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Purpose: To identify the genomic location of previously uncharacterized canine retina-expressed expressed sequence
tags (ESTs), and thus identify potential candidate genes for heritable retinal disorders.
Methods: A set of over 500 retinal canine ESTs were mapped onto the canine genome using the RHDF5000–2 radiation
hybrid (RH) panel, and the resulting map positions were compared to their respective localization in the CanFam2 assembly
of the canine genome sequence.
Results: Unique map positions could be assigned for 99% of the mapped clones, of which only 29% showed significant
homology to known RefSeq sequences. A comparison between RH map and sequence assembly indicated some areas of
discrepancy. Retinal expressed genes were not concentrated in particular areas of the canine genome, and also were located
on the canine Y chromosome (CFAY). Several of the EST clones were located within areas of conserved synteny to human
retinal disease loci.
Conclusions: RH mapping of canine retinal ESTs provides insight into the location of potential candidate genes for
hereditary retinal disorders, and, by comparison with the assembled canine genome sequence, highlights inconsistencies
with the current assembly. Regions of conserved synteny between the canine and the human genomes allow this
information to be extrapolated to identify potential positional candidate genes for mapped human retinal disorders.
Furthermore, these ESTs can help identify novel or uncharacterized genes of significance for better understanding of
retinal morphology, physiology, and pathology.

Heritable disorders of the retina often inflict devastating
harm on the lives of affected individuals and their families.
Progress in identifying the genetic causes of these diseases has
accelerated in recent years, but still presents serious
challenges; in many cases nothing is known of the genetic loci
involved. Currently, for diseases where the genetic locus has
been mapped, close to 30% have not yet had the responsible
gene or mutation identified (RetNet). A limiting factor to this
progress is an incomplete catalog of the genes expressed in
the retina [1].

Animals also suffer from heritable retinal disorders. This
is a source of concern when it afflicts companion or working
animals and yet affected animals can be a valuable resource
when used as models of human disorders. The broadly similar
features of retinitis pigmentosa (RP) in human families and
progressive retinal atrophy (PRA) in dogs have prompted
extensive, productive, and mutually beneficial comparative
studies of these homologous disorders [2].
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Expressed sequence tags (ESTs) have played an
extremely powerful role in the identification and cataloguing
of new and tissue-specific genes [3]. The combination of EST
discovery with radiation hybrid (RH) mapping has been
invaluable to the development, assembly, and annotation of
the human gene map [4], a critical first step to an assessment
of individual disease loci. However, identification of disease-
causing genes within mapped loci that typically have 0.5–10
cM intervals is problematic as the human genome can harbor
5–300 potential candidate genes for a single disorder in these
intervals [5]. Comparative genomics is often used to further
refine these results. This has recognized limitations if the
identification of homolog genes is based only on the alignment
of cDNA clones, which may not always cover areas of
sufficient conservation between the compared species [6].
Previous efforts in the definition of the canine genome
included combinations of gene identification and mapping
[7], which was further improved by the release of a 7.6x draft
sequence (Genome) [8]. Hence, the dog constitutes a unique
resource for disease genetics.

A recently developed, normalized, canine retina-
expressed sequence tag library [9], supported by an online
database (DOG EST or DOG EST Project), currently catalogs
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7,047 individual clones comprising more than 4,000 unique
transcripts. About two-thirds of the clones in this library were
identified as orthologous to annotated RefSeq sequences, and,
of those, 41% corresponded, by sequence identity, to
previously annotated canine cDNA entries. However, 1,418
of the transcripts remain to be annotated with certainty. In the
present study, a subset of 553 clones was mapped using the
well established canine/hamster hybrid panel RHDF5000–2 [10,
11] to locate the corresponding retinal genes within the dog
genome and, by comparative genomics, to infer their location
in human.

Comparison of EST map positions obtained by RH and
sequence mapping overcomes the disadvantages and
limitations of each method alone, and offers the most reliable
chromosomal locations for each EST. Such an integrated map
provides substantial information on potential new candidate
genes for heritable retinal disorders.

METHODS
Clone identification and primer design: A set of 1,418 ESTs
could not be identified with a high level of confidence by
alignment with RefSeq genes or previously mapped canine
cDNAs from the previously reported canine retinal EST
library [9]. This particular set was then selected for mapping
on the RH panel. A total of 35 EST sequences had to be
excluded from primer design based on their respective
sequences. Primer pairs for the remaining EST sequences
were obtained in one of two ways. 227 were manually
designed using the primer select option of the Lasergene™
software (Dnastar, Inc., Madison, WI). 1,156 were selected
automatically using the batch primer design feature of
GeneLooper™ (GeneHarbor, Inc., Rockville, MA) with an
oligo Tm of 68 °C, and allowing primers within 100–150 bp
of either end of the available sequence. From the latter 1,156
primer pairs, those resulting in PCR products smaller than 100
bp were excluded, and primers were sorted for increasing
penalty scores assigned by the software; this yielded 920
primer pairs that were accepted for analysis. Together with
the initial 227 pairs, a total of 1,147 EST sequences were thus
assigned to the mapping project (Appendix 1).
RH amplification and data collection: Each PCR product was
amplified under standard conditions using 25 ng DNA
template, 1 mM MgCl2, 0.2 mM of each dNTP, 0.2 µM of
each respective primer, and 0.5 U Taq polymerase.

Following an initial denaturation step at 94 °C for 2 min,
35 cycles were performed at 94 °C for 15 s, 52 °C, 55 °C,
58 °C, or 62 °C, respectively (Appendix 1) for 15 s, and 72 °C
for 40 s. This was then followed by a final extension at 72 °C
for 5 min. All PCR products were visualized on 2% agarose
gels.

In the first step, primer pairs were used to amplify canine
genomic DNA. Those that failed to amplify a single product
of the expected size were not continued in the analysis (result

F, Appendix 1). Primers that reliably amplified canine
genomic DNA (result D, Appendix 1) were then tested for
differential amplification of dog and hamster DNA. Those that
yielded either no detectable hamster amplicon or a product
significantly different in size from the canine amplicon (result
RH and M, Appendix 1) were subsequently used to amplify
all 118 cell lines of the canine and hamster hybrid panel
RHDF5000–2 together with previously used hamster and dog
DNA as controls. PCR results were manually transferred into
a computer file registering presence or absence of
amplification for each cell line.
Mapping algorithm: The data were analyzed against the
previously published RHDF5000–2 map [12]. ESTs were
assigned to chromosomes, based on the chromosomal location
of the closest linked previously mapped RH marker [12],
using the MultiMap [13] best-two-points function.
Chromosomes for which marker density was too low to yield
a consistent whole-chromosome linkage group were
partitioned into blocks, and individual maps were created of
each block. A framework map of each block was first created
using MultiMap at a logarithm of the odds (LOD) of 3 or more
and then filled in at continually lowering LOD scores.
Chromosomes were oriented using markers previously placed
on meiotic and RH maps [12].
BLAST results and graphic display: Genomic localization for
each EST was assigned for the current canine genome
sequence (Genome Gateway; CanFam2, May 2005) using
BLASTN (cutoff value E≤1e−100). The genomic position thus
identified for each EST and selected anchor markers were
displayed in a graph relative to the size of the respective
chromosome. This was done using software developed at the
Cornell University Computational Biology Service Unit
(available from the authors upon request). RetNet (RetNet;
status January 2009) was searched to identify the map location
of hereditary retinal disorders on the human genome. For all
such human disease loci mapped to intervals less than 25 Mb,
the homologous region of the canine genome was established
using BioMart, and refined according to the UCSC genome
browser multiple alignments, disregarding alignments of less
than 20 kb in length (Appendix 2).

RESULTS
Performance of retinal ESTs on the RHDF5000–2 panel: From
the initial set of 1,418 ESTs with no detected homology to
previously known sequences, amplification was attempted for
a subset of 1,147 markers. Of these, 998 (87%) amplified a
unique PCR product from canine genomic DNA without
optimization, and 711 (62%) amplified a consistent and
distinctive product from the RHDF5000–2 panel cell lines (Table
1). Roughly half of the ESTs tested could be scored
satisfactorily for each of the 118 cell lines (Figure 1A). The
overall presence of each EST marker on the panel (Figure 1B)
was similar to previously published results (e.g., average
retention frequency 22% in [12]). Furthermore, linkage to at
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least one other marker present in the RHDF5000–2 panel was
found; this was supported by most two-point LOD scores
higher than 10 (Figure 1C, Appendix 3).
Distribution of newly mapped retinal ESTs in the canine
genome: Of 553 ESTs linked to known markers, 501 could be
mapped to unique positions, ranging from 3 to 34 ESTs per
chromosome (Table 2, Appendix 4). An additional 48 ESTs
were linked, but not uniquely placed on the RH map. The
remaining four EST loci collapsed with one of the other loci
(Appendix 3) and were not counted as separate transcripts,
reducing the total number of individually displayed loci to
549. The average number of ESTs per Mb mapped on the RH
panel was calculated for each chromosome. These data were
then compared to results obtained for all EST clones contained
in the library (Table 2). With respect to the size of the
chromosomes, relatively fewer clones were represented on the
RH map for Canis familiaris chromosome (CFA) 19, CFA32,
and CFAX; clones  represented  in  the  complete  library
appeared  to  be   evenly  distributed  throughout  the  genome
with the exception of CFA19, which was synteny to  portions
of  human  chromosomes  2  and  4  [10].  It  remains  to be
elucidated  whether  this  is   due  to  underrepresentation  of
retinal clones on CFA19 or, more likely, poorer annotation of
this chromosome.
Comparison of RH and sequence maps: For each
chromosome, the linkage groups comprising all RH mapped
retinal ESTs were aligned to the current canine genome
sequence (Appendix 5). Apparent micro-rearrangements of
markers among the maps were the most common discrepancy
observed, particularly where markers could not be positioned
on the RH map with high confidence. This is a familiar
problem for markers located toward the end of a linkage
group, e.g., CFA6 and CFA10 (Appendix 5).

Fourteen markers diverged in placement between the RH
and sequence maps. Eight of these yielded best two-point
linkage to a single chromosome, but could not be mapped in
a unique position on the RH map (Appendix 5; e.g.,

DR010005B10H04 on CFA22). Therefore, correct genomic
position of these ESTs should be assumed based on the
sequence alignment, since it is the better supported method
for these clones. The other six ESTs (DR01007A10C09 and
DR010025B10A10 on CFA4, DR010009A20D03 on CFA6,
DR010013A10E04 on CFA7, DR010027B10D03 on CFA17,
and DR010015B20A07 on CFA19) were in complete
disagreement with the RH map and the sequence assemblies
(Appendix 5; no placements on D). Without additional
information, correct genomic location of these ESTs cannot
be determined.
Indication of genome sequence alignment problems: A subset
of ESTs proved difficult to align to a unique area of the
sequence assembly. Despite the high cut-off value (E≤1e
−100), 22 markers that were RH mapped to 16 different
chromosomes showed significant sequence alignment to more
than one chromosome. In each case, the multiple alignments
included the chromosome assigned by the RH map. A
consensus chromosomal position for these markers was thus
based on the RH map (Appendix 5, e.g., DR010017A21D11
on CFA14, DR01005A20E07 on CFA15, placement on C, D,
and E).

In addition to the aforementioned issues in placing
individual markers, some genomic regions revealed
consistent complications. Several markers RH mapped to
CFA17 did not align to the same chromosome in the canine
genome sequence draft; DR010027B10D03 mapped to
CFA3, while DR010006A10A08, DR010025A10C12,
DR010010B20B05, and DR010024A10E04 yielded multiple
hits on CFA17, in addition to several alignments against
alignments against a part of the sequence assembly not
assigned to chromosomes (chrUN). Similarly, marker
DR010026A20B10 on CFA11 aligned to multiple genomic
locations. It is also worth mentioning that the three ESTs RH
mapped to CFAY have significant sequence homology to
locations on CFAX in the genome sequence assemblies.

TABLE 1. EST LOCI RETAINED AT EACH EXPERIMENTAL STEP.

EST loci Number Percent
Tested 1,147 100.0
Amplified on dog DNA 998 87.0
Amplified satisfactorily on the RH5000–2 panel 711 62.0
Readable scores for all cell lines 555 48.4
Linked to at least one other marker 553 48.2
Mapped in unique position 501 43.7

To assess quality and efficiency of primer design, all primers were first amplified on dog DNA. Subsequently, working primer
pairs were amplified on the RH panel, which proved to be the least efficient step. Of those satisfactorily amplifying on the panel,
almost 80% could be scored in all cell lines, and only two of the scored ESTs did not provide sufficient linkage to at least on
other marker. Finally, 90% of all linked markers were assigned to unique positions in the chromosome, thus yielding results for
44% of all tested primers without further optimization.
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Figure 1. Quality control for retinal
clones on the RHDF5000–2 panel. A total
of 555 retinal clones were amplified
from 118 cell lines representing the
RHDF5000–2 panel. For each locus, we
assessed both, the overall number of cell
lines that could unambiguously be
scored, and the number of cell lines
amplifying the respective EST, for
quality. Half of the loci were scored in
each individual line with the balance of
loci missing only few scores (A). The
respective retention frequency resulting
from amplification scores, on average,
was 0.22 and showed a distribution that
is similar to previously published data
[12] using this panel (B). The good
quality performance of EST
amplification resulted in highly
supported linkage to known markers
(C) with most of the LOD scores above
10.

Molecular Vision 2009; 15:927-936 <http://www.molvis.org/molvis/v15/a97> © 2009 Molecular Vision

930

http://www.molvis.org/molvis/v15/a97


Identification of potential candidate genes for human retinal
disorders: The homologous canine genome locations for 28
mapped human retinal disease loci (RetNet), for which disease

causing genes remain unknown, were identified on the canine
sequence assembly (Figure 2, Appendix 2). On average, these
identified homologous canine segments were 83% of the size

TABLE 2. ESTS AND MARKERS MAPPED PER CHROMOSOME.

CFA size,
MB

blocks
number

RH markers
uniquely
mapped

ESTs
uniquely
mapped

ESTs
linked

EST/MB
RH panel

ESTs
database

EST/MB
database

1 137 4 135 34 1 0.26 895 6.53
2 99 2 90 20 0 0.20 733 7.40
3 105 4 85 18 4 0.21 580 5.52
4 100 2 93 16 0 0.16 578 5.78
5 99 3 108 26 0 0.26 599 6.05
6 87 2 79 16 1 0.20 462 5.31
7 94 4 114 15 0 0.16 673 7.16
8 86 1 76 13 3 0.19 689 8.01
9 77 4 95 16 3 0.25 522 6.78
10 80 3 60 15 3 0.23 702 8.78
11 86 1 96 14 2 0.19 592 6.88
12 85 2 113 20 1 0.25 564 6.64
13 75 1 54 8 1 0.12 331 4.41
14 72 1 75 9 1 0.14 559 7.76
15 75 1 76 16 0 0.21 497 6.63
16 73 3 64 18 2 0.27 368 5.04
17 80 2 80 17 1 0.23 435 5.44
18 66 1 79 16 1 0.26 543 8.23
19 66 3 57 4 0 0.06 212 3.21
20 66 1 93 13 5 0.27 507 7.68
21 61 4 86 8 1 0.15 408 6.69
22 61 1 53 7 6 0.21 393 6.44
23 61 1 51 7 2 0.15 318 5.21
24 73 1 51 16 0 0.22 369 5.05
25 60 2 68 14 1 0.25 451 7.52
26 48 1 50 9 1 0.21 389 8.10
27 57 1 67 15 1 0.28 532 9.33
28 55 1 53 19 1 0.36 310 5.64
29 51 1 53 8 0 0.16 313 6.14
30 47 2 42 15 2 0.36 415 8.83
31 50 2 34 8 2 0.20 265 5.30
32 51 1 29 3 0 0.06 447 8.76
33 41 1 39 11 0 0.27 215 5.24
34 50 1 41 6 1 0.14 221 4.42
35 38 1 24 5 0 0.13 187 4.92
36 41 1 44 4 1 0.12 220 5.37
37 40 1 47 6 0 0.15 214 5.35
38 38 2 24 5 0 0.13 149 3.92
X 139 3 52 8 0 0.06 927 6.67
Y 27 2 9 3 0 0.11 N/A N/A

Each chromosome was mapped in individual linkage groups (blocks, column 3) containing previously mapped markers (column
4, reference [12]), ESTs mapped in unique positions (column 5), and ESTs linked, but not ordered on the chromosome (column
6). The number of RH-mapped ESTs per MB for each chromosome (column 7) was compared to the number of all ESTs currently
in the database for each chromosome (column 8) per MB (column 9) to assess distribution of retinal expressed genes throughout
the genome.
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of the corresponding human genome sequence interval, while
the interval homologous to CORS2 (HSA11p12-q13.3) was
covered by only 49%. The latter is likely because it spans the
HSA11 centromere. Candidate ESTs were identified for these
locations based on their positional annotation to identify
potential candidate genes for the respective disorders. For
only one locus, X-chromosomal RP24, no potential candidate
clones mapped to the proposed homologous disease interval.
For twenty of these comparative genome regions in the dog,
which include clones placed on the presented RH maps
(Appendix 2, shaded), the respective diseases intervals are
also illustrated on the canine chromosome maps (Appendix
5).

DISCUSSION
Comparison of mapping approaches: EST clones from the
previously published canine retinal library [9] were re-aligned
against RefSeq sequences, with a criterion cut-off value of
E≤1e−3 accepted as establishing homology. This yielded
annotation for 80% of clones evaluated. In the present study,
hypothesizing that the remaining, unidentified sequences
might represent previously unrecognized retinal genes or
control elements relevant to retinal function, 553 such retinal
clones were mapped to the RHDF5000–2 panel with high
confidence, and of these, 501 were mapped to unique positions
(Table 1, Figure 1, and Appendix 3). The resulting RH map

thus integrated these ESTs into the overall canine genome.
Among the mapped ESTs, 159 sequences (29%) aligned to
known RefSeq sequences, but the balance (71%; 394)
remained unidentified.

Direct comparison of this integrated RH map to the
assembled canine genome sequence became possible during
the progress of the present project. This permitted independent
confirmation of the location of mapped clones, comparative
evaluation of the different mapping methods, and, as a
consequence, overcame some of the limitations of each
method. RH mapping is relatively unreliable toward the end
of linkage groups, and does not provide highly reliable order
for markers located close together. However, some of these
problems have recently been addressed in a refined map for
this panel [14]. Nonetheless, mapping of markers by sequence
alignment is subject to errors in assembly of the underlying
sequence. For example, gene duplications, pseudo genes, and
other sequence similarities within a single genome can create
both ambiguities in assembly, and multiple significant
alignments for a single marker; this was recognized in 4% of
the presented data. Furthermore, alignment of expressed
sequences, which may be spliced, against a genome assembly,
can be problematic since the spliced out sequence (e.g.,
introns) can cause difficulties in evaluating alignment scores.

The greater part of inconsistencies between placement on
the RH and sequence maps were minor. These were more

Figure 2. Identification of potential
candidate genes for human retinal
disease Human genomic intervals for
known diseases (e.g., CORD9 on
HSA8, RP22 on HSA16) were mapped
against the canine genome to identify
homologous regions, and EST within
these regions of interest (e.g.,
DR010016B20F06 on CFA16,
DR010020A10A07 on CFA6). A
comprehensive list of these disorders
and the number of corresponding ESTs
contained within our library is given in
Appendix 2. ESTs mapped in the
presented research are also illustrated on
the respective chromosomes in
Appendix 5. Details on all clones can be
obtained through a web database (DOG
EST or DOG EST Project) to obtain
insights into corresponding transcripts
(e.g.: 1. WRN, 2. SORT1). We suggest
that this tool provides new positional
candidate genes for mapped human
retinal disorders. This would allow for
the identification of mutations in genes
that are thus far unknown or have not yet
been linked to retinal disorders, after the
exclusion of conventional candidate
genes.
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common at the ends of chromosomes rather than the middle.
In particular, the multiple sequence alignments for ESTs
mapping near the centromere of CFA11 and parts of CFA17
suggest sequence or assembly problems, or even potential
genome duplications. In general, major disagreements
between the compared maps were rare and resulted in only
1% of the chromosomal placement of ESTs to remain
unresolved. While the data indicate room for improvement,
these issues are likely to be resolved with the improvement of
both RH maps and genome sequence assemblies. The
synergistic combination of different approaches provides
higher fidelity genome maps than does any single method
alone [15].
Genomic coverage of retinal ESTs: Overall, retinal ESTs
analyzed in the current study do not appear to be concentrated
in particular areas of the genome, but were distributed rather
evenly throughout. There were, however, some departures
from this general observation. CFA19, CFA32, and CFAX
were relatively underrepresented by ESTs mapped in the
present study, but only CFA19 showed the same
underrepresentation when adjusted for all ESTs from the same
library (Table 2). This suggests that the initial annotations
were more efficient for CFA32 and CFAX and, thus, fewer
clones were selected for additional mapping and annotation.
For CFA19, however, in addition to a lower representation of
retinal EST clones, one of the four ESTs RH-mapped to this
chromosome aligned to a different chromosome (CFA27) in
the canine genome sequence assembly, indicating a potential
error in one or the other map.

We attempted to identify canine ESTs that potentially
might represent novel candidate sequences for 28 mapped loci
for hereditary human retinal disorders. Surprisingly, the only
such locus that did not yield canine retinal ESTs contained
neither in the complete EST library nor was presented in the
RH mapped subset, was X-linked. This is especially
remarkable considering the well recognized strong
conservation of the mammalian X chromosome [16,17]. More
importantly, all three ESTs mapped to CFAY on the
RHDF5000–2 panel aligned close to the centromere of CFAX
based on sequence homology. Based on the absence of CFAY
sequences from the CanFam2 assembly, the correct
assignment of the RH map linkage group to this chromosome
cannot be verified by sequence alignments. One therefore is
left to hypothesize whether this finding represent incorrect
linkage in the RH map or functional transcripts are indeed
encoded on CFAY. However, since the genomic CFAX
sequence aligning to one of the clones, DR010006B10E05,
contained a microsatellite that is not present in the EST, it is
possible these transcripts have become inactivated on CFAX
but are still functionally present on CFAY. Further studies will
be necessary to confirm and interpret this potentially
interesting finding.
Candidate genes for human retinal disorders: Despite
considerable progress in recent years, there has been a steady

gap between identification of the mapped loci for heritable
human retinal disorders, and characterization of the
underlying gene and causative mutations (D graph). In part,
this reflects an incomplete understanding of the genes critical
for retinal development, function, and maintenance.
Currently, 48 such loci are recognized for which no causative
sequence change has been defined. For 20 loci, the candidate
region is either not precisely defined or extends over more
than 25 Mb. For the remaining 28 loci, we attempted to
identify retina-expressed ESTs that might represent potential
candidate genes, and were able to do so for all except the
aforementioned X-linked RP24 locus. It should be
acknowledged that some of these clones may be redundant—
i.e., more than one EST might represent the same transcript.
Thus, the number of potential retinal expressed candidate
genes could be overestimated in our data set. Furthermore,
genomic regions for some human disease loci also do not align
unambiguously between human and dog, (e.g., MRST aligned
to several areas on CFA3 and CFA30), and, consequently, we
may not have covered the complete homologous disease
intervals in the dog.

Confidence in the RH map location of an EST, and,
concomitantly in its potential as a positional candidate, is
strengthened when confirmed by sequence alignment with the
corresponding genomic interval. This was achieved for the
majority of ESTs (93.6%) in the current study. However, three
clones potentially located within disease relevant areas were
mapped to different genomic locations with the RH map when
compared to the genomic sequence. DR010007A10C09,
which aligns within the MRST homologous interval on CFA3
in the sequence assembly, was mapped with high confidence
to CFA4 on the RH map (Appendix 5, CFA4, C). In contrast,
DR010030A10D12 was located within the CORD9 interval
on CFA16 in the RH map, but showed sequence homology
just outside this interval in the sequence assembly; the same
applies to DR010030A10G12 in the RP23 interval on CFAX.
Despite these minor inconsistencies, however, homologous
canine intervals have successfully been established for most
of the human loci extracted from RetNet (Figure 2, Appendix
2).

The importance of correctly assigned location and tissue
specificity of potential disease candidate genes has recently
been demonstrated for progressive rod-cone degeneration
(prcd) in the canine model. This disorder had previously been
mapped to CFA9, and known retinal expressed genes within
the disease critical interval had been excluded from causative
association with disease [18-20]. Once the EST library was
screened for positional candidates, transcripts expressing a
novel gene were identified harboring the mutation responsible
for prcd [21]. Subsequently, the gene was found to also cause
RP in humans. It should be remarked that this effort was
initially complicated by the fact that the disease critical
interval was incorrectly assembled to CFA18 in the first pass
of the canine genome assembly CanFam1. However, the
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canine draft sequence has been revised and is in high
agreement with the presented RH mapping data.

A major advantage of comparative genomics lies in the
validation of results and preliminary data in the absence of
large patient cohorts to repeat or further narrow linkage data
of known disease loci. One of the most recent genes identified
to contribute to vision loss in humans is PROM1 [22]. A
missense mutation in the gene has been linked to formerly
mapped loci MCDR2 and STGD4 in a screen of 12 positional
candidate genes within the minimal overlapping disease
interval of 12cM between markers D4S1582 and
GATA1582G03. This region corresponds to 9.7 Mb (bp
65,599,776 −71,744,479; 90,673,048–94,195,452) located on
CFA3 in the dog. The presented library contains 10 transcripts
for this genomic location; the most abundant one of those,
eight clones comprising contig 1265, represents the canine
version of PROM1. Thus, a cross species comparison may
have been able to assist in the ranking of candidate genes for
this disease. With the high fidelity of genomic location
established, this resource is well suited to assist with the
investigation of known and new disease loci to speed up first
steps in the identification and understanding of retinal
disorders.

In conclusion, a comparative map of retinal genes allows
identification of new candidate genes for retinal disorders in
both dog and human, and provides a further step toward the
complete categorization of genes relevant to retinal
development and degeneration. Results of this study are
integrated into the web database at DOG EST or DOG EST
Project, and are publically accessible.
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Appendix 1.

To access the data, click or select the words “Appendix
1.” This will initiate the download of a (pdf) archive that
contains the file. Amplification details and results (F=PCR

failed, D=amplified from dog genomic DNA, RH=amplified
on the RH panel, M=placed on the final map) for all ESTs
tested.
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Appendix 2.

To access the data, click or select the words “Appendix
2.” This will initiate the download of a (pdf) archive that
contains the file. Human retinal disease loci mapped against
the canine genome. Based on the corresponding intervals,
potential candidate genes were identified from the canine

retinal EST library. The number of those ESTs is provided in
the last column (EST contained in the complete database/
subset al.so included in the currently presented RH mapping
project). Genomic regions containing ESTs mapped in the
present study (shaded) are also illustrated in Appendix 5.

Appendix 3.

To access the data, click or select the words “Appendix
3.” This will initiate the download of a (pdf) archive that
contains the file. Chromosomal location of each EST was
assigned using the MultiMap [13] best-two points function
using the previously published canine RH map [12]. Results

are listed for each EST to demonstrate linkage to the closest
marker (A) or indicate that the EST has collapsed with one of
the markers and been placed in the same genomic location
(B).

Appendix 4.

To access the data, click or select the words “Appendix
4.” This will initiate the download of a (pdf) archive that
contains the file. Markers were grouped into chromosomes
according to results of the best-two points function (Appendix
3) and subsequently mapped within each chromosome using
MultiMap [13]. Chromosomes for which marker density was
too  low  to  yield  a   consistent   whole-chromosome  linkage 

group were petitioned into blocks, and individual maps  were 
created  of  each  block.  Final  orientation  and location of all 
markers on the chromosome are displayed according to 
previously   established    chromosome    orientation   [12].
Appendix  lists  all  markers used for mapping, selected 
markers and EST locations  are   graphically  displayed  in 
Appendix 5.

Appendix 5. Comparative maps of retinal expressed clones in the canine
genome.

To access the data, click or select the words “Appendix
5.” This will initiate the download of a (pdf) archive that
contains the file. Results of the EST mapping are graphically
displayed for each chromosome indicating the relative
position (A) of all mapped ESTs (B, blue) on the RH panel
(C), the corresponding chromosome sequence draft (D), and
potential alignments to nonhomologous chromosomes (E).
Placement is indicated by horizontal lines, while oblique lines
connect placements on different maps for the same EST.
Chromosomes are oriented with centromeres located next to

the respective legend on top of each page (A, 0); the artificial
scale to the left (A) is proportional to the respective
chromosome size based on the RH mapping. For orientation,
selected markers are displayed on the RH map (B, red), and
marker groups mapped in individual blocks are separated by
black lines. ESTs linked, but not uniquely mapped to
individual chromosome are displayed in italic. Intervals
corresponding to mapped human disease loci (Appendix 2)
are indicated on the right of each homologous region of the
sequence drafts (C).
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