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Simple Summary: Chromosomal instability (CIN), a condition in which chromosome missegregation
occurs at high rates, is widely seen in cancer cells. Causes of CIN in cancer cells are not fully
understood. A recent report suggests that chromosome oscillation, an iterative chromosome motion
typically seen in metaphase around the spindle equator, is attenuated in cancer cells, and is associated
with CIN. Chromosome oscillation promotes the correction of erroneous kinetochore-microtubule
attachments through phosphorylation of Hec1, a kinetochore protein that binds to microtubules,
by Aurora A kinase residing on the spindle. In this review, we focused on this unappreciated link
between chromosome oscillation and CIN.

Abstract: Chromosomal instability (CIN) is commonly seen in cancer cells, and related to tumor
progression and poor prognosis. Among the causes of CIN, insufficient correction of erroneous
kinetochore (KT)-microtubule (MT) attachments plays pivotal roles in various situations. In this
review, we focused on the previously unappreciated role of chromosome oscillation in the correction
of erroneous KT-MT attachments, and its relevance to the etiology of CIN. First, we provided an
overview of the error correction mechanisms for KT-MT attachments, especially the role of Aurora
kinases in error correction by phosphorylating Hec1, which connects MT to KT. Next, we explained
chromosome oscillation and its underlying mechanisms. Then we introduced how chromosome
oscillation is involved in the error correction of KT-MT attachments, based on recent findings.
Chromosome oscillation has been shown to promote Hec1 phosphorylation by Aurora A which
localizes to the spindle. Finally, we discussed the link between attenuated chromosome oscillation
and CIN in cancer cells. This link underscores the role of chromosome dynamics in mitotic fidelity,
and the mutual relationship between defective chromosome dynamics and CIN in cancer cells that
can be a target for cancer therapy.

Keywords: chromosomal instability; cancer; chromosome oscillation; kinetochore-microtubule
attachment; Aurora kinase; aneuploidy; Hec1

1. Introduction

Most cancer cells have an abnormal number and structure of chromosomes [1,2]. Gain
or loss of entire chromosomes is called (whole chromosome) aneuploidy, while amplifica-
tion or loss of parts of chromosomes is called structural (or segmental) aneuploidy [3–5].
Aneuploidy is caused by chromosome missegregation during mitosis, which is derived
not only from mitotic defects, but also from defects in interphase such as replication
stress [6]. In many cases, aneuploid cancer cells exhibit increased rates of chromosome
missegregation, which is called chromosomal instability (CIN) [7–9]. CIN is a cause of
intratumor heterogeneity, and related to cancer progression and poor prognosis, including
metastasis and drug resistance [10–13]. Various paths to CIN have been revealed, although
a whole picture of the etiology of CIN in cancer has not yet been clarified [7,14]. Proper
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attachment of a kinetochore (KT), a proteinous structure formed at the centromeric region
on a chromosome, to spindle microtubules (MTs) is a prerequisite for faithful chromosome
segregation. MTs are cylindrical assembly of protofilaments formed by heterodimers of
α and β tubulin. This structure stochastically repeats elongation (by polymerization of
tubulin heterodimers) and shrinkage (by depolymerization of tubulin heterodimers), a
phenomenon known as dynamic instability that facilitates attachment to KTs [15]. Fail-
ure to achieve proper KT-MT attachments is involved in the generation of CIN [16,17].
Dysfunction of the mechanisms to resolve erroneous KT-MT attachments (error correction
mechanisms) plays a particularly crucial role in the emergence of CIN [18,19]. Mitosis is a
dynamic process where KT-MT attachments are regulated both temporally and spatially,
and chromosome dynamics is closely linked to the formation of these attachments [20–24].
For example, in prometaphase, chromosome alignment at the spindle equator (congression)
is required for the establishment of proper KT-MT attachments and faithful chromosome
segregation [24,25]. In metaphase, chromosomes are aligned at the spindle equator, form-
ing the so-called metaphase plate. These aligned chromosomes are not just staying at
the metaphase plate, but moving around the spindle equator periodically, a phenomenon
known as chromosome oscillation [26,27]. In this review, we first provide an overview of
the error correction mechanisms of KT-MT attachments and the features and mechanisms
of chromosome oscillation. We then introduce a previously unappreciated link between
chromosome oscillation and error correction mechanism, and also describe attenuated
chromosome oscillation as a novel cause of CIN in cancer cells.

2. Correction Mechanisms of Erroneous KT-MT Attachments and Its Relevance to CIN
2.1. Overview of Chromosome Dynamics in Mitosis

Chromosome segregation is carried out on the spindle, comprising two spindle
poles and MTs that connect spindle poles to KTs (see Figure 1). Mitosis is divided
into five phases: prophase, prometaphase, metaphase, anaphase, and telophase (see
Figures 3 and 4). Following prophase, when chromatin condenses into well-defined chro-
mosomes, prometaphase starts with nuclear envelope breakdown (NEBD). During
prometaphase, spindle is formed while MTs attach to KTs. In metaphase, chromosomes
align to the middle of the spindle, forming the metaphase plate. Anaphase onset is
marked by the synchronous separation of all sister chromatids, and the separated chro-
mosomes move towards the poles. In telophase, nuclear envelope reforms around the
clustered chromosomes, and chromatin decondenses. These are common processes among
eukaryotic cells, although there are many variations between species. In animal cells,
spindle poles are defined by centrosomes that act as MT-organizing centers (MTOCs),
while equivalent structures in fungi are called spindle pole bodies. Higher plant cells
and the oocytes in many animal species do not have centrosomes. NEBD does not occur
in many lower eukaryotes such as yeast, and they undergo a closed mitosis by forming
the spindle in the nucleus. The number of MTs attaching to KTs also differ between
species: one for a KT in budding yeast (Saccharomyces cerevisiae) [28,29], 2–4 for that in fis-
sion yeast (Schizosaccharomyces pombe) [30], and 20–30 in animal cells (kinetochore-fiber or
K-fiber) [31,32]. On the other hand, chromosomes in C. elegans contain multiple centromeres
along chromosome arms, which is called holocentric [33]. In the following sections, we
mainly describe the mechanisms in mammalian cells.

2.2. Proper and Erroneous KT-MT Attachments

For equal chromosome segregation to daughter cells, a KT pair on sister chromatids
has to be attached to MTs from opposite spindle poles, which is called bi-orientation, or
amphitelic attachment (Figure 1A [16,34]. After NEBD, KTs initially attach to the lateral
surface of MTs (lateral attachment), and are transported to the spindle surface by a minus
end-directed motor dynein [35–41]. Then chromosomes are transported toward the spindle
equator along spindle MTs by a process called chromosome congression, which involves
the cooperative actions of two plus end-directed motor proteins, CENP-E on KTs and
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Kid on chromosome arms [20,21,42–45]. Lateral attachment is then converted to end-on
attachment, in which MT ends attach to KTs, forming K-fiber [22,46,47]. In the process
of establishment of bi-orientation, three types of erroneous KT-MT attachments can arise
(Figure 1B–D) [16]. One is monotelic attachment, a situation where only one of the sister
KTs attaches to MTs. The second is syntelic attachment, in which both sister KTs attach
to MTs from the same spindle pole. The third is merotelic attachment, where a single
KT attaches to MTs from both spindle poles. The back-to-back geometry of sister KTs
facilitates the formation of bi-orientation, by making a sister KT face one spindle pole when
the other sister KT attaches to MTs from the opposite spindle pole [48–50]. Chromosome
congression through lateral attachments also promotes bi-orientation establishment by
placing KTs at the spindle equator, where MTs from both spindle poles exist at comparable
density [22,51]. However, erroneous KT-MT attachments are still formed frequently, partly
due to the incomplete separation of centrosomes at nuclear envelope breakdown, which
become spindle poles in mitosis [35,51–53]. KT expansion in early mitosis [23,54,55], which
increases the chance for MT attachment, also contributes to the increased risk of erroneous
attachment formation. To resolve these erroneous attachments, there are mechanisms,
referred to as error correction mechanisms, which ensure mitotic fidelity [17,56].

Cancers 2021, 13, x FOR PEER REVIEW 3 of 20 
 

 

 
Figure 1. Correct and erroneous KT-MT attachments: (A) amphitelic attachment (bi-orientation), 
(B) monotelic attachment, (C) syntelic attachment, (D) merotelic attachment. See text for details. 

2.2. Proper and Erroneous KT-MT Attachments 
For equal chromosome segregation to daughter cells, a KT pair on sister chromatids 

has to be attached to MTs from opposite spindle poles, which is called bi-orientation, or 
amphitelic attachment (Figure 1A [16,34]. After NEBD, KTs initially attach to the lateral 
surface of MTs (lateral attachment), and are transported to the spindle surface by a minus 
end-directed motor dynein [35–41]. Then chromosomes are transported toward the spin-
dle equator along spindle MTs by a process called chromosome congression, which in-
volves the cooperative actions of two plus end-directed motor proteins, CENP-E on KTs 
and Kid on chromosome arms [20,21,42–45]. Lateral attachment is then converted to end-
on attachment, in which MT ends attach to KTs, forming K-fiber [22,46,47]. In the process 
of establishment of bi-orientation, three types of erroneous KT-MT attachments can arise 
(Figure 1B–D) [16]. One is monotelic attachment, a situation where only one of the sister 
KTs attaches to MTs. The second is syntelic attachment, in which both sister KTs attach to 
MTs from the same spindle pole. The third is merotelic attachment, where a single KT 
attaches to MTs from both spindle poles. The back-to-back geometry of sister KTs facili-
tates the formation of bi-orientation, by making a sister KT face one spindle pole when the 
other sister KT attaches to MTs from the opposite spindle pole [48–50]. Chromosome con-
gression through lateral attachments also promotes bi-orientation establishment by plac-
ing KTs at the spindle equator, where MTs from both spindle poles exist at comparable 
density [22,51]. However, erroneous KT-MT attachments are still formed frequently, 
partly due to the incomplete separation of centrosomes at nuclear envelope breakdown, 
which become spindle poles in mitosis [35,51–53]. KT expansion in early mitosis [23,54,55], 
which increases the chance for MT attachment, also contributes to the increased risk of 
erroneous attachment formation. To resolve these erroneous attachments, there are mech-
anisms, referred to as error correction mechanisms, which ensure mitotic fidelity [17,56]. 

2.3. Error Correction Mechanisms of KT-MT Attachments 
Error correction of KT-MT attachments works by destabilizing erroneous attach-

ments while stabilizing correct ones. As a premise to enable the error correction, KT-MT 
attachments have to be adequately dynamic; not too unstable, but also not too stable 
[57,58]. Error correction mainly occurs in prometaphase, when MTs initially attach to KTs 
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2.3. Error Correction Mechanisms of KT-MT Attachments

Error correction of KT-MT attachments works by destabilizing erroneous attachments
while stabilizing correct ones. As a premise to enable the error correction, KT-MT attach-
ments have to be adequately dynamic; not too unstable, but also not too stable [57,58].
Error correction mainly occurs in prometaphase, when MTs initially attach to KTs in a
stochastic manner through the process of dynamic instability [40,59–61]. It was reported
that KT-MT attachments in prometaphase are less stable than that in metaphase, making it
more suitable for efficient error correction [62,63]. The stability of KT-MT attachment is
defined by turnover rates of MTs on KTs and the stability of MTs forming K-fibers. Among
the KT components, the KMN network is responsible for connecting KT to MT [64]. Locat-
ing at the outer part of KT (outer plate), this network is comprised of the Knl1 complex, the
Mis12 complex, and the Ndc80 complex. The Ndc80 complex is a heterotetramer composed
of Hec1 (Ndc80), Nuf2, Spc24, and Spc25 (Figure 2A). Human Hec1 (highly expressed
in cancer) was originally identified as an Rb-binding protein that is highly expressed in



Cancers 2021, 13, 4531 4 of 21

several cancers [65,66]. The globular calponin-homology domain formed by Hec1 and
Nuf2 directly binds to MTs, playing a major role in the attachment to MTs [67,68]. The
disordered N-terminal region of Hec1 (Hec1 tail) has nine phosphorylation sites for Aurora
kinases, and their phosphorylation reduces its affinity to MTs, which is the main mecha-
nism for error correction (Figure 2B) [69–71]. This Hec1 phosphorylation is counteracted
by phosphatases, which stabilizes KT-MT attachment [69,72–76]. Other components of
the KMN network are also phosphorylated by Aurora B and cooperatively regulate the
affinity to MTs [77]. Stability of MTs forming K-fiber is regulated by various MT-binding
proteins. Among them, two kinesin-13 family motor proteins that promote MT depolymer-
ization, Kif2b, and MCAK (Kif2c), and destabilize MTs, forming K-fibers specifically in
prometaphase and metaphase, respectively [62].
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cells forming bi-orientation, multiple copies of the Ndc80 complex, composed of Hec1, Nuf2, Spc24, and Spc25, bind to the
lateral surface of MTs to tether KTs to MT ends. (B) Phosphoregulation of KT-MT attachment. Phosphorylation of Hec1 tail
by Aurora kinases reduces its affinity to MTs, allowing KT detachment, while dephosphorylation stabilizes the attachment.
Phosphorylation sites on the Hec1 tail are shown in an inset.

Two Aurora kinases, Aurora A and B, are critical for proper chromosome alignment
and maintenance of mitotic fidelity [78]. While Aurora A localizes to spindle poles and the
spindle, Aurora B localizes to the inner centromere in early mitosis, spindle midzone in
anaphase, and midbody in telophase and cytokinesis (Figure 3) as a component of the chro-
mosome passenger complex, comprising Aurora B, INCENP, Survivin, and Borealin [71,79].
Aurora B is a key player for error correction that destabilizes erroneous KT-MT attachments,
which is explained by the “spatial separation model” [80–82]. When bi-orientation is es-
tablished, sister KTs are under tension due to MTs pulling towards opposite spindle poles,
causing an increase in inter-KT distance. The resulting separation of the outer plate from
inner centromere leads to the reduction of Hec1 tail phosphorylation by Aurora B, thereby
increasing the affinity to MTs and stabilizes KT-MT attachments [77]. In contrast, sister
KTs forming syntelic attachments are not under tension, and thus Hec1 phosphorylation
continues. This facilitates KT detachment, which allows another chance for MT attachment.
In the case of merotelic attachment, KTs are supposed to be elongated towards the inner
centromere through MT pulling force to the opposite spindle pole. It is suggested that
Aurora B phosphorylates Hec1 on the elongated KT portions, thus destabilizing merotelic
attachment [83–86]. This spatial separation model, which is based on Aurora B localization
at the inner centromere, can explain tension-dependent error correction. However, recent
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reports suggest the possibility that MT binding of Aurora B through INCENP is critical
for error correction by selective destabilization of erroneous attachments [87,88]. A recent
report that exploited optogenetics to manipulate Aurora B at individual KTs showed that
Aurora B rather promotes MT release under high tension while depolymerizes MT under
low tension [89]. Other Aurora B substrates, such as MCAK [90,91], CENP-E [92], the SKA
complex [93], and HURP [94,95], also contribute to the establishment and stabilization
of bi-orientation.
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Figure 3. Localization of Aurora A and Aurora B during mitosis. Left: Immunofluorescence imaging
of HeLa cells in different mitotic phases. HeLa cells were fixed with methanol and stained with Aurora
A (red; Abcam, ab12875, 1:2000) and Aurora B (green; BD Bioscience, 611082, 1:2000) antibodies.
DNA was stained with DAPI (blue). Scale bar: 5 µm. Right: Schematic diagrams showing localization
of Aurora A (red) and Aurora B (green) in different mitotic phases.

Recently, it was reported that Aurora A also plays a role in the correction of erroneous
KT-MT attachments [96,97]. Aurora A, which plays a role in spindle assembly, mainly lo-
calizes to spindle poles and the spindle near spindle poles (Figure 3). Aurora A and B share
many substrates, and their specificity is mainly determined by the proximity of the kinases
to the respective substrates [98]. In prometaphase when chromosomes are near spindle
poles, Hec1 on the KTs is phosphorylated and KT-MT attachments are destabilized. This
resolves the erroneous attachments formed in early mitosis, especially syntelic attachment
that tends to be formed when chromosomes are closest to the spindle pole.

Mps1 is a kinase that plays a crucial role in the spindle assembly checkpoint (SAC)
and also functions in error correction through its interplay with Aurora B [99–104]. It was
reported that Chk1, which phosphorylates and activates Aurora B [105], is also involved in
error correction together with Mps1 [106]. A recent report suggests that Cdk1, a main kinase
important for mitotic progression, phosphorylates the Hec1 tail, which may be involved in
error correction (bioRxiv doi:10.1101/2021.02.16.431549). As another mechanism of error
correction, ch-TOG (Stu2 in budding yeast) is involved in the correction of erroneous
attachments by stabilizing KT-MT attachment when tension is exerted [107,108].
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2.4. CIN Caused by Insufficient Correction of Erroneous KT-MT Attachments

Erroneous KT-MT attachments are corrected by various mechanisms in a context-
dependent manner, as mentioned in the previous section. For example, an unattached
KT in a monotelically-attached sister KT pair is sensed by the SAC, which halts anaphase
onset until both sister KTs attach to MTs [109]. Syntelically-attached KTs, which are under
low tension, are also sensed by the SAC [110,111]. In contrast, merotelic attachment is
not sensed by the SAC, because merotelically-attached KTs are attached to MTs and are
under tension [25]. It is thus considered that merotelic attachment is a major cause of CIN,
as chromosome segregation can occur in the presence of merotelic attachments if they
are left uncorrected [86,112]. Even when uncorrected, merotelic attachments are resolved
during spindle elongation in most cases [113]. However, remaining merotelic attachments
are liable to form lagging chromosomes in anaphase, which are left behind around the
spindle equator while other chromosomes are segregated to the respective spindle poles.
Lagging chromosome is one of the typical patterns of chromosome missegregation. This
can cause aneuploidization when they are ultimately segregated to the wrong side, or
micronuclei formation when they are excluded from the main nuclei [114]. It is known that
replication and repair of chromosomes in micronuclei are often defective [115–118], which
results in structural chromosomal abnormalities including chromothripsis, a mutational
phenomenon characterized by extensive genomic rearrangements of one or a few chromo-
some(s) [119,120]. Lagging chromosomes are also sometimes stuck in the cleavage furrow,
resulting in structural chromosomal abnormalities due to DNA damage and cytokinesis
failure through furrow regression [121]. Collectively, merotelic attachment is causative of
CIN by generating both numerical and structural chromosomal abnormalities [122].

Merotelic attachments are increased either by increased formation or insufficient
correction. A cause of increased formation of merotelic attachments is centrosome am-
plification, which is often observed in cancer cells [123,124]. To avoid multipolar spindle
formation that results in catastrophic multipolar division [125], cells form pseudo-bipolar
spindles by clustering excessive centrosomes (centrosome clustering) [126–129]. How-
ever, the process of centrosome clustering increases the chance of merotelic attachment
formation [128,129]. A cause of insufficient correction of merotelic attachments is MT
hyperstabilization, which hampers the destabilization of these attachments [57,62,130].
Another cause of inefficient error correction is reduced Aurora B activity. It was reported
that Aurora B is enriched at misaligned centromeres in non-transformed cells, but not in
aneuploid tumor cells [131]. A recent report suggests that heterochromatin protein 1 (HP1)
binds to INCENP and augments Aurora B activity. In cancer cells, the HP1 binding to
INCENP is reduced, which results in insufficient error correction due to reduced Aurora
B activity [132].

3. Chromosome Oscillation
3.1. The Features of Chromosome Oscillation

On the metaphase plate, chromosomes, especially KTs, wobble around the spindle
equator, which is called chromosome (or KT) oscillation (Figure 4) [26,27]. Chromosome
oscillation is widely seen from yeast to human cells in mitosis and meiosis, but is not
observed in some cases, such as in mitosis of insect cells, Xenopus egg extracts, and plant
cells [133–138]. The main driving force of chromosome oscillation is the MT pulling force ex-
erted by K-fibers. Although individual MTs within K-fiber behave independently, their dy-
namics is coordinated by MT-binding proteins, and collectively drive iterative chromosome
motion, which is also known as directional instability [139–141]. This directional instability
is seen not only in metaphase, but throughout mitosis, and also seen on monopolar spin-
dles [142]. Chromosome oscillation declines as cells progress toward anaphase [143,144],
reflecting the stabilization of KT-MT attachments for chromosome segregation.
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Trajectories of a pair of sister KTs in an RPE-1 cell from metaphase to telophase plotted as the distance
from the spindle equator. Right: A kymograph of the sister KTs in metaphase visualized by EGFP-
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vertical scale bar: 10 s.

3.2. The Mechanisms of Chromosome Oscillation

In RPE-1 cells, a non-transformed cell line, the duration of metaphase is around 10 min,
while one round of chromosome oscillation spans 1 to 2 min [145–147]. Therefore, a pair of
sister chromatids oscillates ~10 cycles during metaphase before segregation. Symmetrical
chromosome motion during oscillation is derived from the tug of war of K-fibers attaching
to sister KTs. In metaphase, directional instability of chromosomes changes the distance
between a KT and a spindle pole, the distance between the centroid of sister KTs and the
spindle equator, and the distance between sister KTs [148,149]. When one of the sister
KTs is pulled toward a spindle pole by a shrinking K-fiber (called leading KT), it causes
a stretching of the elastic inter-KT region, which is comprised of the inner centromere
and cohesin bond [150]. Another sister KT (called trailing KT) follows the leading KT,
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pulled by the cohesin bond. Pulling force on the leading KT is increasingly counteracted
by other forces (see below) as it approaches a spindle pole. Consequently, directional
instability is triggered, which switches the role of the KT from leading to trailing. During
the process, inter-KT distance reduces until the new leading KT stretches the inter-KT
region. Therefore, the inter-KT stretch occurs twice the frequency of the oscillation of
the centroid of sister KTs [151]. An important molecule that regulates chromosome os-
cillation is a motor protein called Kif18A [152,153]. Kif18A is a kinesin-8 family of plus
end-directed motor protein, and accumulates at plus ends of MTs in K-fibers. At plus
ends, Kif18A suppresses the MT polymerization, thus restricting chromosome oscilla-
tion [152]. Longer MTs accumulate more Kif18A at the plus ends, as the protein moves
along MTs [154]. Therefore, polymerization is suppressed preferentially on longer MTs,
limiting the range of chromosome oscillation. Kid and Kif4A, collectively called chromoki-
nesins, are other motor proteins involved in chromosome oscillation, which localize to
chromosome arms [153,155]. Kid is a plus end-directed motor belonging to the kinesin-10
family, which pushes chromosomes to the spindle equator along spindle MTs, known as
polar ejection force or polar wind [156,157]. As the density of spindle MTs is higher in the
vicinity of spindle poles, polar ejection force increase as chromosomes are closer to spindle
poles, restricting the amplitude of chromosome oscillation [153,158]. Polar ejection force
also contributes to chromosome oscillation on monopolar spindles as an opposing force
against the pulling force by K-fibers, although the oscillatory motion is not symmetric as
the one in metaphase [159]. A MT-associating protein NuSAP was reported to play a role
in chromosome oscillation by regulating Kid-generated polar ejection force [160]. Kif4A is
a kinesin-4 family plus end-directed motor protein that also plays a role in chromosome
oscillation by regulating MT dynamics. At spindle poles, a kinesin-13 motor called Kif2A
engages in the depolymerization of MT minus ends in K-fibers, called MT flux, which
facilitates the pulling of chromosomes to spindle poles [161,162]. Recently, it was pro-
posed that MT flux is driven by Kif4A on chromosome arms in coordination with Eg5, a
kinesin-5 family, and Kif15, a kinesins-12 family motor protein, which slide antiparallel
MTs [163]. Collectively, this induces Kif2A-dependent MT depolymerization. At KTs,
proteins other than the Ndc80 complex, such as CENP-H, ch-TOG, and SKAP, are also
involved in chromosome oscillation [146,164,165]. It was recently reported that K-fibers on
sister KTs are connected by MTs that overlaps in the middle of the spindle, referred to as
bridging MTs [166]. Bridging MTs contribute to the generation of tension between sister
KTs and also chromosome congression and oscillation [167]. Bridging MTs branch from
K-fibers via the augmin complex (bioRxiv doi:10.1101/2020.09.10.291740), and opposing
bridging MTs are connected with PRC1 at the overlapping region [168]. It was suggested
that bridging MTs associate with K-fibers, and the range of chromosome oscillation is
determined by the length of the antiparallel overlaps of bridging MTs, which is regulated
by Kif4A and Kif18A [167,169].

Chromosome oscillation is a complex process driven by various forces acting on chro-
mosomes, and its underlying mechanism has been addressed by numerical
models [26,141,170–176]. In these models, forces acting on a chromosome are considered in
equilibrium at a given time (force balance model) [171,176]. Viscous resistance from cyto-
plasm is included as well as pulling force by K-fiber through Hec1, polar ejection force, and
pulling force from sister KT through cohesin bonds (Figure 5). To enable oscillatory motion,
several assumptions are integrated depending on the models, including force-dependent
detachment kinetics of the Ndc80 complex, length and polymerization rate-dependent MT
catastrophe frequency, position-dependent polar ejection force, and position-dependent
activity gradient that weakens affinity of KT to MT [174,177,178]. These models help us to
understand the relative contribution of each force on chromosome oscillation.
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4. Chromosome Oscillation Plays a Role in Correction of Erroneous
KT-MT Attachments
4.1. Hec1 Phosphorylation by Aurora A in Metaphase

As described above, Hec1 phosphorylation by Aurora kinases is reduced when bi-
orientation is established and sister KTs are under tension. However, when observed
carefully, it was found that in RPE-1 cells, serine 55 on Hec1 (Hec1-S55) is phosphorylated in
a fraction of KTs in metaphase, preferentially at the periphery of the metaphase plate [147].
In contrast, Hec1-S55 phosphorylation in metaphase was barely detectable in HeLa cells, a
cervical cancer-derived cell line. This Hec1 phosphorylation in metaphase was dependent
on Aurora A, but not Aurora B. This was determined by specific inhibitors for the respective
kinases, and metaphase-specific depletion of either kinase with the auxin-inducible protein
degradation method [179–181]. Aurora A-dependent Hec1 phosphorylation in metaphase
was also reported for serine 69 of Hec1 (Hec1-S69), which was observed on KTs throughout
the metaphase plate, and attributed to a fraction of Aurora A in the inner centromere [182].
In contrast, Hec1-S55 phosphorylation was dependent on Aurora A localizing to the
spindle, which was shown by reduction of the phosphorylation when spindle localization
of Aurora A was inhibited [147]. This was achieved by replacing endogenous TPX2, a
MT-binding protein that recruits Aurora A to the spindle, with TPX2 mutants unable to
bind to Aurora A.

As described, Hec1 phosphorylation in prometaphase by Aurora A localizing around
spindle poles was previously reported when KTs were closest to spindle poles [96,97]. The
Hec1 phosphorylation on KTs near spindle poles resolve monotelic or syntelic attachments,
which otherwise are stabilized by the tension exerted by KT pulling force via end-on-
attached MTs and polar ejection force on chromosome arms [183]. However, it was not
known whether Aurora A localizing near spindle poles plays a role in error correction
in metaphase, when chromosomes are distant from spindle poles. In metaphase, Aurora
A localization on the spindle increases upon mature K-fiber formation [147], which may
extend the phosphorylation activity gradient closer to the metaphase plate.

4.2. Chromosome Oscillation Promotes Hec1 Phosphorylation by Aurora A

Amplitude of chromosome oscillation in HeLa cells was significantly smaller com-
pared with that in RPE-1 cells [147]. This amplitude was increased when Kif18A was
depleted by siRNA or treatment with a highly specific small molecule inhibitor. In this
situation, the Hec1-S55 phosphorylation by Aurora A in HeLa cells was increased. On the
other hand, when chromosome oscillation was suppressed in RPE-1 cells by reducing MT
dynamics through treatment with taxol, a MT stabilizing agent, Hec1-S55 phosphorylation
by Aurora A was reduced. These data suggest that chromosome oscillation expedites Hec1
phosphorylation by Aurora A. Considering that Aurora A distribution on the spindle is
higher near spindle poles and KTs at the periphery of the metaphase plate are preferentially
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phosphorylated at Hec1-S55, chromosome oscillation facilitates Hec1-S55 phosphorylation
by moving KTs closer to the area of higher Aurora A activity near spindle poles (Figure 6).
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error correction and increase in chromosome missegregation, such as the appearance of lagging
chromosomes. P: phosphorylation.

It is known that chromosome oscillation is significantly suppressed in cells expressing
a Hec1 mutant in which all nine Aurora kinase-dependent phosphorylation sites were
mutated to alanine [184]. This is probably due to suppression of K-fiber dynamics by
hyperstabilized KT-MT attachments. It was also shown that chromosome oscillation
is suppressed by inhibiting Aurora A, but not Aurora B [147,182]. These data indicate
that Hec1 phosphorylation by Aurora A is required for robust chromosome oscillation.
Analyzing Hec1 constructs in which respective phosphorylation sites were mutated, it was
found that phosphorylation of Hec1-S55 and S69 cooperatively promotes chromosome
oscillation [147,182]. Collectively, chromosome oscillation and Hec1 phosphorylation by
Aurora A mutually promote each other.

4.3. Chromosome Oscillation Is Attenuated in CIN Cancer Cell Lines

Chromosome oscillation observed in cancer cell lines were significantly attenuated
compared to non-transformed cell lines (Figure 6) [147]. Compared to CIN cancer cell lines
(e.g., U2OS, HeLa, A549, DU145, and MCF-7 cells) which show high rates of chromosome
missegregation, other cancer cell lines (e.g., HCT116, HCT-15, and DLD-1 cells, so-called
“non-CIN” cell lines) show lower rates of chromosome missegregation. Interestingly, these
non-CIN cell lines exhibit milder attenuation of chromosome oscillation compared with
CIN cell lines, showing that the amplitude of chromosome oscillation is inversely correlated
with the level of CIN.

The cause of attenuated chromosome oscillation in CIN cancer cell lines has not been
specified yet. The amount of Aurora A on the spindle did not differ significantly depending
on the CIN levels, excluding the possibility that difference in the spindle localization of
Aurora A causes attenuation of chromosome oscillation in CIN cells [147]. It is known
that KT-MT attachment stability is higher in CIN cells than those in non-transformed
cells [62,130]. When activity of MCAK, a kinesin-13 family motor protein that destabilize
MTs, was upregulated in HeLa cells, the amplitude of chromosome oscillation increased,
suggesting that MT hyperstabilization is related to attenuated chromosome oscillation
in CIN cancer cells. Another possibility is that the balance between opposing motor
protein activities is altered in cancer cells. Expression of most of the mitotic motor proteins
are upregulated in the majority of cancers (Figure 7). In particular, multiple types of
cancer display elevated levels of Kif18A [185–187], which suppresses the amplitude of
chromosome oscillation [152]. Recently, three papers reported that CIN or aneuploid
cancer cells are vulnerable to Kif18A depletion, which causes spindle defects such as
multipolar spindle formation [188–190]. It was suggested that increased rates of spindle
MT polymerization in CIN cells confer an enhanced dependence on the role of Kif18A to
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limit MT growth [190,191]. One plausible idea is that Kif18A upregulation enables tumor
cell survival through spindle assembly in prometaphase at the expense of CIN caused by
attenuated chromosome oscillation in metaphase.
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4.4. Chromosome Oscillation Facilitates Correction of Erroneous KT-MT Attachments

The amplitude of chromosome oscillation was inversely correlated not only with the
CIN level, but also with the level of Hec1-S55 phosphorylation; cancer cell lines exhibit
reduced Hec1-S55 phosphorylation depending on the CIN level [147]. This implies that
Hec1 phosphorylation by Aurora A in metaphase, which is facilitated by chromosome
oscillation, plays a role in the error correction of KT-MT attachments. Its dysfunction is
related to CIN in cancer cell lines (Figure 6). This idea is supported by the fact that Aurora
A depletion or inhibition in RPE-1 cells in metaphase led to increased chromosome misseg-
regation. Chromosome oscillation enhancement via Kif18A inhibition also led to reduced
chromosome missegregation, further supporting the idea that dysfunctions in chromo-
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some oscillation is related to CIN. It was reported that Hec1 phosphorylation specifically
affects KT attachments to polymerizing MTs [192]. It is postulated that when a leading
KT approaches a spindle pole, Hec1 on the KT is phosphorylated by Aurora A on the
spindle, which leads to the release of merotelically-attached, polymerizing MTs (Figure 6).
Even when both correct and erroneous attachments are destabilized on the leading KT, the
higher density of MT from the closer spindle pole will facilitate the formation of correct
attachments. In contrast to Hec1-S55, the level of Hec1-S69 phosphorylation in metaphase is
not related to the level of CIN. However, Hec1-S69 phosphorylation is also important for
suppressing formation of lagging chromosomes [182], corroborating the relationship be-
tween chromosome oscillation, Hec1 phosphorylation, and error correction. How different
phosphorylation sites on Hec1 tail are differentially regulated is currently unknown.

When the Aurora A activity gradient was integrated in a numerical model of chro-
mosome oscillation, reduction of erroneous KT-MT attachments was reproduced [178]. In
this model, an Aurora A-like activity gradient was considered in a force-balance model
describing chromosome kinetics. The gradient peaks at spindle poles and declines toward
the spindle equator, and the activity reduces Hec1 affinity to MT. In the simulation, the
number of merotelic attachments sharply declined in the first few rounds of oscillatory KT
motion. The numerical model also reproduced KT oscillatory motion, which is promoted
by the Aurora A activity gradient that reduces KT-MT affinity when KTs approach spindle
poles. Importantly, both the amplitude of chromosome oscillation and the efficiency of error
correction are reduced not only when the Aurora A activity was suppressed, but also when
it was upregulated. This is because high Aurora A activity close to the equator confines the
range of KT motion that hampers selective destabilization of erroneous attachments. These
simulation results may be relevant to the finding that Aurora A is generally upregulated
in cancer [193].

5. Conclusions and Outlook

Regarding physiological roles of chromosome oscillation, several possibilities have
been proposed, such as checking the correct balance of force across KTs as a “self-test” for
error-free anaphase and prevention of entanglement or damage of chromosomes [158,176].
A recent report suggests another possibility that chromosome oscillation contributes to the
correction of erroneous KT-MT attachments [147].

The error correction largely occurs in prometaphase, when MTs and KTs encounter
stochastically, mainly through Aurora B-mediated Hec1 phosphorylation on KTs not under
tension. However, it was shown that KT reorientation, which reflects the KT detachment
and reattachment to MTs, occurs even in metaphase [51]. The previously-unappreciated
role of chromosome oscillation in the correction of erroneous KT-MT attachments may
ensure the establishment of bi-orientation as a final check before anaphase onset (Figure 8).
Error correction by chromosome oscillation was also reported in yeast meiosis [194,195].
Even when merotelic attachments remain at anaphase onset and result in the formation of
lagging chromosomes, several mechanisms work to resolve erroneous attachments during
this phase ([113], bioRxiv doi:10.1101/2021.03.30.436326), ensuring mitotic fidelity.

Defective regulation of KT-MT attachments is manifested as abnormal chromosome
dynamics, such as lagging chromosomes and chromosome misalignment. On the other
hand, abnormal chromosome dynamics can cause defects in KT-MT attachment regulation,
exemplified by the finding that attenuated chromosome oscillation reduces the efficiency
of error correction of KT-MT attachments [147]. Another example is that delayed chromo-
some alignment increases the rate of chromosome missegregation, due to an increase in
erroneous KT-MT attachment formation during delayed chromosome alignment and/or
insufficient error correction during relatively shortened metaphase [196]. These relation-
ships between chromosome dynamics and KT-MT attachment regulation were identified
by direct observation of living cells, but not through genomic analysis or gene expression
profiles, warranting microscopic study for investigating CIN.
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(red), which localizes around spindle poles, facilitating correction of erroneous KT–MT attachments.
In metaphase, Hec1 phosphorylation by Aurora B is reduced, while Aurora A on the spindle
phosphorylates Hec1-S55 when KTs approach spindle poles through chromosome oscillation, thereby
correcting any remaining erroneous attachments. P: phosphorylation.

The concept that attenuated chromosome oscillation is a cause of CIN has to be
corroborated by specifying the underlying cause of attenuated chromosome oscillation in
CIN cancer cells. It is also important to reveal how chromosome oscillation is dampened in
the process of oncogenic transformation. Currently, mechanisms ensuring mitotic fidelity
are mainly studied in cultured cancer cell lines, which have different properties from
primary cancer cells growing in three-dimensional microenvironment [197,198]. Therefore,
chromosome oscillation has to be observed in primary cancer cells under conditions similar
to physiological circumstances, e.g., organoid culture [199,200]. Regarding Kif18A, the
relationship between its roles in spindle assembly and chromosome oscillation needs to
be clarified. It has been suggested that Kif18A activity must be kept in a proper range,
because not only Kif18A depletion, but also Kif18A overexpression causes multipolar
spindle formation [201]. Chromosome oscillation must also be kept in a proper range, as
its hyperenhancement by Kif18A depletion was reported to cause KT detachment and
micronuclei formation [189,202]. This is of clinical relevance, because Kif18A depletion
specifically compromises survival of CIN cancer cells [188–190]. Whether lowering CIN
level by Kif18A depletion through enhancing chromosome oscillation acts synergistically
with spindle disruption for cancer therapy is an interesting possibility to be examined.

Defects in chromosome dynamics specifically seen in cancer cells can be a target
for cancer therapy. Inhibitors for various mitotic motor proteins that alter chromosome
dynamics, such as Eg5, CENP-E, and Kif18A, are now under investigation for the efficacy
against cancer cells [203–205]. Aurora A and B are often dysregulated in cancer cells, and
various Aurora kinase inhibitors are in clinical trials [193,206,207]. Hec1 is also a promising
target for cancer therapy, and several inhibitors have been developed [208]. Further study
on the relationship between chromosome dynamics and mitotic fidelity will pave the way
for development of novel anti-cancer drugs.
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