JACC: BASIC TO TRANSLATIONAL SCIENCE

VOL. 3, NO. 2, 2018

© 2018 PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF

CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER

THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/).

EDITORIAL COMMENT

Exaggerated Cardiotoxicity of Sunitinib in

Stressed 3-Dimensional Heart Muscles*

Thomas Eschenhagen, MD

wenty years ago, oncology was revolution-

ized by the introduction of the anti-Her2 anti-

body trastuzumab (Herceptin, Genentech,
South San Francisco, California; 1998) for the treat-
ment of patients with Her2-positive breast cancer. It
represents a direct application of the proto-oncogen
concept that had been developed by Bishop and
Varmus in the early 1980s (1,2), for which they were
awarded with the Nobel Prize in Physiology or
Medicine in 1989. Other examples, such as the
approval of imatinib (Glivec, Novartis, Basel,
Switzerland) in 2001 for the treatment of Philadelphia
chromosome-positive chronic myeloid leukemia,
followed and raised hopes that cancer can one day be
eradicated by an individualized therapy. In this
concept of personalized medicine, malignant tumors
are understood as the consequence of individual
(activating) somatic mutations of a proto-oncogen
that drives cellular growth and makes the tumor cell
“depending” on the respective signaling pathways.
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The right choice of drug blocking such pathways
should kill the tumor, but not the normal tissue.

However, not all hopes have been fulfilled. Most
solid tumors appear to quickly develop resistance
against the growth-suppressing anticancer drugs and
appear to be much more heterogeneous than antici-
pated. Disappointingly, even the combination of
several “targeted” drugs, whose choice was based on
the molecular analysis of various somatic mutations
of tumor cells, did not yet yield convincing clinical
success (3).

Furthermore, most “targeted” drugs are not so
specific as the term may suggest. In fact, most of the
popular tyrosine kinase inhibitors (TKIs) block
numerous kinases with similar potency, some like
sunitinib >50 kinases (4). But, blocking more and
more cellular growth pathways comes at a price,
because the growth pathways used by tumor cells for
their pathological growth are the same that are
necessary for other cells, including cardiomyocytes,
to grow in response to increased demand and protect
against stress (5). An early example of the importance
of such growth-promoting cascades required under
stress was the discovery that cardiac-specific deletion
of gp130, the receptor of the cytokine cardiotrophin,
is without apparent phenotype under basal condi-
tions, but leads to severe dilated cardiomyopathy in
mice subjected to pressure overload (6). Other path-
ways include epidermal growth factor receptor
signaling (ErbB2, or Her2), the PI3 kinase pathway,
AMP-activated protein kinase (AMPK, a nodal point of
metabolic control), the ubiquitin proteasomal system,
the autophagy lysomal pathway, the control of
(histone) acetylation (addressed by HDAC inhibitors),
and, mostly indirectly, vascular endothelial growth
factor-mediated maintenance of adequate perfusion
(7). Many of these pathways are addressed by TKIs,
explaining their cardiotoxic side effects, particularly
under stress. The main stressors in this respect are
parallel treatment with the prototypic cardiotoxin
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doxorubicin and the presence of arterial hyperten-
sion. In the first studies with trastuzumab in patients
with breast cancer, left ventricular dysfunction was
seen in only 3% to 7% of patients when trastuzumab
was given alone, but in 28% when given in combi-
nation with doxorubicin and cyclophosphamide (8).

The principles of the cardiotoxicity of antitumor
drugs, as described in the previous text, have been
formulated through experience with the ErbB2 (Her2)
antibody trastuzumab (9). In the meantime, however,
hundreds of small-molecule TKIs have been developed
that target multiple pathways, raising the risk of
adverse effects (10). The problem has been widely
recognized, and has led not only to clinical guidelines
and consensus papers (11), but also to activities by the
U.S. Food and Drug Administration to improve the
preclinical discovery of cardiotoxic side effects of
anticancer drugs (12,13). Preclinical risk assessment
traditionally focuses on proarrhythmic effects medi-
ated by inhibition of the repolarizing Ix, current
(carried by the hERG channel), and numerous drugs
failed to reach clinical application for such side effects.
However, cardiotoxicity by TKIs and other novel anti-
cancer drugs encompasses not only proarrhythmic ef-
fects, but also reduced cardiomyocyte survival and
contractile function. Here, traditional cell culture
assaysfallshort. Freshlyisolated adult cardiomyocytes
quickly degenerate in culture, and isolated hearts or
heart muscles (e.g., Langendorff-perfused hearts,
trabeculae from human atrial appendages, papillary
muscles, and Purkinje fibers from animals) are dying
preparations that offer a maximum experimental
window of a few hours. Neonatal rat cardiomyocyte
cultures are more stable, but they are of rodent origin,
immature, and not well suited for the determination of
contractile function. It was on this background that we
developed 3-dimensional heart muscle constructs
20 years ago (14). These hydrogel-based engineered
hearttissues (EHTs) are stable over weeksand allow the
determination of contractile force of contraction under
controlled conditions.

SEE PAGE 265

In this issue of JACC: Basic to Translational Science,
Truitt et al. (15) report the effects of the multi-TKI
sunitinib on contractile force, apoptosis, and mito-
chondrial potential of neonatal rat- and human-
induced pluripotent stem cell (hiPSC)-derived EHTs
(called cardiac microtissues [CMTs]). They used an
adaptation of the original micropost EHT technique
(16) developed by Boudou et al. (17) and showed that
sunitinib at a clinically relevant concentration of
1 pmol/l induces a time-dependent activation of
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caspase 3/7 (indicator of increased apoptosis rate).
At higher concentrations (10 pmol/l), sunitinib also
decreased beating rate and diminished the increase of
contractile function that was observed in control
CMTs. Sunitinib slightly decreased the mitochondrial
transmembrane potential. The latter was not rescued
by activation of AMPK; this result was unexpected, as
others had previously shown sunitinib toxicity to be
at least partially related to its inhibitory effect on
AMPK (18). Finally, activation by sunitinib of caspase
3/7 was confirmed in CMTs from hiPSCs, indicating
that it occurred across species. Data on contractile
function of hiPSC-CMTs were not reported. The data
by Truitt et al. (15) nicely confirm earlier work on
cardiotoxic effects of sunitinib and other TKI
on cultured human cardiomyocytes (19-21), rat
3-dimensional (3D) EHTs (22), or cardiac function of
murine hearts in vivo (23). The studies consistently
indicate that the multi-TKI sunitinib has a particu-
larly high cardiotoxic potential when compared with
more specific compounds such as erlotinib. The likely
reason is sunitinib’s parallel inhibition of several
signaling pathways that are essential for the mainte-
nance of normal cellular function, including the
EGFR, VEGFR, platelet-derived growth factor recep-
tor (PDGFR), AMPK, and others, interfering with
mitochondrial energy metabolism, apoptosis, and
autophagy.

The novel and most interesting aspect of the pre-
sent study occurred when the authors repeated their
experiments in CMT cultured on stiffer-than-normal
microposts. This increase in afterload exaggerated
the toxicity of sunitinib, providing an experimental
proof that the cardiotoxicity by this (and likely other)
TKI is augmented in situations of cardiac stress. This
result is consistent with earlier data on rat EHT (24)
and a genetic model of cardiomyopathy (25), in
which stiffer posts induced and exaggerated the
phenotype. A recent meta-analysis demonstrated that
sunitinib increases the risk of arterial hypertension
7- to 10-fold (26). Thus, the high incidence of left
ventricular dysfunction seen with this compound
(risk ratio: 4.3 [26]) is very likely due to a direct
cardiotoxic effect combined with the parallel drug
induction of arterial hypertension.

The possibility to study such combined effects
invitrois a welcome step forward and shows the power
of the advanced 3D cell culture models for preclinical
drug testing. The consistency of the effects of sunitinib
in several in vitro and in vivo studies and the good
correlation with clinical data indicate that the in vitro
assays are valid to predict the clinical profile of TKI and
other anticancer drugs. Yet, more work is needed to
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compare the cardiotoxicity of several compounds
under defined conditions and in blinded,
interlaboratory-comparisons, preferentially on hiPSC-
derived cardiomyocytes and their 3D derivatives.
Such experiments have the chance to better predict the
specific cardiotoxic potential of novel drugs before
approval. At this point, oncologists and cardiologists
can only be advised to choose the drug that is likely to
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be the least cardiotoxic, and be alert to any effect not
only on the heart, but also on blood pressure.

ADDRESS FOR CORRESPONDENCE: Dr. Thomas
Eschenhagen, Department of Experimental Pharma-
cology and Toxicology, University Medical Center
Hamburg Eppendorf, Martinistrasse 52, Hamburg
20246, Germany. E-mail: t.eschenhagen@uke.de.
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