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SUMMARY

The organization of brain functional networks dynamically changes with
emotional stimuli, but its relationship to emotional behaviors is still unclear. In
the DEAP dataset, we used the nested-spectral partition approach to identify
the hierarchical segregation and integration of functional networks and investi-
gated the dynamic transitions between connectivity states under different
arousal conditions. The frontal and right posterior parietal regions were domi-
nant for network integration whereas the bilateral temporal, left posterior
parietal, and occipital regions were responsible for segregation and functional
flexibility. High emotional arousal behavior was associated with stronger
network integration and more stable state transitions. Crucially, the connectivity
states of frontal, central, and right parietal regionswere closely related to arousal
ratings in individuals. Besides, we predicted the individual emotional perfor-
mance based on functional connectivity activities. Our results demonstrate that
brain connectivity states are closely associated with emotional behaviors and
could be reliable and robust indicators for emotional arousal.

INTRODUCTION

Emotion is a complicated blend of multiple affects and involves both situation perception and cognitive

processing,1–3 which is often quantified based on arousal, valence, and dominance dimensions.4,5 Among

these scales, arousal reflects the degree of behavioral awareness, increasing from inactive emotional states

(sleepy, calm, depressed) to intensive states (excited, afraid, delighted).5,6 High emotional arousal condi-

tions are related to enhanced cognitive performance such as attention7 and working memory,8–10 whereas

extreme emotional arousal (hyper-arousal or hypo-arousal) is associated with affective disorders such as

anxiety and depression.11,12 Therefore, investigating the neurophysiological mechanism of emotions

with diverse arousal levels is important for affective computing as well as emotion-related illness.

Emotion often refers to neural activations in multiple brain regions involving the frontal, temporal, occip-

ital, and parietal regions,13–16 but focusing on regional activities is insufficient to reveal the neural mecha-

nism of emotion.17 It has attracted increasing attention that complex human behaviors are underpinned by

the functional cooperation between brain regions rather than by a single item.18–23 Emotional behaviors

were also found to be supported by the dynamic organization of brain sub-networks,24 for example,

high arousal was associated with increased brain activity across visual and dorsal attention networks.25

Functional connectivity (FC), which measures the correlation or synchronization between regions, provides

a powerful tool to study emotion mechanisms in large-scale network models and has been proven to be

effective in emotion recognition.17,26

In brain functional networks, modularity is a typical feature wherein the connectivity of regions within mod-

ules is strong and the connectivity between modules is relatively weak.27 This topological structure allows

segregated and integrated neural information processing and is closely related to cognition and brain

disorders.28,29 For example, global integration, which is supported by long-range information communica-

tion among brain areas, is commonly enhanced during cognitive tasks with heavy mental load.20,30,31 While

during vigilance, motor learning and sustaining attention tasks, brain functional organization tends to be

more segregated with stronger information processing within specific regions.29 However, how brain

network integration and segregation support different emotional arousal behaviors is still unclear.17,32
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In addition to modular organization, the brain is a dynamic system that fluctuates over seconds or even mil-

liseconds with the considerable dynamic reconfiguration of functional network.30,33–36 The transitions be-

tween integrated and segregated states of large-scale brain functional networks support rapid behavioral

adaptation.30,37 Due to its high temporal resolution, EEG is powerful in the long-time prediction of intra-

individual differences38 and automatic seizure identification,39 and is also an appropriate technique for as-

sessing the transitions of brain connectivity states affected by cognitive activities. Previous EEG research

focusing on eye conditions has found that brain connectivity states and their dynamic transitions are highly

related to resting-state condition.40 In working memory tasks, both segregation and integration alternately

dominated the functional configurations.41 In particular, Yuvaraj et al. used EEG-based functional connec-

tivity analysis to reveal the changes in brain interactions related to emotional states and reported increased

coherence when viewing positive emotion compared with negative emotion.42 However, the association

between the dynamic reconfiguration of brain functional networks and emotional behaviors has rarely

been explored.

To address the above questions, we evaluated the dynamic functional connectivity (dFC) based on the

DEAP EEG dataset during emotional stimulus using sliding time windows.30,43 This dataset has been widely

used to test the performance of emotion recognition,16,17,44 but is rarely utilized to analyze the relationship

between emotional ratings and brain network parameters. We quantified the integration, segregation, and

their transitions by a nest-spectral partition (NSP) method. This method detects modules across multiple

levels in brain functional networks37,45 and has been found to be more powerful in linking brain networks

to cognitive abilities and the clinical scores of brain disorders.46 We first investigated the heterogeneous

responses of regions to emotional stimuli in different frequency bands. Second, we partitioned the

emotional stimulus into high and low arousal conditions and compared the difference in dynamic func-

tional organizations between the two conditions. We then studied whether the dynamics of brain functional

networks are associated with emotion arousal ratings. Finally, we investigated whether the brain measures

based on the NSP method can explain the individual variability in response to emotional stimuli.

RESULTS

We used the public DEAP dataset from 32 participants. The EEG signals were recorded from 32 electrodes

during 40 emotional stimuli and the continuous arousal levels of participants were also included.4 Phase

locking value (PLV)-based dFC networks (N = 32 channels) in four frequency bands (q: 4–7; a: 8–13 Hz; b:

14–30 Hz; g:30–45 Hz) were constructed through the sliding time window method (see STAR Methods). Us-

ing the NSP method, the time-averaged integration strength (Min), segregation strength (Mse), dwell time

of integration state (Tin), and switching frequency (fIS) were calculated to analyze brain connectivity state

transitions under different arousal levels (Figure 1). These measures were also obtained for regions.

Regional heterogeneous performance during emotional stimuli

We first investigated which regions have major contributions to network segregation and integration dur-

ing emotional stimuli. In the theta band, the temporo-parietal, right posterior parietal, and frontal regions,

except for FP1 and AF3, showed higher integration, indicating that these regions play an important role in

integrating information across the large-scale network during emotional stimuli. For the alpha band, the

frontal and right posterior parietal regions had stronger integration strength and weaker time-averaged

segregation. In the beta and gamma bands, the distribution of high integration was located in the frontal

regions (excluding the left prefrontal areas) and right posterior parietal regions. Conversely, the bilateral

temporal and occipital regions showed higher segregation strength in the theta band, meaning that these

regions are more responsible for local interaction. The bilateral temporal, left temporo-parietal and occip-

ital regions had high segregation strength in the alpha band. This segregation was more pronounced at

bilateral temporal regions in the beta band and at broader areas, including left frontal regions in the

gamma band.

During the dynamic transitions of brain networks between segregation and integration states, all regions

except for the left and right temporal, and occipital regions dwelled longer in the integration state in the

theta band (Figure 2). In the alpha band, the dwell time at integration state was longer in the frontal and

right posterior parietal regions and shorter in the temporal, left temporo-parietal and occipital regions.

However, this long dwell time was diminished in frontal regions in the beta and gamma bands and was

located in the midline and right posterior parietal regions. Switching frequency was larger in the left tem-

poro-parietal, right temporal, and occipital regions in the alpha band, indicating a more frequent transition
2 iScience 26, 106609, May 19, 2023
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Figure 1. Analysis schematic illustration

EEG data were filtered into four frequency bands.

(A) The sliding window method was used to construct dFC by calculating the PLV between channels.

(B) For each FC network, the nested-spectral partition (NSP) method was applied to obtain the hierarchical modules that correspond to eigenvectors with

different orders (here shown the first three levels), and the integration component Hin, segregation component Hse and their competition HB = Hin-Hse were

obtained. Based on the time series of dynamic Hin, Hse, and HB, we defined the dynamic brain network measures integration strength Min, segregation

strength Mse. Dwell time at integration state Tin and switch frequency between segregation and integration states fIS. These measures were mapped to

regions and thus the regional analysis can be performed.
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between segregated and integrated states. Similar flexible transitions were also found in theta, beta, and

gamma bands, but these three bands covered broader regions, including prefrontal electrodes.

Overall, during emotional stimuli, frontal and right posterior parietal regions had higher integration effects

(Min, Tin), whereas bilateral temporal, left temporo-parietal and occipital regions had stronger segregation,

accompanied by frequent state transitions.

Higher network integration in the high emotional arousal condition

According to the arousal rating (1–9 scores), we partitioned 40 trials into low arousal (LA) condition trials

(rating 1–4) and high arousal (HA) condition trials (rating 6–9) for each participant. We investigated the dif-

ference in functional organization between LA and HA conditions. In all frequency bands, brain networks

had higher global integration strength Min at HA relative to LA, but these differences were insignificant

(Figure 3A). Although the segregation component Mse showed a nonsignificant difference between HA

and LA in theta and alpha bands (p = 0.591 and 0.541, respectively), it was significantly smaller at HA

than at LA in beta and gamma bands (p = 0.026 and 0.028, respectively), suggesting weaker global segre-

gation for high emotional arousal levels in high-frequency bands.

At the local scale, regions had similar contribution patterns to segregation and integration at both HA and

LA (see Figure S1). In the alpha band, left prefrontal regions had the highest increased integration compo-

nent at HA relative to LA. In other frequency bands, similar differences in integration were also observed in

the left frontal, central parietal, and left temporal regions, but the regional difference was weak in the theta

band compared with the results of the beta and gamma bands. These alterations were insignificant after

multiple comparison correction (all p > 0.05, FDR corrected). For the segregation strength, the left frontal

and central parietal regions in the alpha band had the largest increase in LA, but the alterations were
iScience 26, 106609, May 19, 2023 3
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Figure 2. Normalized distributions of network measures on regions during emotional stimuli, averaged across all

subjects and trials
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insignificant (all p > 0.05, FDR corrected). In theta, beta, and gamma bands, the regions located near frontal

(AF3, F3, F7, F8, F4), left temporal (T7), and parietal (FC2, Cz, CP1, FC6, C4, CP2, P4, CP5) had significantly

increased Mse in HA relative to LA (all p < 0.05, FDR corrected). Besides, decreased segregation in theta

band was also significant in occipital regions (O1, Oz). The above results reveal that HA corresponds to

lower network segregation and is associated with broader regions mainly distributed in the frontal, left

temporal, and parietal regions.
High arousal level recruits a more stable brain transition

We next studied the dynamic transition between segregated and integrated states at different arousal

conditions. The brain at HA had significantly longer dwell time at the integrated states in theta, beta,

and gamma bands (p = 0.004, 0.003, and 0.002, respectively), but an insignificant change in the

alpha band (p = 0.113) (Figure 4A). At the local scale, all brain regions showed significantly increased

dwell time at integration state in the theta band under HA condition, except for the central frontal, right

temporal, and parieto-occipital regions. In the alpha band, the left frontal and central parietal regions

under HA condition had significantly increased dwell time (p < 0.05, FDR corrected). In the beta and

gamma bands, most regions had a significantly higher dwell time at HA than that at LA (p < 0.05,

FDR corrected), among those brain regions, the left frontal and right occipital regions had the largest

alteration.
gammabetaalphathetaA B

Figure 3. Time-averaged integration and segregation at different arousal states

(A) Integration strength Min (upper) and segregation strength Mse (lower) under two arousal conditions. *p < 0.05.

(B) The difference in regional Min (upper) and Mse (lower) between HA and LA conditions in four frequency bands. The

regions with significant alterations were highlighted with yellow points (p < 0.05, FDR corrected).
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Figure 4. Dynamic analysis of the brain under HA and LA conditions

(A) Dwell time at integration states (upper) and switching frequency (lower). **p < 0.01.

(B) Regional differences in dwell time and switching frequency between the HA and LA conditions. The electrodes with

significant changes are highlighted with yellow points (p < 0.05, FDR corrected).
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In addition, when the brain was under HA condition, it was transitioning between segregation and integra-

tion states less frequently than that at LA, but the difference was insignificant for all bands (Figure 4A). How-

ever, in the alpha band, the frontal (F3, p = 0.033, FDR corrected) and central areas (Cz, p = 0.033, FDR cor-

rected) had significantly decreased fIS, indicating less state transition at HA (Figure 4B). This significant

difference only remained in the central region in the theta band (Cz, p = 0.018, FDR corrected). Thus,

the brain at HA prefers to dwell in the integration state with less switching frequency, particularly in the

left frontal and central parietal regions in all frequency bands.
Network segregation and integration associated with emotional arousal rating

We further investigated whether brain network measures could be used to predict the arousal rating.

We collected each global measure from all subjects and then calculated the correlations between

pooled measures and pooled arousal rating. This correlation analysis was concentrated on the

correspondence between brain activities and emotion rather than individual differences. Insignificant

correlations between brain connectivity measures and arousal ratings were observed in all bands on

the global scale (all p > 0.05), and we thus turned to the regional study (Figure 5, see Tables S1–S4

for details).
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Figure 5. Correlations between brain network measures and arousal ratings

The highlighted electrodes have significant correlations (p < 0.05, FDR corrected).
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Figure 6. Weights of regions in the prediction models

All of the features were normalized, and the positive/negative weights contributed to higher/lower individual arousal

variability.
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For the integration strength, none of the regions had a significant correlation with arousal ratings in all

bands (p > 0.05, FDR corrected). However, the frontal and parietal regions showed negative correlations

between Mse and arousal ratings in the theta band (AF3, p = 0.038; F3, p = 0.038; F7, p = 0.022; CP1,

p = 0.045; Cz, p = 0.045; P4, p = 0.045; FDR corrected), beta band (AF3, p = 0.006; F3, p = 0.006; F7, p =

0.006; Cz, p = 0.015; FDR corrected) and gamma band (AF3, p = 0.032; F3, p = 0.023; F7, p = 0.032; Cz,

p = 0.023; FDR corrected). Significant negative correlations were also observed in the right frontal areas

(F8, p = 0.023; FC6, p = 0.023; FDR corrected) in the gamma band.

Meanwhile, dwell time at integrated state was positively correlated with arousal rating in the frontal and

parietal regions (AF3, p = 0.002; F3, p = 0.001; F7, p < 0.001; CP1, p = 0.020; FDR corrected). The correlation

patterns were similar in the theta, beta, and gamma bands with significantly positive correlations revealed

for the frontal, parietal, left temporal and occipital regions.

Finally, the switching frequency results were negatively correlated with arousal ratings in F3 (p = 0.050) and

positively correlated with that in F4 (p = 0.050) in the alpha band. In the beta band, all significant correla-

tions were positive and distributed in the right frontal, parietal, and right occipital regions (F4, p = 0.011;

CP1, p = 0.037; Fp2, p = 0.008; PO4, p = 0.037; FDR corrected).

In summary, higher emotional arousal is related to weaker network segregation and longer dwell time at

the integration state. The significant regions were mainly located in the left frontal, central parietal, and

occipital regions, and dwell time was more strongly correlated with emotional arousal.

Individual differences in emotional arousal

Finally, we investigated the association of individual emotional performance with dynamic brain networks.

Since the averaged emotional arousal rating has little individual difference (5.157G 0.691), we used arousal

variability (Varousal, standard deviation/mean of arousal score for each subject) to measure individual per-

formance. Arousal variability showed a high individual difference (0.368 G 0.127, more details are pre-

sented in Figure S2): a higher arousal variability indicates a more sensitive response to emotional stimuli,

whereas a lower value reflects a stable emotional arousal condition.

There were no significant correlations between arousal variability and brain network measures at either the

global scale or in most regions (more details in Figure S3). Therefore, we adopted a machine learning

approach (see STAR Methods) to predict individual arousal variability based on brain network measures.

In all frequency bands, Min, Mse, Tin, and fIS could predict Varousal (all p < 0.05), except for Mse in the alpha
6 iScience 26, 106609, May 19, 2023
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band (Figure S4), verifying the effectiveness of brain connectivity parameters for predicting individual

arousal sensitivity.

We normalized the selected regional features in the predictionmodels, so regions with positive weights are

related to higher Varousal, and those with negative weights contribute to lower Varousal Figure 6 . In the

prediction model based on integration strength, parietal regions played an important role in predicting

individual arousal variability. More specifically, in the theta band, positive weights were found in the left

parietal and occipital regions, while negative weights were located in the right parietal regions. In the alpha

band, the right occipital, left temporal and prefrontal regions showed negative weights, while the weights

were positive but weaker in the broad parietal and right temporal regions. In the beta band, the left parietal

(C3), right fronto-central (FC2), and occipital regions (O1, O2) had negative weights. In the gamma band,

the weights of the left and right parietal regions were opposite to the results in the theta band, with positive

values on the left and negative values on the right.

For segregation strength, the negative weights were distributed in the broad frontal, central, and occipital

regions in the theta band. In the alpha band, the highest positive weight was found in the frontal regions,

and the right parieto-occipital regions also showed positive values. In higher frequency bands, the parietal

regions showed negative weights in the beta band, while in the gamma band, the regions had a negative

weight on the left (C3) and positive value on the right (C4). Meanwhile, the right frontal (FP2) and left oc-

cipital (O1) regions were also involved in prediction models in the beta and gamma bands.

In the models based on dwell time, the frontal regions showed higher weights in the theta band, while the

occipital regions showed negative weights in the alpha band. The right frontal, left occipital, and left pa-

rietal regions were involved in the models of the beta and gamma bands.

For switching frequency, the partial regions showed negative weights in theta, beta, and gamma bands,

and similar negative weights were found in the left occipital in the theta and beta bands. The positive

weights were higher in the left frontal (alpha band) and the right temporal regions (beta band), indicating

that more frequent state transitions in such brain regions support higher individual arousal variability. Over-

all, these results indicate the frequency-specific responsibilities of different regions to individual sensitivity

to emotion, especially for the parietal, right prefrontal and left occipital regions.

DISCUSSION

In this study, we applied the NSP method to EEG-based brain functional networks for the first time and

investigated the differences in brain functional connectivity patterns under diverse emotional arousal con-

ditions using the NSP analytical approach. First, we found that the brain states were influenced by

emotional stimuli, that the integration strength and dwell time were enhanced in the frontal and right pos-

terior parietal regions, and that the segregation strength and flexibility of state transitions were lower in

these regions. Second, the comparison of connectivity characteristics between the HA and LA conditions

showed significantly decreased segregation strength and increased dwell time of integration in the HA

relative to the LA condition in the beta and gamma bands. Moreover, although not significant in all fre-

quency bands, negative correlations were found in Mse, whereas Tin showed positive correlations with

arousal ratings. Finally, connectivity states are reliable for predicting individual differences in emotional

arousal. Overall, our results reveal the relationship between dynamic brain states and individual emotional

arousal behaviors and further demonstate the effectiveness of the NSP method in measuring EEG-based

brain connectivity states.

Frontal and right parietal regions, stable hubs in emotion-related brain networks

To underpin diverse cognitive behaviors, neural information is processed within modules and transferred

between modules across large-scale networks.29,47 The regions called ‘‘hubs’’ participate more in inter-

community communications and show stronger integration effects.48–50 In this study, brain networks

showed regional heterogeneous performance during emotional stimuli, with a stronger integration

component in the frontal and right posterior parietal regions. The frontal regions, commonly regarded

as the emotional regulation system, include the dorsolateral prefrontal, ventrolateral prefrontal, and orbi-

tofrontal cortices and are highly involved in emotion-related behaviors.51 The increased activation in frontal

regions has been shown to be associated with the effective regulation of negative emotion.11 The parietal

regions are involved in several core neurocognitive networks, among them, fronto-parietal networks have
iScience 26, 106609, May 19, 2023 7
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been widely concerned in emotion-related fields because it is fundamental for cognitive functioning, espe-

cially in visual tasks.52–54 Decreased activities in frontal and parietal brain regions are found in depressed

patients,55 and another study on bipolar disorder further showed decreased FC between the frontal-pari-

etal and other brain networks, demonstrating that such emotional disorders are accompanied by a lack of

global integration in the frontal and parietal regions. Meanwhile, brain regions including the frontal, tem-

poral, and parietal regions are associated with emotion-related activities.42,56,57 Our results are consistent

with those aforementioned results in that the strength of integration is higher in frontal and parietal regions

during emotional video stimuli, further confirming their importance in emotion processing.

In addition to the strength of integration, we also focused on the dynamic reconfiguration of brain net-

works. Previous studies have identified the modules in brain functional organization based on graph theory

and determined the connectivity states by comparing the modularity in FCs.19,30,58 Such traditional mea-

surements consider the partition of the subsystem as a fixed pattern, whichmeans that the module to which

the brain regions belong is unchanged at a given time point.19,30,58 However, the NSP method allows us to

analyze brain connectivity structures at hierarchical levels and consider the comprehensive contributions of

integration and segregation at different hierarchical levels. Previous studies have found that NSP measures

can reflect the segregation and integration of brain networks, and aremore effective in capturing individual

differences.37,59,60 Here, we also compared the results between NSP and graph theory measures (e.g.,

modularity). Modularity is highly correlated with segregation and integration components from the NSP

method (Figure S5), but NSP-based measures can more effectively capture phenotypes of emotional per-

formance (Figure S6). Therefore, NSP is a reasonable and effective method for both EEG- and fMRI-based

brain networks. By considering the dwell time, we found that the integration states were predominant in the

prefrontal and right posterior parietal regions, particularly the midline in beta and gamma bands. Interest-

ingly, EEG activities of midline regions are associated with emotion processing and have been widely used

in emotion recognition.61 Our results may reveal the neural mechanics of midline (Fz, Cz, Pz) activities influ-

enced by emotional stimuli. We also considered the transition flexibility and higher values reflect more

frequent transition between integration and segregation states. Stimulated by emotional videos, the tran-

sition flexibility was lower in the hub regions, thus indicating the stable activities of the frontal and right

posterior parietal regions in supporting emotional behaviors.
Decreased strength of segregation and increased dwell time of integration under HA

condition

tMany studies have investigated the dynamics of brain network organization, demonstrating that the

decreased segregation of large-scale brain networks is accompaniedby increasing connectivity between brain

networks and exhibits dynamic changes in response to cognitive demands.62 For example, the examination of

connectivity states across the healthy adult lifespan has revealed decreasing local segregation with increasing

age.63–65 The age-related difference in segregationmay be explained by the changing demands on the brain,

such low-modularity organization with lower segregation is found to improve behavior performance during

complex tasks, including cognitive control and working memory.64,66,67 Similarly, decreased segregation

has also been found in emotion-related tasks when people respond to threats, which is commonly considered

as high arousal condition.68 Here, we found significantly decreased segregation under HA condition, mainly in

the frontal and parietal regions, demonstrating that the brain connected in intensive integrated states with

more information communication across distributed regions to maintain high arousal performance. Our re-

sults suggest that a high emotional arousal condition is related to increased cognitive load, with brain connec-

tivity becoming more integrated and less segregated.

In addition, the dwell time at the integration state also showed a significant difference between HA and LA

conditions. The increased dwell time is associated with HA in most brain regions, demonstrating that the

brain dwells longer in at integration state under HA condition, which is consistent with the former explana-

tion that the brain transitions into a state of higher global integration to meet extrinsic task demands.69

Since the emotional arousal condition is associated with the degree of activation or deactivation in phys-

iological activity, previous studies have focused on emotion recognition and found that EEG spectral po-

wer features as well as network connection parameters are capable of predicting the distinct emotional

states of subjects.4,26 Here, we analyzed the correlation of subjective arousal ratings and the dynamics

of brain states and found that the segregation (in theta, beta, and gamma bands) of the frontal and central

parietal regions is negatively correlated with arousal ratings, whereas the dwell time at integration state
8 iScience 26, 106609, May 19, 2023
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(in all frequency bands) is positively correlated with arousal ratings involving broader brain regions. The

correlations between switching frequency and arousal are positive in the right frontal (in theta and alpha

bands), parietal (theta band) regions, and negative in the left frontal regions (alpha band).

Neural activities related to individual emotion arousal

Individual emotion is a highly subjective experience affected bymultiple factors, and even the same emotional

stimulus can induce different emotional behaviors.70–72 Dysregulated emotions are usually associated with

cognitive performance and mental illness.73,74 For example, the variability of positive emotion was related

to worse psychological health, including depression and anxiety.75 In addition to the aspect of valence, recent

studies have also found that the variability of arousal is positively correlated with cognitive activities such as

work vigor.76 However, little is known about howbrain connectivity dynamics change to support individual vari-

ability in emotion arousal. Here, we proposed brain connectivity parameters to successfully predict the vari-

ability of emotional arousal ratings, further demonstrating the capabilities of dynamic brain states in detecting

subjective arousal variability. More importantly, we found that the alpha activity over occipital regions is nega-

tively correlated with the variability of arousal, whereas the theta, beta, and gamma activities are significantly

correlated with the variability of arousal in parietal, right prefrontal, and left occipital regions. Thus, these re-

gions play a key role in promoting a more sensitive response between calm and excited states. This finding is

partially consistent with a previous finding that alpha activity over the parieto-occipital electrodes is signifi-

cantly correlated with positive emotional granularity.70 Our results may offer a way to relate diverse emotional

performances to their underlying neurobiological correlates.

Limitations of the study

The EEG signals recorded from scalp electrodes may be a limitation. With only 32 channels, it is not rec-

ommended to reconstruct the EEG in the inverse space. Using dense EEG recordings and source estima-

tion method may contribute to further elucidation of the mechanism of emotion. Meanwhile, the current

study measured the brain state during emotion stimulus task and lacked a measure of resting recording

data. Most studies have revealed that the brain network in the resting state effectively reflects cognitive

performance,77 and additional investigation of resting state could be used as a baseline to lessen individual

differences.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

EEG data DEAP project http://www.eecs.qmul.ac.uk/

mmv/datasets/deap/

Software and algorithms

MATLAB R2019b MathWorks https://github.com/pibubu/emotion-NSP

scikit-learn toolbox Pedregosa et al.78 https://scikit-learn.org/stable/index.html

pwr R package CRAN https://cran.r-project.org/web/packages/pwr/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Ying Wu (wying36@mail.xjtu.edu.cn).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d The EEG data were acquired from DEAP project with the permission authorized from http://www.eecs.

qmul.ac.uk/mmv/datasets/deap/.

d All original code has been deposited at https://github.com/pibubu/emotion-NSP.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The DEAP dataset contains the EEG signals of 32 healthy participants (16 females, age:27.19G4.38) when

they watched 40 one-minute long excerpts of music videos.4 Post-hoc power analysis (Cohen’s effect = 0.6,

sample size = 32, significance level = 0.05, type = paired) showed a power of 0.91. The 40 trials were chosen

among 120 music videos and were shown to effectively induce an emotional response. The EEG signals

were recorded with 32 channels according to the international 10-20 system, involving a sampling rate

of 512 Hz. Each trial had a 63 s EEG recording. The first 3 s was recorded in the resting state and was deleted

here. The remaining 60 s was recorded during video clips. Thus, the EEG data dimension for each partic-

ipant was 40 trials 3 32 channels 3 60 s.
METHOD DETAILS

DEAP dataset

The self-assessments of participants include continuous levels of arousal, valence, like/dislike, dominance,

and familiarity. The valence-arousal dimension can be divided into four categories: high-arousal high-

valence, low-arousal high-valence, low-arousal low-valence and high-arousal low-valence.4 However, the

mapping between emotional states and modular brain representations can be many-to-one,79 resulting

in great challenges to conclude whether the altered dynamic brain states are specific to arousal or valence.

Therefore, according to previous studies,7,8,10 we focused only on the arousal dimension. Arousal was rated

from 1�9 directly after watching each video, and a higher score indicated a more excited emotional con-

dition.5 To avoid ambiguity in moderately rated areas, we set low arousal (LA) condition trials with ratings of

1�4 and high arousal (HA) condition trials with ratings of 6�9. Thus, the 40 trials for each participant were

divided into 2 types: LA or HA.
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In the DEAP dataset, EEG signals were preprocessed using EEGLAB with following the five steps: 1) down-

sampling to 128 Hz, 2) removal of eye artifacts with a blind source separation technique by independent

component analysis (ICA) using the AAR plugin, 3) bandpass filtering from 4.0-45 Hz, 4) averaging to com-

mon reference, and 5) segmenting into 60 s with the 3 s pre-trial baseline removed.4
Brain functional network

The Finite Impulse Response (FIR) bandpass filter was used to further filter EEG signals to different fre-

quency bands (q:4-7; a:8–13 Hz, b:14–30 Hz, and g: 30–45 Hz). In each band, dynamic functional connectivity

(dFC) was constructed by calculating the phase locking value (PLV)80,81 between any two EEG channels.

Even PLV may suffer from signal leakage and volume conduction,82 and it has advantages in calculating

the non-stationary and non-linear interactions between neural signals83,84 by separating the phase and

amplitude of signals and thus has been widely used in emotion-related functional network analysis.26,57,85

Meanwhile, PLV directly measures the instantaneous phase synchrony separately from the amplitude

component in a given frequency band and determines the length of sliding windows. The PLV is defined as:

PLVðtÞ =

�����
1

d

Z t + d=2

t� d=2

ejð4y ðtÞ�4x ðtÞÞdt
����� (Equation 1)

Here, 4xðtÞ and 4yðtÞ are the instantaneous unwrapped phases of signals x and y in the given frequency at

time point t, which were extracted through the Hilbert transform. d denotes the width of the sliding time

window and should satisfy ncy = fcentral$d. As recommended by Lachaux, ncy = 6 � 1080, here we used

ncy = 649,86, and the corresponding d values were 1.2 s, 0.57 s, 0.27 s, 0.16 s in theta, alpha, beta and

gamma bands, respectively. The results were similar for ncy = 8 and 10 (see Figures S7–S9). PLV ranges

from 0 to 1, and a higher value indicates a stronger degree of synchronization between the calculated pairs,

and a lower value reflects weaker connectivity. Since there were only 32 channels, we calculated the PLV

between all 32 pairs of channels for each time window in a specific band and ultimately obtained a series

of time-resolving 32332 weighted, undirected matrices Ct.
Nest-Spectral Partition (NSP) method

The NSP method is effective in quantifying functional segregation and integration across multiple levels.46

Based on the eigenmodes, the brain regions can be partitioned into multiple modules at different levels.

Each brain functional matrix Ct is symmetric and could be decomposed into Ct = WSWT , where each

column of W is the eigenvector corresponding to the eigenvalue in S. After arranging the eigenvalues

in descending order, we obtained a new eigenvalue matrix L and eigenvector matrix U. NSP detects mod-

ules in different levels based on eigenvectors. In the 1st mode, all channels had the same negative or pos-

itive eigenvector value, and this mode was regarded as the first level, with one module (i.e., whole-brain

network). In the 2nd mode, the channels with positive eigenvector signs were assigned to a module, and

the regions with negative signs formed the second module. This mode was regarded as the second level,

with two modules. Based on the positive or negative sign of channels in the 3rd mode, each module in the

second level was further partitioned into two submodules, forming the third level. Subsequently, the FC

network could be modularly partitioned into multiple levels with the order of functional modes increasing

(see Figure 1). Channels within a module in a level may have the same sign of eigenvector values in the next

level, and then the module is indivisible, which has no effect on the subsequent partitioning process. When

each module contained only a single channel at a given level, the partitioning process was stopped. After

the partitioning process, the NSP method outputs, the module number M and module size m. We then

calculated the weighted module number H in the ith level:

Hi = L2
i Mi

�
1 � pi

� �
N (Equation 2)

where Li is the eigenvalue of functional modes;Mi is the module number in the ith level;N is the number of

rows/columns of the matrix; pi =
P��mij � 1 =Mi

��=N is a corrected factor that reflects the deviation from the

evenly distributed modular size at this level; and mij is the modular size in the jth module at the ith level.

Apparently, the NPS method combines the information eigenvalues and eigenvectors of brain functional

networks, which is different from the previous spectral analyses, e.g., eigenvalue-based power-law analysis

and eigenvector-based spectral embedding/clustering,87,88 and has clearer physic meaning for segrega-

tion and integration.
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Integration, segregation and balance

The divided modules could be regarded as functional brain regions at the specific hierarchical level. Com-

munications within modules correspond to local segregation and information processing across other

modules indicates global integration. At the 1st level, all elements of eigenvectors are positive, indicating

global attributes of intrabrain communication. We calculated Hin to assess the effective global integration.

Hin = H1

�
N = L2

1M1

�
1 � p1

� �
N2 (Equation 3)

Higher levels included more than one module to support functional segregation.

We calculated brain segregation by averaging the Hi from the 2nd to the Nth levels to evaluate the total de-

gree of local segregation in each hierarchical functional organization, where information processes are

strong within modules.

Hse =
XN
i = 2

Hi =N =
XN
i = 2

L2
i Mi

�
1 � pi

� �
N2 (Equation 4)

The deviation from the balance state, where segregation equals integration, was defined as:

HB = Hin�Hse (Equation 5)

The results of Hin, Hse and HB dynamically changed during the entire recording period and the temporal

fluctuations of the hierarchical community indicated that the human brain dynamically reorganizes to satisfy

complex mental demands, and the degree of brain states also varies over time (Figure 1E).

Dynamic measures of brain connectivity states

Based on the hierarchical module method, each node participates in different modules to support complex

neural information processing, integrated in some levels and segregated in others. Both integration and

segregation have been proven to be associated with cognitive performance, and integration is particularly

highly related to arousal fluctuations. We defined Min and Mse to evaluate brain integration and segrega-

tion separately.

Min =
XN
t = 1

HinðtÞ=N (Equation 6)
Mse =
XN
t = 1

HseðtÞ=N (Equation 7)

In addition, we further analyzed the dynamics of brain state transitions. The dwell time of integration Tin and

switching frequency fIS were measured to characterize the dynamic balance state, where jHinj = jHsej.

Tin = tHBðtÞR0=tall (Equation 8)

Here, Tinmeasures the percentage of the integrated state (HB R 0) across all the time windows. A higher Tin
indicates that the integrated function is dominant during the entire recording.

fIS = nHBðtÞ$HBðt + 1Þ%0=tall (Equation 9)

fIS represents the frequency of brain network switching between the two connectivity states. Increased fIS
indicates a more flexible connectivity transition between integration and segregation.

Regional characteristics of connectivity states

Furthermore, we calculated the regional weighted module number Hi;channel for each channel,

Hi;channel = Hi$u
2
i;channel =

L2
i Mi

�
1 � pi

�
N

$u2
i;channel (Equation 10)

where ui;channel is the eigenvector value of the analyzed channel in the ith hierarchical level.

Then, we could measure the nodal integration, segregation, balance (Hin;channel =
H1;channel

N , Hse;channel =PN
i = 2

Hi;channel

N , HB;channel = Hin;channel�Hse;channel) and the related dynamic characteristics (Min;channel ,

Mse;channel, Tin;channel, fIS;channel) for each channel.
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Prediction models of individual arousal variability

To predict individual arousal variability, we constructed multiple linear regression (MLR) models using the

scikit-learn toolbox. Taking regional connectivity state parameters (Min, Mse, Tin, and fIS) as independent

variables (x) and Varousal as the dependent variables (y), we first calculated the correlations between Varousal

and the regional features and then reordered the regional parameters according to the calculated F-sta-

tistic. Second, we selected the first K regions and fed the corresponding features into the MLR. Third,

the leave-one-out cross-validation (LOO-CV) method was applied to validate the prediction model. The

predicted Varousal based on the subset of regional parameters was evaluated by the correlations between

real and predicted scores, after which the best prediction model with k features was identified. Further-

more, we compared the weights of selected regional parameters after normalizing the features to deter-

mine how important those regions are in supporting the individual emotion experiences.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses of high and low arousal conditions were performed in MATLAB using two-sample t-test.

Pearson correlation coefficient were used to calculated the correlations between brain network measures

and arousal ratings. The significance cutoff for all comparisons was p<0.05. The the scikit-learn toolbox was

used to construct theMLRmodels. Post-hoc power analysis were performed to validate the effectiveness of

dataset using pwr package in R v4.1.2.
16 iScience 26, 106609, May 19, 2023


	Dynamic segregation and integration of brain functional networks associated with emotional arousal
	Introduction
	Results
	Regional heterogeneous performance during emotional stimuli
	Higher network integration in the high emotional arousal condition
	High arousal level recruits a more stable brain transition
	Network segregation and integration associated with emotional arousal rating
	Individual differences in emotional arousal

	Discussion
	Frontal and right parietal regions, stable hubs in emotion-related brain networks
	Decreased strength of segregation and increased dwell time of integration under HA condition
	Neural activities related to individual emotion arousal
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	DEAP dataset
	Brain functional network
	Nest-Spectral Partition (NSP) method
	Integration, segregation and balance
	Dynamic measures of brain connectivity states
	Regional characteristics of connectivity states
	Prediction models of individual arousal variability

	Quantification and statistical analysis



