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a b s t r a c t

In order to protect endangered prey, ecologists suggest introducing parasites into preda-
tors which have achieved the expected goal in practice. Then how to explain the inherent
mechanism and validate the effectiveness of this approach theoretically? In response to
this question, we propose an eco-epidemiological system with the standard incidence rate
and the anti-predator behavior in this paper, where the predator population is infected by
parasites. We show the existence and local stability of equilibria for the system, and verify
the occurrence of Hopf bifurcation. Theoretical and numerical results suggest that the fear
effect reduces the density of the predator population but has no effect on the density of
prey population. In addition, the cost of fear may not only break the stability of the
equilibrium of the system, but also induce the equilibrium to change from unstable to
stable. Based on the theoretical analysis, we confirm that introducing parasites into the
predator population is an effective method to protect endangered prey.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The prey-predator interaction system is one of the dominant themes in theoretical ecology (Haque & Greenhalgh, 2010;
Kuang& Beretta, 1998). Without predators, the prey populationwould give rise to over grazing and directly affect the natural
plant life cycle; without prey, the predators would starve from hunger and die; moreover, the existence of predators is
indispensable to the long-term existence of prey to a certain extent (Sen et al., 2022; Wang et al., 2018). In biological control,
considerable evidence substantiates the way that introducing parasites into invasive predators can effectively control
predator population and protect endangered prey (Bulai & Hilker, 2019; Courchamp et al., 1999). The introduced parasites
resemble in the mode of infectious diseases transmitted in predators. Once parasites or infectious diseases transmit in prey or
predator population, the inherent prey-predator cycles will be broken and the interactions will be more complex (Bate &
Hilker, 2013a; Gao et al., 2013). Eco-epidemiological system, devoting to investigate the mechanism of parasite and dis-
ease transmission in predator-prey interaction, has gainedwidely concern in recent years (Auger et al., 2009; Kooi et al., 2011).
These results suggested that parasites and infectious diseases can greatly influence the dynamics of the host population and
other related species (Cojocaru et al., 2020; Hadeler & Freedman, 1989; Bate & Hilker, 2013b; Zhang et al., 2022; pada Das,
2011).
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Fear factor has profound effects on preys, and one of the most influential effect is the caused anti-predator behaviors (Das
& Samanta, 2018; Dubey et al., 2021; Wang et al., 2019, 2020). These behaviors may directly affect the growth rate of prey
population, and change the physiological characteristics of the preys (Zanette et al., 2011). For the representative research
work on the prey-predator dynamics with the cost of anti-predator behaviors, we recommend the articles written by Wang
et al. (Wang et al., 2016; Wang & Zou, 2017). The term accounts for the cost of anti-predator behaviors may take different

forms, such as 1
kY (Wang et al., 2016; Zhang et al., 2023), e�kY (Das & Samanta, 2018; Li & Tian, 2023), hþ að1�hÞ

aþY (Sarkara &

Khajanchi, 2020). Generally, the fear effect can stabilize or destabilize the considered predator-prey systems, and may
cause a significant reduction in the biomass of the population, which are demonstrated in (Hossain et al., 2020; Pal, 2020;
Sarkara & Khajanchi, 2020; Zhang et al., 2019). These references inevitably lead us to further explore the impact of fear effect
on the dynamics of eco-epidemiological systems, especially (Liu et al., 2021; Sarkar& Khajanchi, 2022). Barman et al. (Barman
et al., 2021) investigated the impact of fear effect on a predator-prey model with disease in predator. They found that the fear
effect can reduce the size of species including predator and prey, and may trigger a phenomenon where diseases in the
predator population tend to become extinct. But in most of these works, the growth of prey population is unrestricted, which
often goes against reality (Haque & Venturino, 2007; Li & Tian, 2023). Hence, it is more meaningful to study the dynamics of
eco-epidemiological systems with fear effect under the assumption that the prey grow logistically.

In my earlier work, we established the following predator-prey system that incorporates infectious disease in predator
population and the cost of anti-predator behaviors (Zhang et al., 2023):

8>>>>>>>><>>>>>>>>:

dX
dt

¼ rX
1þ kðSþ IÞ �

rX2

K
� aXS
1þ bX

;

dS
dt

¼ eaXS
1þ bX

� d1S� bSI;

dI
dt

¼ bSI � d2I;

(1.1)

where, X, S, I represent the densities of prey, susceptible predator and infected predator at time t, respectively. Here, r is the
intrinsic growth rate of the logistically growing prey and K is the carrying capacity of the prey population. The parameter k
represents the level of fear which drives anti-predator behaviours of the prey. a denotes the predation coefficient, e is the
biomass conversion constant, and b is the predators handling time of a prey. b represents the effective contact rate between
healthy predator and infected predator. d1 and d2 are the mortality rate of the susceptible predator and infected predator,
respectively.

We summarize the equilibria for system (1.1) as follows:

(1) Trivial equilibrium: E0 ¼ (0, 0, 0);
(2) Axial equilibrium: E1 ¼ (K, 0, 0);
(3) Planar equilibrium: E2 ¼ (X2, S2, 0) exists if ea � bd1> 0 and K > d1

ea�bd1
hold, where X2 and S2 are defined in Eq (3.1) of

(Zhang et al., 2023).
(4) If ea � bd1> 0 and r> ad2ðbþkðd2�d1ÞÞ

b
2 hold, then system (1.1) has at least one positive equilibrium E3 ¼ (X3, S3, I3), where

X3, S3 and I3 are provided in [23, Theorem 3.1].

We found that high level of the fear effect leads to complex dynamics and the infected predator can go to extinction.
Disease incidence, the rate at which new infections occur, is a critical term in modelling the transmission mechanism of

infectious diseases (Naji & Mustafa, 2012; Upadhyay & Roy, 2014). The commonly used incidence terms mainly include

bilinear type (or mass action type) bSI, saturated type bSI
1þmI , standard type bSI

SþI (Haque et al., 2009; Wang & Feng, 2017). In
system (1.1), bilinear incidence term is used to model the early stage of disease transmission ideally assumed that the sus-
ceptible and infected predators are homogeneous mixing. However as the infected transmission progressing, the mixing is no
longer homogeneous, and the standard incidence term could better catch the transmission feature and lead to unexpected
dynamics (Adak & Bairagi, 2015; Dutta et al., 2022; Liu, 2011; Saha et al., 2018; Tan et al., 2022; Xu et al., 2020; Yang &Wang,
2019).

Motivated by above analyses and based on system (1.1), in this paper, we investigate the following prey parasites-infected-
predator system with standard incidence rate and the fear factor:
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8>>>>>>>><>>>>>>>>:

dX
dt

¼ rX
1þ kðSþ IÞ �

rX2

K
� aXS
1þ bX

;

dS
dt

¼ eaXS
1þ bX

� d1S�
bSI
Sþ I

;

dI
dt

¼ bSI
Sþ I

� d2I:

(1.2)
Model (1.2) can be applied to the wildlife-livestock interacting with the infectious diseases. It is known that the livestock
constitutes on average 37% of the agricultural gross domestic product, and is one of the mainly important and rapidly
expanding commercial agricultural sectors worldwide (Wiethoelter et al., 2015). However, most of infectious diseases will
induce the direct losses to this sector through increased mortality and reduced livestock productivity, as well as the indirect
losses associated with cost of control, loss of trade, decreased market values, and food insecurity. Moreover, the infectious
diseases that are shared between species also represent a potential burden to the whole ecosystem, affecting biodiversity,
changing behavior or composition of animal populations, and even relegating species to the fringe of extinction (Wiethoelter
et al., 2015). Therefore, it is mostly important and reasonable to construct a mathematical model to describe the wildlife-
livestock interacting with the infectious diseases.

Pathogen maintenance within wildlife populations and spillover to livestock has been reported as a precursor to disease
emergence in humans.

The rest of this paper is arranged as follows. In Section 2, we prove the positivity and boundedness of the solutions for
system (1.2), define the basic reproduction number and present the existence of equilibria. In Section 3, we analyze the
stability of equilibria and show the existence of Hopf bifurcation. In Section 4, numerical simulations are performed to
substantiate our analytical results. Finally, Section 5 is concerned with a discussion of main results.

2. Basic reproduction number and equilibria

From the perspective of biology, we consider the solution (X(t), S(t), I(t)) of system (1.2) on

R3
þ ¼ fðXðtÞ; SðtÞ; IðtÞÞ2R3 : XðtÞ�0; SðtÞ�0; IðtÞ�0g:
Similar with the proof of Theorem 2.1 in (Zhang et al., 2023), we get the following results.

Theorem 2.1. Each solution of system (1.2) with initial value ðXð0Þ; Sð0Þ; Ið0ÞÞ2R3
þ is positive and ultimately bounded, and all

these positive solutions are defined in the following positive bounded invariant:

Gd
n
ðXðtÞ; SðtÞ; IðtÞÞ2ℝ3

þ : 0 � XðtÞ<K;0 � eXðtÞ þ SðtÞ þ IðtÞ � eKðr þ d1Þ2
4rd1

)
:

Following (Tan et al., 2022), we define the basic reproduction number R0 for system (1.2) as follows:

R0 ¼ b

d2
;

which is one of the most important quantities in epidemiology. Here, R0 represents the average number of secondary in-
fections during an mean infectious period.

One can easily obtain the existence theorem of the planar equilibrium E1 listed in Theorem 2.2, the proof is standard, hence
we omit it here.

Theorem 2.2. If ea � bd1> 0 holds, then system (1.2) has a planar equilibrium E1 ¼ (X1, S1, 0), where X1 ¼ d1
ea�bd1

and S1 is the
positive root of the equation:

HðSÞ ¼ akKS2 þ ðKaþ krX1 þ bkrX2
1ÞS� rð1þ bX1ÞðK �X1Þ ¼ 0:
On the other hand, we mainly focus on the existence of positive equilibrium E2 ¼ (X2, S2, I2) of system (1.2). Any positive
equilibrium (X2, S2, I2) of system (1.2) satisfies
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8>>>>>>>><>>>>>>>>:

r
1þ kðS2 þ I2Þ

� rX2

K
� aS2
1þ bX2

¼ 0;

e
aX2

1þ bX2
� d1 �

bI2
S2 þ I2

¼ 0;

bS2
S2 þ I2

� d2 ¼ 0;

which yields

X2 ¼ d1 þ d2ðR0 � 1Þ
ea� bd1 � bd2ðR0 � 1Þ; S2 ¼ I2

R0 � 1

and I2 is the positive root of (2.1) in
�

d1
ea�bd1

;þ∞
�
:

QðIÞ ¼ m2I
2 þm1I þm0 ¼ 0; (2.1)

where

m2dakKbd2;

m1dðaK þR0X2krð1þ bX2ÞÞðR0 �1Þ;
m0drðR0 � 1Þ2ð1þ bX2ÞðX2 �KÞ:

Therefore, if R0 >1 and ea�bd1
bðR0�1Þ> d2 hold, there exists one positive equilibrium E2 for system (1.2).

Theorem 2.3. If R0 >1 and ea�bd1
bðR0�1Þ>d2 hold, then system (1.2) has a positive equilibrium E2 ¼ (X2, S2, I2), where X2 ¼

d1þd2ðR0�1Þ
ea�bd1�bd2ðR0�1Þ, S2 ¼ I2

R0�1 and I2 is the positive root of (2.1).

Remark 2.1. Compared with the existence of the equilibria for system (1.1) shown in the Introduction, the system (1.2) no longer
has the trivial equilibrium and the axial equilibrium. This indicates that predator population and prey population for system (1.2)
always coexist in nature, so the balance of the ecosystem will not be disrupted. Significantly, the dynamic results of the eco-
epidemiological model (1.2), which conforms to the dynamical characteristics of infectious diseases (the incidence function of
the disease adopts the standard form instead of the bilinear form), reveal an important conclusion that introducing parasites into
the predator population can achieve the goal of protecting endangered prey.
3. Stability analysis

3.1. Local stability of equilibria

Firstly, we will show the stability of the planar equilibrium E1 of system (1.2) by setting

K1d
eaþ bd1

bðea� bd1Þ
; k1d

Kbðea� bd1Þ2ðKbðea� bd1Þ � ðeaþ bd1ÞÞ
ae2rðeaþ bd1Þ

: (3.1)
Theorem 3.1. For system (1.2), assume that ea � bd1> 0 and R0 <1.

(P1) If one of the following inequalitiesholds, then the planar equilibrium E1 is locally asymptotic stable.

(I) K� K1;
(II) K> K1 and k> k1

(P2) If K> K1 and k< k1 hold, then the planar equilibrium E1 is unstable.
Proof. The Jacobian matrix of system (1.2) at E1 is given by
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JðE1Þ ¼
0@ a11 a12 a13

a21 0 �R0d2
0 0 d2ðR0 � 1Þ

1A
where

a11 ¼X1

 
� r
K
þ abS1
ð1þ bX1Þ2

!
;

a12 ¼
�krX1

ð1þ kS1Þ2
� aX1

1þ bX1
< 0;

a13 ¼
�krX1

ð1þ kS1Þ2
< 0;

a21 ¼
eaS1

ð1þ bX1Þ2
> 0:

Hence, the characteristic equation of J(E1) is given as

ðl2 � a11l� a12a21Þðl� d2ðR0 �1ÞÞ ¼ 0: (3.2)

Clearly, J(E1) has three eigenvalues, where l1, l2 are the roots of

l2 � a11l� a12a21 ¼ 0

and l3 ¼ d2ðR0 � 1Þ. Here, when R0 <1, we have l3< 0.
Clearly, if a11 < 0, then l1, l2< 0. By calculating, we have

a11 ¼ X1

aKe2
ðKbðea� bd1Þ2S1 � rae2ÞdFðS1Þ:

Note bS ¼ rae2

Kbðea�bd1Þ2
is the root of F(S1)¼ 0. Then, we have

HðbSÞ ¼ erðae2rðeaþ bd1Þk� Kbðea� bd1Þ2ðKbðea� bd1Þ � ðeaþ bd1ÞÞÞ
Kðea� bd1Þ3b2

:

Hence, we can determine the sign of a11.

(1) If K < K1, or K > K1 and k> k1, then we can obtain HðbSÞ>0, which yields a11< 0, then l1, l2< 0.
(2) If K> K1 and k< k1 hold, then we can obtain that HðbSÞ<0, which yields a11> 0, then max{l1, l2}> 0.

This completes the proof.

Remark 3.1. Theorem 3.1 illustrates an interesting point that the high level of fear is beneficial to stabilizing planar equi-
librium E1. That is to say, the higher the level of fear which drives anti-predator behavior of prey, the more likely it is to help
the infected predator become extinct, and thus the disease existing in the predator population can be controlled.

Next, we will show the stability of the positive equilibrium E2 of system (1.2).
The Jacobian matrix of system (1.2) at E2 is given as

JðE2Þ ¼

0BBBBBBB@

b11 b12 b13

b21
d2ðR0 � 1Þ

R0
�d2
R0

0
d2ðR0 � 1Þ2

R0
�d2ðR0 � 1Þ

R0

1CCCCCCCCCA
where
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b11 ¼X2

 
� r
K
þ abS2
ð1þ bX2Þ2

!
;

b12 ¼
�krX2

ð1þ kðS2 þ I2ÞÞ2
� aX2

1þ bX2
< 0;

b13 ¼
�krX2

ð1þ kðS2 þ I2ÞÞ2
< 0;

b21 ¼
eaS2

ð1þ bX2Þ2
> 0:

(3.3)

The characteristic equation of J(E2) is given as

l3 þ A1l
2 þ A2lþ A3 ¼ 0; (3.4)

where

A1 ¼ �b11;

A2 ¼ eaS2X2ðak2ðS2 þ I2Þ2 þ krð1þ bX2Þ þ 2akðS2 þ I2Þ þ aÞ
ð1þ bX2Þ3ð1þ kðS2 þ I2ÞÞ2

>0;

A3 ¼ d2aeS2X2ðR0 � 1Þðak2ðS2 þ I2Þ2 þR0krð1þ bX2Þ þ 2akðS2 þ I2Þ þ aÞ
R0ð1þ bX2Þ3ð1þ kðS2 þ I2ÞÞ2

:

(3.5)

According to Routh-Hurwitz criterion, the positive equilibrium E2 is locally asymptotically stable when A1> 0, A1A2� A3> 0
and R0 >1.

Therefore, we can establish the following statement.

Theorem 3.2. Assuming thatR0 >1 and ea�bd1
bðR0�1Þ>d2 hold, then the positive equilibrium E2 of system (1.2) is locally asymptotically

stable if A1> 0 and A1A2� A3> 0 hold, where Ai(i¼ 1, 2, 3) is defined as in Eq (3.5). Otherwise, it is unstable.

Remark 3.2. It is very regrettable that the result of theorem 3.2 cannot clearly show the impact of fear factor on the stability of
positive equilibrium E2. Considering that it is indispensable for us to grasp the influence of fear effect on the dynamics of population
system, we will use numerical simulation to further discuss later.

For the sake of facilitating the follow-up research on how the cost of fear affects the dynamics of the population system, it
is necessary to give the following results here.

Remark 3.3. For the case without the fear factor, i.e., k¼ 0, we get the following results:

(1) IfR0 <1, ea� bd1> 0 and K< K1, then there exists a planar equilibrium eE1 ¼
�

d1
ea�bd1

;
erðKðea�bd1Þ�d1Þ

Kðea�bd1Þ2
;0
�
, which is locally

asymptotic stable.
(2) If R0 >1, ea�bd1

bðR0�1Þ>d2 and K > d2ðR0�1Þþd1

ea�bd1�bd2ðR0�1Þ hold, then there exists a positive equilibrium eE2 ¼ ðeX2;
eS2;eI2Þ, where

eX2d
d2ðR0 � 1Þ þ d1

ea� bd1 � bd2ðR0 � 1Þ;
eS2derðððea� bd1Þ � bd2ðR0 � 1ÞÞK � ðd2ðR0 � 1Þ þ d1ÞÞ

Kðea� bd1 � bd2ðR0 � 1ÞÞ2
;

eI2derðR0 � 1Þðððea� bd1Þ � bd2ðR0 � 1ÞÞK � ðd2ðR0 � 1Þ þ d1ÞÞ
Kðea� bd1 � bd2ðR0 � 1ÞÞ2

:

And when K < R0rðd1þd2ðR0�1ÞÞðbd2ðR0�1Þþeaþbd1Þ
ðea�bd1�bd2ðR0�1ÞÞðd2ðR0�1ÞðR0brþeaÞþR0bd1rÞ,

eE2 is locally asymptotic stable.
3.2. Hopf bifurcation

In this subsection, we take k as the bifurcation parameter. The characteristic equation of system (1.2) at E2 is given by Eq
(3.4), and Ai(k)(k¼ 1, 2, 3) are defined as Eq (3.5).
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Theorem 3.3. Hopf bifurcation near the positive equilibrium E2 for system (1.2) occurs whenever the critical parameter k attains
the value k¼ kh in the domain:

U¼fkh 2RþjDðkhÞd½A1ðkÞA2ðkÞ�A3ðkÞ�jk¼kh ¼0 with A2ðkhÞ > 0;
�
dDðkÞ
dk

�
jk¼kh s0

�
:

Proof. If k¼ kh, the characteristic equation (3.4) is

l3 þ A1ðkhÞl2 þ A2ðkhÞlþ A3ðkhÞ ¼ 0; (3.6)

which can be factorized as following

ðl2 þA2ðkhÞÞðlþA1ðkhÞÞ ¼ 0: (3.7)

Eq (3.7) has three roots: l1 ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðkhÞ

p
, l2 ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðkhÞ

p
and l3¼�A1(kh). These roots are of the form l1¼ p1(k) þ ip2(k),

l2¼ p1(k)� ip2(k) and l3¼�p3(k), where pi(k)(i¼ 1, 2, 3) are real numbers.
By the characteristic equation (3.4), we have

dl
dk

¼ �l2A0
1 þ lA0

2 þ A0
3

3l2 þ 2A1lþ A2

; (3.8)

where 0 ¼ d
dk. Substituting l ¼ i

ffiffiffiffiffiffi
A2

p
into Eq (3.8), we get

A0
3 � A2A

0
1 þ iA0

2

ffiffiffiffiffiffi
A2

p
2ðA2 � iA1

ffiffiffiffiffiffi
A2

p
Þ

¼ �
dDðkÞ
dk

2ðA2
1 þ A2Þ

þ i

264 ffiffiffiffiffiffi
A2

p
A0
2

2A2
�
A1

ffiffiffiffiffiffi
A2

p dDðkÞ
dk

2A2ðA2
1 þ A2Þ

375 ;

which means that

�
dReðlÞ
dk

�
jk¼kh ¼ �

dDðkÞ
dk

2ðA2
1 þ A2Þ

jk¼kh :

Using monotonicity condition dReðlÞ
dk jk¼khs0, the condition dDðkÞ

dk jk¼khs0 guarantees the existence of Hopf bifurcation.

4. Numerical simulations

In this section, we fully discuss the intricate impact of fear factor on the dynamics of system (1.2) in which the predator is
infected by parasites, contributing to the ecological balance. We apply numerical simulations to focus on the stability of
equilibria E1 and E2, with parameter values shown in Table 1.

4.1. The stability of E1

Unless otherwise statement, we use the following parameters in this subsection

a ¼ 0:3; b ¼ 0:1; e ¼ 0:68; d1 ¼ 0:05; r ¼ 0:7; d2 ¼ 0:08; b ¼ 0:065;
Table 1
The values of parameters for model (1.2).

Paras Meanings Range References

r Intrinsic growth rate of prey 0.59� 1 [ (Sarkara & Khajanchi, 2020), (Barman et al., 2021), (Hethcote et al., 2004)]
k Fear effect level of prey 0� 60 [ (Wang et al., 2016), (Wang & Zou, 2017), (Zhang et al., 2019)]
K Carrying capacity of the prey 2.6� 100 [ (Hossain et al., 2020), (Hethcote et al., 2004)]
a Predation coefficients 0.2� 0.7 [ (Zhang et al., 2023), (Dutta et al., 2022)]
b Predators handling time of a prey 0.1� 3 [ (Kooi et al., 2011), (Zhang et al., 2023)]
e Biomass conversion constant 0.02� 0.9 [ (Zhang et al., 2023), (Dutta et al., 2022)]
b Transmissibility coefficient 0.05� 2 [ (Zhang et al., 2022), (Zhang et al., 2023), (Dutta et al., 2022)]
d1 Mortality rates of the susceptible predator 0.04� 0.1 [ (Zhang et al., 2022), (Barman et al., 2021)]
d2 Mortality rates of the infected predator 0.08� 0.22 [ (Zhang et al., 2022), (Barman et al., 2021)]
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Fig. 1. The paths of the solution (X(t), S(t), I(t)) for system (1.2) with K¼ 5.
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Fig. 2. The paths of the solution (X(t), S(t), I(t)) for system (1.2) with K¼ 11.
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then we have

ea� bd1 ¼ 0:199>0; R0 ¼ 0:81<1; K1 ¼ eaþ bd1
bðea� bd1Þ

¼ 10:5;

which means that system (1.2) has only one planar equilibrium E1. And the diseases existing in the predator population are
eliminated in this case.

Example 5.1.1: The impact of k under small environmental carrying capacity
We start our numerical simulation with the environmental carrying capacity K¼ 5 < K1, then according to Theorem 3.1

(P1eI), we conclude that E1 is locally asymptotic stable. The numerical simulations showed in Fig. 1 provide the graphs of
(X(t), S(t), I(t)) for system (1.2) when k¼ 0, 0.02, 0.5 respectively. For k¼ 0, E1 ¼ (0.25, 2.27, 0) is stable; for k¼ 0.02, E1 ¼ (0.25,
2.17, 0) is stable; for k¼ 0.5, E1 ¼ (0.25, 1.32, 0) is stable. Hence, with the increases of the fear level, the number of susceptible
predator population decreases, but the number of prey population does not change.

Example 5.1.2: The impact of k under large environmental carrying capacity
For the large environmental carrying capacity K¼ 11 > K1, there exists abundant phenomena about the influence of the

fear effect on population dynamics. Through calculation, we have k1¼0.0213, which guides us to take different values of k to
study the dynamics of system (1.2). As an example, we adopt k¼ 0, then system (1.2) without the fear factor has the equi-
librium E1 ¼ (0.25, 2.34, 0), which is unstable (Fig. 2(a)). Next, one take k¼ 0.02 < k1, then system (1.2) has a planar equi-
librium E1 ¼ (0.25, 2.24, 0), which is unstable (Fig. 2(b)). When we increase the cost of the fear to k¼ 0.5, then k> k1, as a
consequence result of Theorem 3.1 (P1-II), there exists a stable equilibrium E1¼ (0.25, 1.37, 0) for system (1.2) (Fig. 2(c)). These
numerical investigations under the assumption of relatively large environmental carrying capacity show that the fear effect
not only reduces the number of susceptible predators which is similar to the case of small environmental carrying capacity
showed in Fig. 1, but also may be conducive to the changing of the planar equilibrium E1 from unstable to stable.
4.2. The stability of E2

In this subsection, we firstly fix the parameters of system (1.2) as follows:

r ¼ 0:7; b ¼ 0:1; e ¼ 0:68; b ¼ 0:26; d1 ¼ 0:05:

Then we analyze the influence of the level of fear k on the positive equilibrium E2 of system (1.2).
Example 5.2.1: The impact of k under the assumption that E2 for system (1.2) without fear factors is stable
After taking

a ¼ 0:3; d2 ¼ 0:08; K ¼ 6:9

we have
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Fig. 3. The paths of the solution (X(t), S(t), I(t)) for system (1.2) with a¼ 0.3, d2¼ 0.08, K¼ 6.9 when k¼ 0.
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Fig. 4. The paths of the solution (X(t), S(t), I(t)) for system (1.2) with a¼ 0.3, d2¼ 0.08, K¼ 6.9 when k¼ 5.
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kh ¼ 9:635051; R0 ¼ 3:25>1;
ea� bd1
bðR0 � 1Þ ¼ 0:88> d2;

K >
d2ðR0 � 1Þ þ d1

ea� bd1 � bd2ðR0 � 1Þ ¼ 1:27;

K <
R0rðd1 þ d2ðR0 � 1ÞÞðbd2ðR0 � 1Þ þ eaþ bd1Þ

ðea� bd1 � bd2ðR0 � 1ÞÞðd2ðR0 � 1ÞðR0br þ eaÞ þ R0bd1rÞ
¼ 7:37;

which means that system (1.2) without fear factors, i.e., k¼ 0, has a planar equilibrium E1 ¼ (0.25, 2.31, 0) and a locally
asymptotic stable E2 ¼ (1.27, 2.15, 4.83). The numerical results are presented in Fig. 3.

When the growth rate of prey decreases due to the change of prey behavior caused by the presence of predators, we find
that system (1.2) shows complex dynamics. Here, wewill conduct a series of detailed analysis. Assume that the level of fear is
small, i.e. k¼ 5, thenwe have A1¼0.124> 0, A1A2 � A3¼ 0.0002> 0. This reveals that the positive equilibrium E2 ¼ (1.27, 0.18,
0.41) is stable, which is confirmed by the numerical example shown in Fig. 4. What these tell us is that the fear factor reduces
the number of susceptible predator and infected predator, but it does not break the stability of E2. Furthermore, results for the
level of fear k¼ kh, which shows A1¼0.126> 0, and A1A2� A3¼ 0 by calculations, provide further insight. We can see that
system (1.2) undergoes a Hopf bifurcation and there is a limit cycle around E2 ¼ (1.27, 0.11, 0.25) (Fig. 5). If one increase the
cost of fear k to k¼ 15 > kh such that A1¼0.127> 0 and A1A2 � A3¼�0.0001< 0, the profile in Fig. 6 demonstrates that the
equilibrium E2 ¼ (1.27, 0.08, 0.17) is unstable. It should come as no surprise that in general, the increase of the level of fear not
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Fig. 6. The paths of the solution (X(t), S(t), I(t)) for system (1.2) with a¼ 0.3, d2¼ 0.08, K¼ 6.9 when k¼ 15.

Fig. 5. The paths of the solution (X(t), S(t), I(t)) for system (1.2) with a¼ 0.3, d2¼ 0.08, K¼ 6.9 when k¼ kh.
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only results in the decrease of the number of predators including susceptible and infected predators, but also induces the
positive equilibrium E2 to change from stable to unstable.

Example 5.2.2: The impact of k under the assumption that E2 for system (1.2) without fear factors is unstable
Through setting the following parameter values:

a ¼ 0:2; d2 ¼ 0:2; K ¼ 8;

the numerical experiments starting from the case that the positive equilibrium E2 for system (1.2) without fear effect is
unstable are now initialized. In this case, we have

kh ¼ 0:299949; R0 ¼ 1:3>1;
ea� bd1
bðR0 � 1Þ ¼ 4:37> d2;

K >
d2ðR0 � 1Þ þ d1

ea� bd1 � bd2ðR0 � 1Þ ¼ 0:88;

K >
R0rðd1 þ d2ðR0 � 1ÞÞðbd2ðR0 � 1Þ þ eaþ bd1Þ

ðea� bd1 � bd2ðR0 � 1ÞÞðd2ðR0 � 1ÞðR0br þ eaÞ þ R0bd1rÞ
¼ 6:48:

Thus, system (1.2) without fear factors, i.e., k¼ 0, has a planar equilibrium E1¼ (0.38, 3.46, 0) and an unstable equilibrium E2¼
(0.88, 3.39, 1.02).

In order to determinewhether the impact of the fear effect on the stability of E2 is different from the conclusion revealed in
Example 5.2.1 for this case, we similarly adopt three different choices of k to analyze the population dynamics of system (1.2).
When we take k¼ 0.2< kh, system (1.2) has a unique positive equilibrium E2 ¼ (0.88, 2.06, 0.62) and one can obtain
A1¼0.05> 0 and A1A2� A3¼�0.0002< 0, which means that E2 is unstable (Fig. 8). When we take k¼ kh and obtain
A1¼0.050> 0 and A1A2� A3¼ 0, Fig. 9 shows that system (1.2) exhibits limit cycle around E2 ¼ (0.88, 1.81, 0.54). When we
take k¼ 1 > kh, the simple calculation shows that A1¼0.060> 0 and A1A2 � A3¼ 0.0003> 0, and hence there is a stable
equilibrium E2 ¼ (0.88, 1.13, 0.34) for system (1.2), which are supported by the numerical simulations displayed in Fig. 10.
Hence, comparing the results given in Example 5.2.1, we see that the different implication induced by the fear factor k is that
the dynamics of E2 may change from unstable to stable with the increase of the value of k.
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Fig. 7. The paths of the solution (X(t), S(t), I(t)) for system (1.2) with a¼ 0.2, d2¼ 0.2, K¼ 8 when k¼ 0.

Fig. 8. The paths of the solution (X(t), S(t), I(t)) for system (1.2) with a¼ 0.2, d2¼ 0.2, K¼ 8 when k¼ 0.2.

Fig. 9. The paths of the solution (X(t), S(t), I(t)) for system (1.2) with a¼ 0.2, d2¼ 0.2, K¼ 8 when k¼ kh.
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5. Conclusion and discussion

In this paper, we proposed an eco-epidemiological system (1.2) involving standard incidence rate to investigate the effect
of the anti-predator behaviors caused by the fear factor on the population dynamics of prey and predator. Compared with the
system (1.1) with bilinear incidence rate, our analysis reveals that for system (1.2), the predator population and the prey
population do not tend to extinction and always coexist in nature, which means that the ecosystem is in a balanced state.

The impacts of the fear factor on the dynamics for predator-prey system (1.2) are summarized as follows.

(1) Fear effect leads to a reduction of predator population.

As far as our observation is concerned, fear effect on the population density is only to reduce the number of the predator
population, but does not affect the number of the prey population (for example, see Fig. 1).
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(2) Fear effect can change the stability of E1 (disease free when R0 <1).

If the environmental carrying capacity is relatively small, the planar equilibrium E1 of system (1.2) without fear effect is
stable and the introduction of fear effect does not change its stability (see Fig. 1), while if the environmental carrying capacity
is large, the planar equilibrium E1 of the system (1.2) without fear effect is unstable and the increase of the level of fear make it
from unstable to stable (see Fig. 2).

(3) Fear effect can change the stability of E2 (disease persistence when R0 >1).

The small level of fear, i.e., k< kh can not cause any change in the stability of the positive equilibrium E2 for system (1.2) (see
Figs. 3e4 and Figs. 7e8). When k¼ kh, the fear factor can destabilize the stability of E2 and be beneficial to the occurrence of
periodic oscillation (see Figs. 5 and 9). The high level of fear factor, i.e. k> kh, may change E2 from stable to unstable or from
unstable to stable (see Figs. 6 and 10).

Although this manuscript seem simple and conventional, numerical methods, stability analysis are all conventional ap-
proaches, the mathematical modelling research on these phenomena presented in this manuscript is lack since mathematical
modelling for some natural phenomena is always challenging and difficult. In fact, this manuscript is progressive for quan-
titative studies of the qualitative issues, and obtains some theoretical evidences about these natural phenomena, so the
research of thismanuscript is still necessary. In addition, The data in this paper are given by the authors according to the scope
of references, the real data associated with this manuscript are lacking, and the real data fitting is out of my fields, hence, the
real data fitting could not be realized at present. However, I will continue this work in the future.

A natural question, what's the corresponding dynamics if the parasite was not introduced into the predator population?
For the convenience of readers, we summarize the main results as follows. The systemwithout parasite is a special of system
(1.2): 8>>><>>>:

dX
dt

¼ rX
1þ kY

� rX2

K
� aXY
1þ bX

;

dY
dt

¼ eaXY
1þ bX

� d1Y ;

(5.1)
where X, Y represent the densities of prey and predator at time t, respectively. Similarly, we have the following results.

(i) The trivial equilibrium bE0 ¼ ð0;0Þ is unstable.
(ii) If one of the following inequalities holds:
(ii-1) ea � bd1< 0;
(ii-2) ea � bd1> 0 and K < d1

ea�bd1
,

then the axial equilibrium bE1 ¼ ðK;0Þ is stable; while bE1 ¼ ðK;0Þ is unstable if ea � bd1> 0 and K > d1
ea�bd1

.
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(iii) Assume that ea � bd1> 0. Setting

bKde2a2 � b2d21 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe2a2 � b2d21Þð4ae2kr þ e2a2 � b2d21Þ

q
2bðea� bd1Þ2

;

if d1 <K < bK holds, then the positive equilibrium E2 ¼ (X2, Y2) is stable, which if K > bK holds, then the positive equilibrium
ea�bd1

E2 ¼ (X2, Y2) is unstable, where X2 ¼ d1
ea�bd1

and Y2 is the positive root of the following equation:

PðYÞ ¼ Kkðea� bd1Þ2Y2 þ ðKðea� bd1Þ2 þ d1ekrÞY � erðKðea� bd1Þ�d1Þ:
Hence, for system (5.1), the predator population may become extinct, and even both the prey and predator may become
extinct. Combined with the results of system (1.2), we theoretically assert that the measures to prevent the extinction of
endangered prey by introducing parasites into the predator population are feasible in the biological control.
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