacitance changes in

response to depolarization in HCR (Fig 8F–8H, S5H–S5J Fig, S1 Data). Like HCPG8 (8/8) and

untraced hair cells (4/4) from the damaged organ, calcium currents were detected in all HCR

(17/17) examined and found to be of comparable sizes and voltage-dependence (Fig 8I and 8J,

S1 Data). The presence of calcium currents supports a hair cell phenotype and the potential for

presynaptic activity. Capacitance measurements showed calcium driven changes indicative of

vesicle release in almost all HCR (14/15, 7/8 HCPG8 and 3/3 untraced hair cells, S5K and S5L

Fig, S1 Data), suggesting that the morphologically identified presynaptic elements were likely

functional.

Next, we examined the bundles of HCR via labeling with fluorescence-conjugated phalloi-

din (Fig 9A) and found that they, like HCPG8, mostly displayed immature stereociliary bundles:

14.5% long, 82.3% short and 7.3% absent stereocilia (n = 124 cells in both extrastriola and

striola from 6 mice, Fig 9A–9E, S1 Data). By contrast, most untraced hair cells in damaged tis-

sues displayed long bundles (n = 617 cells in both extrastriola and striola from 6 mice in dam-

aged utricles, Fig 9E, S1 Data).

After adding GTTR to acutely isolated damaged/regenerated P30 utricles, we found that

GTTR labeled 74.7 ± 7.4% and 71.7 ± 21.4%% of untraced hair cells (n = 172 and 148 untraced

HCs in the extrastriola and striola, respectively, Fig 9F–9H, S1 Data) versus 49.3 ± 21.5% and

33.3 ± 21.5% of traced hair cells (25 and 11 traced HCs in the extrastriola and striola from 4

mice). These data suggest that fewer traced, regenerated hair cells have open MET channels

tamoxifen at P8; and 3) traced hair cells (red, HCPG8) from Plp1CreERT/+; Rosa26RtdTomato/+ mice treated and tamoxifen at P8. A-C) Representative

tracings of IDR from hair cells from each group (HCR, HCPG8 and untraced hair cells, n = 9–17 cells). D-F) All three groups demonstrate similar

peak conductances but significant differences between half-activation and slopes. G-I) Tracings of IH measurements from HCR, HCPG8 and

untraced hair cells (n = 9–17 cells). J-L) All three groups demonstrate similar peak conductances, half-activation, and slopes. M-O) IKL responses

from untraced hair cells from the damaged utricles, but not HCR or HCPG8 (n = 8–16 cells). P-R) Similar tail current and reversal potential analysis

were performed and the resultant data for conductance, half-activation and slope for untraced hair cells are presented. Data shown as mean ± SD

and compared using one-way ANOVA by Kruskal Wallis-Dunn’s multiple comparison tests. Green dashed lines define zero current levels.
���p< 0.001, ��p< 0.01. The underlying data can be found within S1 Data. HCPG, postnatally generated hair cell; P, postnatal day.

https://doi.org/10.1371/journal.pbio.3000326.g007
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Fig 8. Synaptic properties of Plp1-traced, regenerated hair cells. A-B) Representative images of regenerated tdTomato+/Myosin7a+

hair cells (asterisks) with associated with Tuj1+ neural elements (arrowheads) in the extrastriola and striola (n = 106 cells from 5

mice). C-D) All Plp1-traced hair cells examined expressed Ctbp2 on the basolateral surfaces (arrowheads, n = 35 cells from 3 mice). E)

Quantification of Ctbp2+ puncta in traced hair cells in the extrastriola and striola. No significant difference was found between hair

cells from control and damaged utricles (n = 56 extrastriolar and 25 striolar hair cells from 6 control mice utricles, n = 18 extrastriolar

and 17 striolar hair cells from 3 damaged mice utricles). F-H) Representative calcium currents from traced hair cells (HCR from

damaged utricles and HCPG8 from undamaged utricles) and untraced hair cells. Calcium currents were isolated using methods
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(with non-zero open probability) than untraced hair cells. Taken together, these results suggest

that Plp1-traced regenerated hair cells display some somatic properties of type II hair cells, yet

immature stereociliary bundles and MET.

Damage-activated Lgr5+ supporting cells regenerate type I and II hair cells

Thus far, we have shown that the Plp1-lineage supporting cells primarily regenerated hair cells

displaying a type II hair cell phenotype. Previously, we found that damage activates Lgr5+ sup-

porting cells in the striolar region to regenerate both type I and II hair cells, which were

defined only by expression of Calbindin, Sox2, and the presence of Tuj1+ calyx nerve terminals

[9]. To further investigate the properties of HCR from the Lgr5+ lineage, we fate-mapped

Lgr5+ supporting cells in Pou4f3DTR/+; Lgr5CreERT2/+; Rosa26RtdTomato/+ (Pou4f3-DTR; Lgr5-To-
mato) mice (DT at P1 to induce hair cell loss and tamoxifen at P3 to trace Lgr5+ cells) (Fig

10A). The latter time point (P3) was selected because Lgr5 is transiently up-regulated in sup-

porting cells [9]. DT-induced damage led to significantly more tdTomato+, Myosin7a+ hair

cells than in undamaged controls at P30 (82.6 ± 11.0% and 65.4 ± 12.7%, p< 0.01, n = 135–

164 cells from 9–10 mice, Fig 10B and 10C). Lgr5-traced HCR primarily resided in the striola,

and more often expressed the type I marker Osteopontin (61.8 ± 25.2% of 71 cells from 7

mice) than the type II marker Annexin A4 (46.9 ± 2.8% of 36 cells from 3 mice, Fig 10D–10F,

S3 Table). Moreover, 24.4 ± 15.0% of Lgr5-traced HCR displayed Tuj1+ calyces (n = 40 cells

from 4 mice, Fig 10G, S6E Fig, S3 Table). In undamaged controls, many Lgr5-traced hair cells

expressed Annexin A4 (76.6 ± 20.3%, n = 57 cells from 4 mice), but none expressed Osteopon-

tin (n = 65 cells from 6 mice) or displayed Tuj1+ calyces (n = 26 cells from 3 mice) (Fig 10H,

S6A–S6D Fig, S3 Table, S1 Data). Similar to Plp1-traced hair cells, most Lgr5-traced hair cells

displayed short or no bundles (74.2% and 3.2% of 31 cells from 6 mice) and 22.6% of them dis-

played long bundle (Fig 10I–10K). These data suggest that Lgr5-traced supporting cells, in

contrast to Plp1-traced supporting cells, can give rise to both type I and type II hair cells,

although mostly presumably nonfunctional given the presence of immature stereociliary

bundles.

We next compared the electrophysiological properties of Lgr5-traced HCR which demon-

strated comparable gDR and gH and voltage-dependent properties relative to control,

untraced hair cells in damaged and undamaged P30 utricles (n = 4–12 cells) (Fig 11A–11L, S1

Data). Remarkably, gKL, a marker for type I hair cells, were prominent in 4 of 14 patched,

Lgr5-traced HCR (as compared to 6 of 12 untraced hair cells from damaged utricles and 7 of

10 untraced hair cells from undamaged utricles) (Fig 11M–11R, S1 Data). Among these 4

Lgr5-traced HCR with prominent gKL, three demonstrated large conductances (>20 nS) typi-

cally detected in mature type I hair cells [47,16].

Calcium currents and capacitance were measured in Lgr5-traced HCR to assess for presyn-

aptic activity (S6F–S6H Fig). In comparison to untraced hair cells in damaged and undamaged

organs, calcium currents in HCR were of comparable size and voltage-dependence, suggesting

that these cells were presynaptically active and consistent with a hair cell phenotype (n = 5–8

cells) (S6I and S6J Fig, S1 Data). Capacitance changes were found in ~50% of HCR, with no dif-

ferences in maximal release properties among groups (n = 4–7 cells) (S6K–S6O Fig, S1 Data),

implying the presence of vesicle release in a subset of Lgr5-derived, regenerated hair cells.

described in Fig 3. I-J) Peak current responses and maximal current and half activating voltage were not statistically different among

groups (n = 4–17 cells). Data shown as mean ± SD, compared using Student t tests and one-way ANOVA by Kruskal Wallis-Dunn’s

multiple comparison tests. Scale bars: A-D) 20 μm, XY view) 5 μm. The underlying data can be found within S1 Data. HCPG,

postnatally generated hair cell.

https://doi.org/10.1371/journal.pbio.3000326.g008
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Fig 9. Regenerated hair cells display immature stereociliary bundles. A) Regenerated traced hair cells (dashed circles) with long (asterisks),

short (arrows) and absent bundles (arrowheads). Shown are images taken at the focal planes of hair bundle and hair cell body. B-D)

Representative high magnification images of hair cells with long (B) (asterisk), short (C) (arrow) and absent bundles (D) (arrowhead). E)

Proportion of traced and untraced hair cells displaying the above bundle morphology. Most regenerated hair cells had short bundles (124 cells

from 6 damaged mice), whereas most untraced hair cells had long bundles (617 cells from 6 damaged mice). F-G) Representative confocal

images of GTTR+/tdTomato+/Myosin7a+ (arrowhead) and GTTR-/tdTomato+/Myosin7a+ hair cells (arrows) in damaged utricles. F’) High

magnification images of panel F. H) Compared to traced hair cells, significantly more untraced hair cells were GTTR-labeled in the damaged

utricles (n = 25 and 11 traced HCs, 172 and 148 untraced HCs from 4 mice in the extrastriola and striola). Data shown as mean ± SD, compared

using Student t tests. ��p< 0.01, �p< 0.05. Scale bars: A, F-G) 20 μm; B-D, F’) 10 μm. The underlying data can be found within S1 Data.

https://doi.org/10.1371/journal.pbio.3000326.g009
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Fig 10. Lgr5+ supporting cells regenerate type I and type II hair cells. A) Pou4f3DTR/+; Lgr5CreERT2/+; Rosa26RtdTomato/+ and Lgr5CreERT2/+;
Rosa26RtdTomato/+ mice were treated with DT at P1, followed by tamoxifen at P3 to fate-map Lgr5+ supporting cells. Organs were examined at P30. B-C)

Whole mount preparation of P30 control and damaged utricles. Traced cells primarily occupied the presumed striolar region of the damaged organ. D)

Diagram illustrating type I and II hair cells, the former of which are endowed with Tuj1+ calyx. E) Representative images of ANXA4+ (arrowhead) and

ANXA4- (arrow) traced hair cells in the P30 damaged utricle. 46.9% of Lgr5-traced hair cells expressed ANXA4 (n = 36 cells from 3 mice). F)

Representative images of OPN+ (arrowhead) and OPN- (arrow) traced hair cells in the P30 damaged utricle. 61.8% of Lgr5-traced hair cells were OPN+ (n
= 71 cells from 7 mice). G) In the P30 damaged utricle, Lgr5-traced hair cells expressed OPN (arrowhead) and were surrounded by Tuj1+ calyx
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Together, these results indicate that Lgr5+ supporting cells can regenerate hair cells with either

a type I or II hair cell phenotype as defined by molecular and electrophysiological features.

Discussion

Mechanoreceptors are critical for hearing and balance functions. In mammals, the cochlea

lacks the ability to regenerate, and vestibular hair cells are replenished in a limited fashion. As

stereociliary bundles house the apparatus for MET, many prior studies examining regenerated

hair cells or newly generated hair cells in ex vivo conditions have relied on assessing bundle

morphology to determine hair cell maturity [5,48,20]. In this study, we show that Plp1-traced

postnatally generated and regenerated hair cells exhibit several morphologic, molecular and

electrophysiological properties of type II hair cells, though they continue to display largely

immature hair bundles. Lgr5+ supporting cell-derived hair cells display underdeveloped hair

bundles as well, but contain morphological, molecular and electrophysiological properties of

both type I and type II hair cells, confirming and extending previous findings [9]. Our study

indicates that hair cells postnatally re/generated from Plp1+ and Lgr5+ supporting cells can

reach a quasi-mature level with regards to somatic properties, although the apical stereociliary

bundles and MET machinery appear largely underdeveloped, suggesting that complex and

partially distinct mechanisms are involved.

Discrepancy between bundle and somatic features in postnatally generated

and regenerated hair cells

In the developing utricle, hair cells are first specified between E11.5–12.5 with a second wave

appearing at approximately E15, with hair cell addition presumably mainly in the peripheral

regions of the sensory epithelia [49,11,50]. Hair cell bundles first emerge at E13.5 and remain

relatively uniform in height throughout the central region at E15, when hair cells gain mechan-

osensitivity [49,13,14,51]. Géléoc and colleagues reported that a delayed rectifier potassium

conductance (gDR) and a fast inward rectifier potassium conductance (gK1) begin to appear

around E14-E15 and continue to be present into the postnatal period [14]. The transient

expression of sodium conductances (gNA) in immature hair cell has also been described

[14,36]. In addition, cell size based on capacitance measurements and resting membrane

potentials change as hair cells mature from the embryonic to postnatal periods [14].

Transmission electron microscopy shows that afferent neurites appear as early as E13, and

bouton synaptic contacts between hair cells and afferent nerve fibers form at E15 [52]. How-

ever, calyceal afferent endings, which are uniquely coupled to type I hair cells, only begin to

take shape several days before birth and continue developing and maturing during the first

postnatal month [16,53]. Moreover, embryonic hair cells acquire synaptic elements and dis-

play calcium-dependent exocytotic activities, which have been reported to mature postnatally

although the time course is largely unclear [54,55].

Lastly, the type I hair cell-specific delayed rectifier potassium conductance (gKL) [56–

58,16] is first detected at E18, shortly before birth. The delayed, inward rectifier H-type con-

ductance (gH) is also detected in embryonic hair cells and both types of hair cells in the

(arrowhead, 24.4% of Lgr5-traced hair cells, n = 40 cells from 4 mice), or were OPN- and innervated by Tuj1+ boutons (arrow). Representative orthogonal

view shows round, pear-shaped, regenerated hair cells with OPN+, short neck and Tuj1+ calyx (arrowheads). H) Compared to undamaged controls, the

damages utricles had significantly fewer ANXA4+ traced HCR and more OPN+ and OPN+/Tuj1+ (Calyx) traced HCR. No OPN+ and OPN+/Tuj1+ (Calyx)

traced hair cells were seen in the undamaged utricle. Data shown as mean ± SD, compared using Student t tests. (I-K) Representative high magnification

images of traced hair cells with long (I) (asterisk), short (J) (arrow) and absent bundles (K) (arrowhead). ���p< 0.001, �p< 0.05. Scale bars: B-C) 100 μm;

E-G) 20 μm. (I-K) 10 μm. The underlying data can be found within S1 Data. ANXA4, Annexin A4; OPN, Osteopontin.

https://doi.org/10.1371/journal.pbio.3000326.g010
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Fig 11. Lgr5-traced, regenerated hair cells display electrophysiological features of type II and type I hair cells. Three groups of hair cells were

examined: 1) traced (black, HCR) and 2) untraced (red) hair cells from P30 Pou4f3DTR/+; Lgr5CreERT2/+; Rosa26RtdTomato/+ mice treated with DT at P1

and tamoxifen at P3; and untraced (blue) hair cells from Lgr5CreERT2/+; Rosa26RtdTomato/+ mice treated with tamoxifen at P3. A-C) Representative

tracings of IDR from hair cells from each group (HCR, untraced hair cells from damage and controls, n = 4–10 cells). D-F) All three groups
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postnatal period [16]. In the mature utricle, the inward rectifier potassium conductances

(gKIR) are expressed in type II hair cells [14].

The maturation process of hair cells derived from the prenatal period is orderly with the

maturation of bundle and somatic properties seemingly coupled (Fig 12A). Our current and

previous data [9] indicate that hair cells generated in vivo in the postnatal utricle have dramati-

cally underdeveloped hair bundles and MET channel function, though seemingly mature for

defined properties in the somatic compartment (presence of gDR, gKIR, gH, gKL, lack of

gNA, large cell size, negative resting membrane potentials) (Fig 12B–12D). These somatic

properties suggest that postnatally re/generated hair cells are comparable to those present in

the postnatal utricle, although the underdeveloped stereociliary bundles and MET function

imply components of the hair bundle lagged behind in maturation. This interpretation is fur-

ther supported by the findings that postnatally re/generated hair cells have comparable somatic

properties to untraced hair cells (presumably older and derived from the embryonic period). It

is therefore possible that overlapping but distinct mechanisms direct the maturation of hair

cell apical and somatic domains. In support of this notion, Oshima and colleagues reported

that vestibular hair cell-like cells differentiated in vitro from mouse embryonic stem (ES) and

iPS cells acquired mechanosensitivity and stereocilia with certain mature features (e.g. stair-

case pattern), but relatively immature basolateral ion channel properties [20]. Moreover,

ectopic cochlear hair cells formed as a result of in utero gene transfer of Atoh1 to the develop-

ing inner ear were crowned with relatively immature stereociliary bundles while displaying

age-appropriate conductances and synaptic components on their basolateral surfaces [48]. At

present, there is a paucity of knowledge on mechanisms regulating the maturation of individ-

ual components of postnatal vestibular hair cells.

Classification of vestibular hair cells subtypes

Vestibular hair cell subtypes are traditionally characterized according to morphology, molecu-

lar markers, electrophysiological properties, and innervation patterns [59,26,16,29]. Recent

studies have further characterized the unique basolateral processes of type II hair cells [60,26].

Using markers of type I and II hair cells identified via single cell RNA sequencing [23], we

found type I and II hair cells with various morphologies: around 69–79% of the Annexin A4+

type II hair cells displayed typical basolateral process, while others were devoid of this feature

(S2F Fig). Conversely, type I hair cells showed more uniform morphologies, with the majority

(75–100%) being amphora-shaped with long apical necks (Fig 12B). We found occasional

Osteopontin+ type I hair cells with shorter cell bodies and necks, with nuclei located in the

upper third of the epithelium closer to the type II hair cell nuclei level (S2G Fig). Interestingly,

we also observed occasional type II hair cells with thick apical necks with nuclei located in the

middle third of the epithelium as seen in type I hair cells (S2F Fig). While one may perceive

similarities in morphology between some type I and II hair cells, whether their lineages are

related remains unclear. Such a relationship between type I and type II hair cells has been pre-

viously proposed [61]. In the undamaged tissues, one likely explanation for the various mor-

phologies is that the P30 utricle, though functionally mature, contains a heterogeneous

population of hair cells at various developmental stages. Similarly, in the neonatal utricle

demonstrate similar peak conductances, half-activation and slopes. G-I) Tracings of IH measurements from HCR, and untraced hair cells from

damaged and undamaged organs (n = 5–12 cells). J-L) All three groups demonstrate similar electrophysiological properties: peak conductances, half-

activation and slopes. M-O) IKL responses from HCR, and untraced hair cells from damaged and undamaged organs (n = 10–14 cells). P-R)

Conductance, half-activation and slopes were no different among the three groups. Data shown as mean ± SD, compared using one-way ANOVA by

Kruskal Wallis-Dunn’s multiple comparison tests. Green dashed lines define zero current levels. The underlying data can be found within S1 Data.

https://doi.org/10.1371/journal.pbio.3000326.g011
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Fig 12. Maturation pathways of developing and regenerating hair cells. A) Vestibular hair cells specified early during

embryonic period acquire stereocilia, differentiate into subtypes of hair cells, and subsequent innervation. Postnatally
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where new hair cells continue to be generated, hair cells with various morphologies were

observed [16]. Cell shapes were further modified as a result of damage, where a noticeable flat-

tening of the sensory epithelium leads to shortening/rounding of both type I and II hair cells

(Fig 12C).

Despite the heterogeneous morphologies of Annexin A4+ type II hair cells, they displayed

remarkably similar channel (gDR and gH) and presynaptic properties, suggesting acquisition

of these features may occur before cell morphology becomes more uniform. On the other

hand, none of the Osteopontin+ type I hair cells derived from Plp1+ supporting cells displayed

gKL or calyx-type nerve terminals, and only a subset of those from Lgr5+ supporting cells

showed gKL (28.6%) or calyx nerve terminals (24.4%). Using embryonic and neonatal hair cell

development as a reference [14,16], we hypothesize that type I hair cells first express Osteopon-

tin and become amphora-shaped before acquiring gKL, with calyx formation being one of the

last maturation steps. In other words, Plp1-traced Osteopontin+ type I hair cells, unlike the

Lgr5-traced Osteopontin+ type I hair cells, failed to display gKL or calyx nerve terminals, and

as such are likely to be more immature. Whether these immature type I hair cells further

mature over time should be of interest for future studies.

As a cardinal feature of mature hair cells, stereociliary bundles elongate as hair cells mature

and gain mechanosensitivity [13,41]. Hair cell subtypes also display different bundle morphol-

ogies, with type I hair cells having thicker and longer stereociliary bundles than type II hair

cells [62]. Traditionally, bundle length and morphology have been employed as criteria for

hair cell identity and maturation. Since results from the current and other studies suggest that

hair bundles of postnatally produced hair cells might develop at a different pace compared to

other hair cell properties, we propose that bundle features should not be the sole measure of

hair cell maturity.

Supporting cells with distinct competence to regenerate hair cells

In the adult mouse utricle, the ratios of type I and type II hair cells are estimated to be 1.47 and

1.19 in the striola and extrastriola, respectively [46]. While both hair cell types are presumably

important for organ function, only regeneration of type II hair cells has been reported in the

mature utricle [3–6]. However, our previous and current study suggest that the striolar region

in the neonatal utricle uniquely harbors hair cell progenitors capable of regenerating bona fide

type I hair cells. The overwhelming majority of Plp1-traced supporting cells occupied the

extrastriolar region with few striolar supporting cells also traced, but ~90% traced hair cells

displayed type II characteristics and the ~10% Osteopontin+ type I hair cells failed to display

gKL or calyx innervation. By contrast, Lgr5 becomes highly expressed in striolar supporting

cells after damage [9], giving rise to type I hair cells fulfilling morphologic, molecular,

electrophysiological, and innervation criteria. Therefore Lgr5+ striolar supporting cells may

represent a specialized supporting cell population capable of regenerating both type I and II

hair cells via mitotic regeneration [9]. In support of the concept that distinct populations of

hair cell precursors/progenitors exist, striolar supporting cells are more competent to divide

and form ectopic hair cells upon inhibition of Notch signaling [63,42,64].

generated/regenerated hair cells develop somatic features including differentiation into hair cell subtypes and innervation but

were delayed in apical bundle development. B) In the undamaged utricle, majority of Plp1+ supporting cells generate type II

hair cells, with type I hair cells are only occasionally added. C) In the damaged utricle, majority of Plp1+ supporting cells

regenerate type II hair cells, type I hair cells are occasionally regenerated. D) By contrast, in the damaged utricle, Lgr5+

supporting cells regenerate a similar ratio of type II and type I hair cells. A subset of type I HCR was innervated with Tuj1+ calyx

(24.4%).

https://doi.org/10.1371/journal.pbio.3000326.g012
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Time course of functional recovery and hair cell maturation

Hair cell regeneration is robust in avian auditory and vestibular organs, leading to near-nor-

mal densities of hair cells and functional recovery [1]. In the mammalian utricle where regen-

eration is limited, previous studies examining whether a recovery of function occurs have

yielded mixed results [65,66]. In the current study, after hair cell ablation in the neonatal utri-

cle, only 8% of hair cells remained at P15 and 94% of mice lost VsEP responses. At P30 and

P60, 36% and 59% of these mice partially regained VsEP thresholds, which coincided and cor-

related with increases in hair cell numbers (R2 = 0.62, Fig 5, S4 Fig). As most of the regenerated

hair cells we characterized displayed immature apical stereociliary bundles and poor GTTR

uptake, they are unlikely to be fully functional or to significantly contribute to the observed

functional recovery. Since many hair cells derived from the Plp1-traced and Lgr5-traced sup-

porting cells appear nonfunctional, it is possible that other supporting cells/progenitor cells

contribute to functional hair cells that are produced in the postnatal utricle.

Overall, we estimate that postnatally generated hair cells with immature stereociliary bun-

dles constitute ~13% of the hair cell population. It is possible that these hair cells act as a

reserve population that replenishes lost hair cells in response to damage. Alternatively, they

may function to replace hair cells lost during the homeostatic turnover of hair cells in the adult

utricle [60]. Moreover, surviving hair cells and a change in the innervating patterns may per-

mit the activation of neurons from fewer stimulated hair cells, which in turn contribute to

functional recovery. The Pou4f3-DTR mouse is an ideal model to further investigate these

possibilities.

In summary, both hair cells generated in the postnatal utricle and hair cells regenerated

after damage demonstrated features of mature somatic properties yet immature apical stereo-

ciliary bundles and MET function. Based on these results, we propose a new classification of

postnatal vestibular hair cells independent of apical bundle morphology, which warrants fur-

ther characterization in the normal and damaged postnatal utricle. Moreover, our data may

guide future efforts in inner ear regeneration, including delineating the relationship between

hair cell regeneration and vestibular function.

Methods

Ethics statement

All protocols (#18606) were approved by the Animal Care and Use Committee of the Stanford

University School of Medicine.

Mice

Plp1-CreERT (Jackson Laboratory, #5975)[67], Lgr5-EGFP-CreERT2 (Jackson Laboratory,

#8875)[68], Rosa26R-tdTomato (Jackson Laboratory, #7908)[69], and Pou4f3-DTR [44] mice

were used. For Cre activation, tamoxifen (0.075 mg/g, dissolved in corn oil; Sigma) was given

via IP injection to neonatal mice. Diphtheria toxin (4 ng/g intramuscular [IM], EMD Milli-

pore) was used for hair cell ablation.

Immunohistochemistry

Utricles were fixed for 40 minutes in 4% paraformaldehyde (in PBS, pH 7.4; Electron Micros-

copy Services) at room temperature. Tissues were blocked with 5% donkey serum, 0.1% Tri-

tonX-100, 1% bovine serum albumin (BSA), and 0.02% sodium azide (NaN3) in PBS at pH 7.4

for 1–2 hours at room temperature, followed by incubation with primary antibodies diluted in

the same blocking solution overnight at 4˚C. The next day, after washing with PBS, tissues
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were incubated with secondary antibodies diluted in 0.1% TritonX-100, 0.1% BSA, and 0.02%

NaN3 solution in PBS for 2 hours at room temperature. After PBS washing, tissues were

mounted in antifade Fluorescence Mounting Medium (DAKO) and coverslipped. Antibodies

against the following markers were used: Myosin7a (1:1000; Proteus Bioscience or Labome),

Sox2 (1:400, Santa Cruz Biotechnology), Sox2 (1:250; or Alexa Fluor 488-conjugated, 1:20;

R&D), Tuj1 (1:1000; Neuromics), Ctbp2 (1:1000; BD Transduction Laboratories), Annexin A4

(1:200; R&D), Osteopontin (1:200; R&D) and Mapt (1:200, Cell Signaling). Secondary antibod-

ies were conjugated with FITC (1:500, Invitrogen), TRITC (1:500, Invitrogen), CY5 (1:250,

Invitrogen) or Alexa 405 (1:250, Abcam). Fluorescence-conjugated phalloidin (1:1000; Sigma)

and DAPI (1:10000; Invitrogen) were also used. Utricles were incubated with Texas Red-con-

jugated gentamicin (GTTR) for 1 hour with 1:100 of stock solution (0.85 mg/mL) [70,71].

Images were acquired using epifluorescent or confocal microscopy (LSM700 or LSM880,

Zeiss) and analyzed with ImageJ (64 bit), Fiji (NIH) [72], and Photoshop CS6 (Adobe Sys-

tems). Optical slices 1 μm thick were used in z-stack images.

Cellular quantification and statistics

Cells were quantified from z-stack images of 10,000 μm2 or the whole sensory epithelium

using ImageJ (64 bit) unless otherwise stated. Images were taken from 1–2 representative areas

from striolar and extrastriolar regions or the whole sensory epithelium for analysis. For all

experiments, n values represent the number of cells or mice examined unless otherwise stated.

Statistical analyses were conducted using Microsoft Excel (Microsoft), GraphPad Prism 7.0

software (GraphPad), Origin (Microcal) and scripts written in MATLAB when necessary.

Two-tailed, unpaired Student t tests and one-way ANOVA by Tukey’s and Kruskal Wallis-

Dunn’s multiple comparison tests were used to determine statistical significance. p< 0.05 was

considered statistically significant. Data shown as mean ± SD.

Genotyping

PCR was performed to genotype transgenic mice using genomic DNA. DNA was isolated by

adding 200 μl of 50 mM NaOH to cut tail tips, incubating at 98˚C for 1 hour, and then adding

20 μl of 1 M Tris-HCl. Primers used are listed in S1 Table.

Vestibular physiology

VsEPs were recorded from mice at various ages (P15, P30 and P60) as previously described

[45]. Briefly, mice were first anesthetized with a 1:1 cocktail of ketamine (60 to 100 mg/kg) and

xylazine (6 to 10 mg/kg). Subcutaneous stainless steel electrodes were then placed, and a head

clip was used to secure the head to the mechanical shaker used to deliver linear motion stimuli

along the naso-occipital axis. Vertical motion of the shaker was monitored with an accelerom-

eter (model no. 1018, Vibra-Metrics) and adjusted to produce the stimulus waveforms. Jerk

stimuli ranging from 0.1 to 2.0 g/ms were presented (g/ms where 1 g = 9.8 m/s2) [45]. Signals

were amplified and filtered. Responses from normal and inverted stimulus polarities were col-

lected and added together for a total of 256 sweeps for each waveform. A masker (90 dB SPL;

bandwidth 50 Hz to 50 kHz) from a free-field speaker driver (model no. FF1, Tucker Davis

Technologies) was used to prevent responses from the auditory components of cranial nerve

VIII. All primary response parameters were blindly quantified via three components: threshold

(g/ms), P1 latency (ms) and P1-N1 amplitude (μV). Thresholds were defined as the stimulus

intensity halfway between the minimum response intensity and the maximum intensity that

failed to elicit a response. Latencies were measured as the time to onset of the stimulus for the

first positive response peak (P1). Amplitudes represented peak-to-peak magnitudes between
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P1 and N1 waveforms. Whereas the first positive and negative response peaks (P1 and N1,

respectively) reflect activity of the peripheral vestibular nerve, peaks beyond N1 reflect activity

of the brainstem and central vestibular relays [45].

Electrophysiology

Utricular tissues were dissected from mice at ages denoted and secured in a recording chamber

where epifluorescence, cell morphology and location could be observed for identification and

classification. An Olympus, BX50 microscope with a 100x (1.0 NA) objective was used for all

observations. Tissues were isolated and incubated for recording in a solution containing 140

mM NaCl, 5.4 mM KCl, 2.8 mM CaCl2, 1 mM MgCl2, 10 mM 4-(2-hydroxyethyl)-1-piperazi-

neethanesulfonic acid (HEPES), 6 mM D-glucose, 2 mM creatine, 2 mM ascorbate, 2 mM Na

pyruvate, pH 7.4 adjusted with NaOH. 100 nM apamin was included to block the SK K+ chan-

nel. The patch pipette contained 135 mM KCl, 1 mM ethylene glycol-bis (B-aminoethyl

ether)-N,N,N’,N’-tetraacetic acid (EGTA), 3 mM MgCl2, 3 mM Na2 Adenosine triphosphate

(ATP), 5 mM creatine phosphate, 10 mM HEPES, and 5 mM ascorbate. For isolation of the

calcium current and for capacitance measurements, KCl was replaced with 90 mM CsCl and

15 mM tetraethylammonium (TEA). Additionally, 3 mM CsCl was added to the external solu-

tion to block inward rectifier currents.

Whole-cell patch-clamp recordings were elicited using standard technology including axo-

patch 200b amplifier, an A/D, D/A board (IOTech) driven by JClamp software (SciSoft). The

various conductances were grossly separated using specific voltage protocols as outlined

below.

For characterizing the delayed rectifier currents IDR, cells were voltage clamped at -69 mV

and stepped in 10 mV increments for 400 ms between -94 mV and 24 mV. Activation curves

were generated from the tail current responses using peak current at 3 ms following the end of

the step. To convert from current to conductance we assayed reversal potential using a proto-

col that held the cell at -89 mV for 10 ms, stepped to 14mV for 250 ms and then stepped

between -116 mV and 14 mV in 5 mV increments for 50 ms after which it returned to -89 mV.

A plot of peak current against voltage during the 5 mV incremental steps allows for estimation

of the reversal potential. From this protocol, the reverse potential is estimated at -73 mV.

We used IKL to define type I hair cells. The absence of IKL and the presence of IH were

used to define non-type I, and thus a type II, hair cell phenotype. We did not assess IH in the

presence of IKL.

Characterization of IKL involved voltage-clamping cells at -89 mV, stepping to -124 mV for

250 ms and then stepping between -124 mV and -45 mV in 5 mV increments for 150 ms. A

trace showing the classical deactivation of the IKL is shown in S7F Fig. Plots of peak current

versus voltage step were generated and converted to conductance plots after the reversal poten-

tial was identified from a protocol where a cell was voltage-clamped at -89 mV depolarized to

-69 mV for 250 ms and then stepped between -124 and -41 mV in 5 mV for 150 ms, returning

then to -89 mV. From this protocol, the reverse potential is estimated at -73 mV.

For characterizing the inward rectifier current IH, cells were voltage clamped at -69 mV,

hyperpolarized between -74 and -156 mV for 400 ms, and then back to -69 mV. Current-volt-

age plots were generated for maximal current elicited during hyperpolarization. These were

converted to conductance plots by obtaining reversal potentials using a protocol that voltage-

clamped a cell at -104 mV for 500 ms and then stepped between -120 and -55 mV for 5 ms, at

which time it returned to -84 mV. Current-voltage plots identified the reversal potential that

allowed for conductance estimates as shown in the text. From this protocol, the reverse poten-

tial is estimated at -62 mV.
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From conductance-voltage plots of IDR, we found values for maximal conductance, half-

activation voltage and slope of the Boltzmann function using methods detailed in S7 Fig. Simi-

lar methods were used for IH and IKL.

Calcium currents were isolated by replacing potassium with a cesium-based intracellular

solution using a protocol that voltage-clamped the hair cell at -69 mV and stepped for 10 ms

between -69 mV and 26 mV in 10 mV increments. Current-voltage plots were generated from

peak current responses and maximal current and half activating voltage were extracted from

these plots.

To assess functional activity of presynaptic sites, vesicle fusion was monitored using a dual

sine wave technique as previously described [39,40]. Hair cells were depolarized to the voltage

of maximal calcium current for 3 seconds, and changes in capacitance were monitored in real

time. The sine wave amplitude was 30 mV and the frequencies selected were 6250 and 3125

Hz. Protocols were run after 10 minutes to ensure equilibration of internal solution and stabili-

zation of calcium currents.

Supporting information

S1 Fig. Characteristics of postnatally generated hair cells in the mouse utricle. A) Whole

mount utricle from P30 Plp1CreERT/+; Rosa26RtdTomato/+ mice treated with tamoxifen at P3

(early tracing) to fate-map supporting cells. Most supporting cells were labeled with tdTomato

in both the lateral and medial extrastriolar regions (LES and MES). Some supporting cells in

the striolar (S) region (dashed line) were also traced. Boxes of solid line and dashed line repre-

sent typical locations where high magnification pictures of the extrastriola and striola were

captured. B) No tdTomato+/Myosin7a+ hair cells were detected in the striola 2 days after early

tracing. C) At P30, many traced hair cells (asterisks) were found in the striola. D) When trac-

ing was initiated at P8 (late tracing), a few traced hair cells (asterisks) were noted in the striola

at P30. E) Percentage of traced hair cells increased significantly at P30 compared to P5 after

early tracing. There were fewer traced hair cells when tracing began at P8. F) Plp1CreERT/+;
Rosa26RtdTomato/+ mice were treated with corn oil at P3. No hair cells and rare supporting cells

were tdTomato-labeled at P30 (n = 665 and 608 hair cells, 954 and 946 supporting cells from 3

mice in the extrastriola and striola). Data shown as mean ± SD and compared using Student t
tests. ��p< 0.01, �p< 0.05. n = 663–2,562 hair cells from 4–16 mice. Scale bars: A) 100 μm;

B-D, F) 20 μm. The underlying data can be found within S1 Data.

(TIF)

S2 Fig. Early and late postnatally generated hair cells acquire characteristics of type II and

I hair cells. A) Plp1CreERT/+; Rosa26RtdTomato/+ mice were treated with tamoxifen at P3 (early

tracing) and P8 (late tracing) to fate-map supporting cells. B-C) Most labeled hair cells in the

striola from early and late tracing expressed the type II hair cell marker ANXA4 (asterisks).

D-E) Traced hair cells in the striola from early and late tracing were occasionally labeled with

type I hair cell marker OPN (arrowheads). Shown are orthogonal views of representative cells

in B-E). F-G) Representative examples of various morphologic subtypes of type II and type I

hair cells which were generated postnatally. H) Representative orthogonal views of type I hair

cells (arrowhead and dashed lines) with OPN and Tuj1 staining. I) Cartoon depicting Mapt+

(green) type II hair cells. J-K) Representative images of Mapt+/ANXA4+/tdTomato+/Myo-

sin7a+ (arrowhead) hair cells in the extrastriola and striola (from late tracing experiments).

Scale bar: B-E, J-K) 20 μm. ANXA4, Annexin A4; OPN, Osteopontin.

(TIF)
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S3 Fig. Synaptic properties of postnatally generated hair cells. A-B) Representative images

of tdTomato+/Myosin7a+ hair cells (asterisks and dashed lines) from early and later tracing

with associated Tuj1+ neurites (arrowheads in orthogonal views, n = 18 cells from 3 mice and

18 cells from 9 mice for early and late tracing). C-D) Expression of Ctbp2 on the basolateral

surfaces of traced hair cells (arrowhead). Shown are XY and orthogonal views of cells of inter-

ests in boxes, n = 19 cells from 3 mice and 25 cells from 6 mice for early and late tracing. E)

Quantification of Ctbp2+ puncta in tdTomato+/Myosin7a+ hair cells in the striola. No signifi-

cantly difference was found between early and late tracing. F-H) Three groups of hair cells

(HCPG3, HCPG8 and untraced hair cells, n = 17, 8, and 4 cells, respectively) were depolarized to

the voltage of maximal calcium current for 3 seconds and changes in capacitance monitored in

real time. I-J) 75–100% of the recorded cells had greater than 50 fF of capacitance change. No

differences in maximal release were observed among groups. Data shown as mean ± SD, com-

pared using Student t tests and one-way ANOVA by Kruskal Wallis-Dunn’s multiple compari-

son tests. Scale bars: A-D) 20 μm. The underlying data can be found within S1 Data.

(TIF)

S4 Fig. Hair cell number and vestibular function recover after hair cell ablation. A-E) High

magnification images showing loss of striolar hair cells at P15 after DT treatment at P1, fol-

lowed by a partial recovery at P30 and P60. F-G) Normalized (to age-matched, undamaged

controls) percentage of Myosin7a+ hair cell density in the extrastriola and striola (n = 6 at P15,

15 at P30 and 11 at P60). H) Normalized (to age-matched, undamaged controls) percentage of

Myosin7a+ sensory epithelium area at P15, P30 and P60. I) In comparison to P15, P1 latency

values significantly decreased at P30 and P60, but still significantly higher than age-matched

controls. J) Relative to P15, P1-N1 amplitudes remained lower than normal at P30 and P60

(n = 48 at P15, 39 at P30 and 27 at P60). K) Correlation between hair cell number and VsEP

thresholds from P15, P30 and P60 mice (n = 4 at P15, 4 at P30 and 14 at P60). Data shown as

mean ± SD, compared using Student t tests and one-way ANOVA by Tukey’s multiple com-

parison test. ���p< 0.001, ��p< 0.01, �p< 0.05. Scale bars: A-E) 20 μm. The underlying data

can be found within S1 Data.

(TIF)

S5 Fig. Characteristics of Plp1-traced regenerated hair cells. A) Whole mount utricles from

Plp1CreERT/+; Rosa26RtdTomato/+ mice treated with DT at P1, followed by tamoxifen at P8 to

fate-map Plp1+ cells. Organs were examined at P30. B-C) Representative images showing

traced supporting cells in the extrastriolar and regions in the P30 damaged utricle. D-E) Repre-

sentative images of different morphological subtypes of type II and type I hair cells regenerated

from Plp1+ supporting cells. F-G) Representative confocal images of Mapt+/ANXA4+/tdTo-

mato+/Myosin7a+ (arrowhead) and Mapt-/ANXA4+/tdTomato+/Myosin7a+hair cells (arrow)

in the extrastriola and striola of damaged utricles. H-J) Representative tracings showing

changes in capacitance in HCR, HCPG8 and untraced hair cells (n = 3–14 cells), which were

depolarized to the voltage of maximal calcium current for 3 seconds. K-L) More than 85%

HCR, HCPG8 and untraced hair cells showed greater than 50 fF of capacitance change. No sig-

nificant differences in maximal release were observed among groups. Data shown as

mean ± SD, compared using one-way ANOVA by Kruskal Wallis-Dunn’s multiple compari-

son tests. Scale bars: A) 10 μm. B-C, F-G) 20 μm. The underlying data can be found within S1

Data.

(TIF)

S6 Fig. Characteristics of regenerated hair cells from Lgr5+ supporting cells. A) Schematic

of the genetic approach to ablate hair cells and fate-map Lgr5+ cells in vivo. B-D) In
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undamaged control tissues, few traced hair cells expressed type II hair cell marker ANXA4

(arrow) and no OPN+ traced hair cells with Tuj1+ calyx were found (n = 10). Arrowheads

highlight Tuj1+ neural elements. D) Lgr5-traced hair cells (arrow) immunonegative for OPN

and Tuj1+ neurites. Inset shows orthogonal view of traced hair cells with associated innerva-

tion (arrowheads). E) Representative images of different morphologic subtypes of regenerated

type I hair cells from Lgr5+ supporting cells. F-H) Represent calcium currents from

Lgr5-traced HCR (black) and untraced hair cells from damaged (red) and undamaged (blue)

utricles. I-J) Peak current responses and maximal current and half activating voltage were not

statistically different among groups (n = 5–8 cells). K-M) Representative tracings of real-time

changes in capacitance in Lgr5-traced HCR (black), untraced hair cells from damaged (red)

and undamaged (blue) when they were depolarized to the voltage of maximal calcium current

for 3 seconds. N) About 50% of the Lgr5-traced HCR and>85% of untraced hair cells had

greater than 50 fF of capacitance change (n = 5–8 cells). No differences in maximal release

were observed among groups. Data shown as mean ± SD, compared using one-way ANOVA

by Kruskal Wallis-Dunn’s multiple comparison tests. Scale bars: B-D) 20 μm. The underlying

data can be found within S1 Data. HCR, regenerated hair cell; OPN, Osteopontin.

(TIF)

S7 Fig. Methods used for identifying the conductance plot from which half-activation and

steepness plots were generated. A) Voltage clamp data of standard protocol for eliciting IDR,

protocol timing shown above the current responses. B) Currents at the time point indicated by

line in (A) against stimulus voltage. C) Currents from a protocol used to identify the reversal

potential for the primary conductance, stimulus timing shown above currents. The cell was

stepped to -4mV, potential eliciting a large outward current (A, B) and then repolarized to

potentials between -124 and 30 mV (Vm). D) The reversal potential obtained in D (-78 mV),

from plotting the data in (C) was used in E to generate a conductance plot where g = I/(Vm-

Vr). E) Shown is an example of a single IKL response. The underlying data can be found within

S1 Data.

(TIF)

S1 Table. Primers for genotyping.

(XLSX)

S2 Table. Electrophysiological properties of postnatally generated and regenerated hair

cells.

(XLSX)

S3 Table. Percent of hair cells with markers of type I and II hair cells.

(XLSX)

S4 Table. Quantification of Mapt- and Annexin A4-positive cells in undamaged and dam-

aged P30 utricles.

(XLSX)

S1 Data. Original data presented in main and supplemental figures.

(XLSX)
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