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Abstract: The supplementary motor area (SMA) may modulate spinal reciprocal inhibition (RI)
because the descending input from the SMA is coupled to interneurons in the spinal cord via
the reticulospinal tract. Our study aimed to verify whether the anodal transcranial direct current
stimulation (anodal-tDCS) of the SMA enhances RI. Two tDCS conditions were used: the anodal
stimulation (anodal-tDCS) and sham stimulation (sham-tDCS) conditions. To measure RI, there were
two conditions: one with the test stimulus (alone) and the other with the conditioning-test stimulation
intervals (CTIs), including 2 ms and 20 ms. RI was calculated at multiple time points: before the tDCS
intervention (Pre); at 5 (Int 5) and 10 min; and immediately after (Post 0); and at 5, 10 (Post 10), 15,
and 20 min after the intervention. In anodal-tDCS, the amplitude values of H-reflex were significantly
reduced for a CTI of 2 ms at Int 5 to Post 0, and a CTI of 20 ms at Int 5 to Pot 10 compared with
Pre. Stimulation of the SMA with anodal-tDCS for 15 min activated inhibitory interneurons in RIs
by descending input from the reticulospinal tract via cortico–reticulospinal projections. The results
showed that 15 min of anodal-tDCS in the SMA enhanced and sustained RI in healthy individuals.

Keywords: H-reflex; M wave; electromyography; transcranial direct current stimulation;
RI enhancement

1. Introduction

Dysfunction of neurons of the upper motor system [1–3], spinal cord injury [4], and aging [5–10]
disrupt smooth joint movement owing to excessive simultaneous activation (ESA) of antagonist
muscles, thus decreasing exercise performance. ESA in the lower limbs degrades gait functions and
increases falling risk [11,12]. Further, during joint exercises based on repetitive and quick actions,
ESA causes inhibition of smooth joint movement and triggers fatigue in the agonist muscle [13].
The mechanism underlying these ESAs is the repression of interneurons of reciprocal inhibition (RI) by
Renshaw cells [1–3].

RI is an essential function for normal joint movement, balance and gait, and involves three
inhibitory pathways. These pathways include disynaptic Ia RI (DRI) that directly links to spinal
anterior horn cells (SAHC) of antagonist muscles [14,15] and presynaptic short (D1 inhibition) and
long (D2 inhibition) latency inhibition pathways mediated by primary afferent depolarization (PAD)
interneurons [14]. These RI pathways enable and control coordinated movement by inhibiting excessive
contraction of antagonist muscles [5,9,13].

Many studies report the enhancement of RI aimed at inhibiting excessive simultaneous activity and
improving coordinated movement and gait [16–26]. In particular, to enhance RI, peripheral patterned
electrical stimulation (PES) [18,20,24,26,27] and repetitive passive movement (RPM) [16,17] are more
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effective than brain stimulation. A groundbreaking report shows a synergistic impact after combined
brain and peripheral stimulation [24,26]. In previous studies, primary motor area (M1) in the brain was
activated using transcranial direct current stimulation (tDCS) [24]. Alternatively, some studies used
intermittent theta-burst transcranial magnetic stimulation (iTBS) [26]. However, in brain stimulation
alone, only enhancement of DRI during intervention was observed in tDCS and aftereffects were not
present [19,21,24]. ITBS, which is capable of local activity, enhanced D1 inhibition only immediately
after intervention; however, no sustained aftereffects of DRI or D1 inhibition during or after the
intervention [26]. The activity of M1 by tDCS or iTBS alone did not exhibit adequate aftereffects.

We focused on the supplementary motor area (SMA), a brain region with the potential to enhance
RI. The SMA is heavily involved in planning of both simple and complex motor behavior and in
behavior sequencing, learning, and motor control [28–31]. Stimulating the activity of the SMA by
anodal-tDCS and TMS improves gait, balance, and coordinated movement [32–34]. SMAs display an
abundance of cortical reticular projection origins and increase descending input from the reticulospinal
tract via cortico–reticulospinal projections [35,36]. The reticulospinal tract has a large number of nerve
endings in the gray matter of the spinal cord and projects to intervening cells in this region [37].
We hypothesized that the activity of the reticular spinal tract modulates RI because it is involved in
inhibiting muscle tone and improving gait and motor control [38,39].

The purpose of this study was to examine whether RI is enhanced by anodal-tDCS of the SMA.

2. Materials and Methods

To determine whether anodal-tDCS to the SMA enhances RI, we intervened in the SMA using
tDCS for 15 min and examined the amount of RI (DRI and D1 inhibition) in the right soleus (Sol)
muscle H-reflex.

2.1. Study Participants

We recruited 20 healthy male adults with an average age of 21.4 ± 0.5 years, a height of
170.9 ± 6.6 cm, and bodyweight of 62.5 ± 6.5 kg. All participants provided written informed consent
to participate. This study was approved by the University Ethics Committee (18310—191101).
All experiments were conducted in accordance with the University ethical standards and the 1964
Helsinki Declaration and its later amendments.

2.2. Measurement of Limb Position

As in our previous studies [16,17], the position of the right lower limb was measured at the
hip (100◦), knee (120◦), and ankle joints (110◦). Thigh and foot were fixed to a seat and footplate,
respectively (Takei Scientific Instruments, Niigata, Japan) (Figure 1), to maintain participants’ posture
during the experiment.
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EMG was performed using Ag/AgCl electrodes (Blue Sensor, METS, Tokyo, Japan) with a 
distance of 20 mm between the electrodes. Electrodes were positioned in the tibialis anterior (TA) and 
Sol [40]; ground electrodes were placed between electrical stimulation electrodes and surface EMG 
electrodes on the TA muscle [41,42]. EMG activity was filtered using a 10–1000 Hz bandpass filter 
and amplified 100× (FA-DL-720-140; 4Assist, Tokyo, Japan) before being digitally stored on a 
personal computer for offline analyses. The sampling rate was 10 kHz. PowerLab 8/30 and LabChart 
7 (both AD Instruments, Colorado Springs, CO, USA) were used for data analyses. 

2.4. tDCS 

tDCS was delivered by a direct current stimulator (Eldith, neuroConn GmbH, Ilmenau, 
Germany). A pair of sponge electrodes (5 × 7 cm2, 35 cm2) soaked in saline were employed. The anodal 
electrode was placed in the SMA, and the cathodal electrode was placed on the right orbit. The sagittal 
midline was 3 cm anterior to the parietal lobe [43–46]. This placement was consistent with the 
International system 10–20. Two conditions were established for the tDCS intervention: the anodal 
stimulation condition (anodal-tDCS) and the sham stimulation condition (sham-tDCS). For anodal-
tDCS, a 1 mA current was set (with current density = 0.028 mA/cm2) [24] and duration of current 
application was set to 15 min, with fade in and fade out times of 10 s. This same stimulation method 
was applied for sham-tDCS except for the duration of current application which was limited to 15 s 
with a fade in and fade out time of 10 s. 

2.5. Electrical Stimulation 

Nerve stimulation was induced by 1 ms square wave pulses using an SS-104J isolator (Nihon 
Kohden, Tokyo, Japan) and a SEN-8203 electrical stimulator (Nihon Kohden). Nerve stimulation was 
performed using the same technique as that used in our previous study [16,17], with the test stimulus 
administered to the tibial nerve and the conditional stimulus to the common peroneal nerve. 

Figure 1. Limb position.

2.3. Electromyography (EMG)

EMG was performed using Ag/AgCl electrodes (Blue Sensor, METS, Tokyo, Japan) with a distance
of 20 mm between the electrodes. Electrodes were positioned in the tibialis anterior (TA) and Sol [40];
ground electrodes were placed between electrical stimulation electrodes and surface EMG electrodes
on the TA muscle [41,42]. EMG activity was filtered using a 10–1000 Hz bandpass filter and amplified
100× (FA-DL-720-140; 4Assist, Tokyo, Japan) before being digitally stored on a personal computer for
offline analyses. The sampling rate was 10 kHz. PowerLab 8/30 and LabChart 7 (both AD Instruments,
Colorado Springs, CO, USA) were used for data analyses.

2.4. tDCS

tDCS was delivered by a direct current stimulator (Eldith, neuroConn GmbH, Ilmenau, Germany).
A pair of sponge electrodes (5 × 7 cm2, 35 cm2) soaked in saline were employed. The anodal electrode
was placed in the SMA, and the cathodal electrode was placed on the right orbit. The sagittal midline
was 3 cm anterior to the parietal lobe [43–46]. This placement was consistent with the International
system 10–20. Two conditions were established for the tDCS intervention: the anodal stimulation
condition (anodal-tDCS) and the sham stimulation condition (sham-tDCS). For anodal-tDCS, a 1 mA
current was set (with current density = 0.028 mA/cm2) [24] and duration of current application was
set to 15 min, with fade in and fade out times of 10 s. This same stimulation method was applied for
sham-tDCS except for the duration of current application which was limited to 15 s with a fade in and
fade out time of 10 s.

2.5. Electrical Stimulation

Nerve stimulation was induced by 1 ms square wave pulses using an SS-104J isolator
(Nihon Kohden, Tokyo, Japan) and a SEN-8203 electrical stimulator (Nihon Kohden). Nerve stimulation
was performed using the same technique as that used in our previous study [16,17], with the test
stimulus administered to the tibial nerve and the conditional stimulus to the common peroneal nerve.

2.6. Reciprocal Inhibition

RI was measured in the same manner as done in previous studies [14,16,26,47,48]. Sol H-reflex
amplitude values were measured after conditioning and test stimuli. The intensity of the conditioning
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stimulus was set to the M-wave threshold (stimulus intensity evoking <100 µV) of TA [14,17,26].
Conditioning stimuli were carefully placed so as not to cause peroneal muscle contraction [26,47,48].
Because the degree of RI varied with the magnitude of H-reflex [49], the intensity of test stimuli was
set to induce an H-reflex of 15–25% of the maximum amplitude value of the Sol M wave (Mmax).
The three stimulus conditions were a conditioning-test stimulus interval (CTI) of 2 ms or 20 ms and a
test stimulus without a conditioning stimulus (single). A CTI of 2 ms reportedly produces the greatest
enhancement of DRI [14,50], and that of 20 ms reportedly produces the greatest enhancement of D1
inhibition [14]. The number of stimulations administered was randomly set to 36 (three stimulation
conditions× 12 sets). Stimulation frequency was set at 0.3 Hz. At this frequency, H-reflex was measured
after at least three stimuli because H-reflex stabilizes after the third stimulus [51].

2.7. Experimental Protocol

The detailed procedure followed is illustrated in Figure 2. The intensity of conditioned and
test stimuli was set before RI measurements. RI was assessed before stimulation (Pre); at 5 (Int 5)
and 10 (Int 10) min during; immediately after (Post 0); and at 5 (Post 5), 10 (Post 10), 15 (Post 15),
and 20 (Post 20) min after the tDCS intervention. Intervention for tDCS conditioning was 15 min, and two
conditions (sham-tDCS, anodal-tDCS) were performed randomly. Interventions were implemented at
intervals of ≥1 week.
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Figure 2. Experiment protocol.

The two tDCS conditions, i.e., the anodal-tDCS condition (anodal-tDCS) and the sham-tDCS
condition (sham-tDCS), were performed randomly in the SMA for 15 min. Each tDCS intervention
was conducted at an interval of ≥1 week. The Mmax of the Sol and the MT of the TA were measured
before the RI measurements. RI was measured under three conditions.

MT, motor threshold; SMA, supplementary motor area; tDCS, transcranial direct current stimulation

2.8. Statistical Analyses

For Sol and TA, H-reflex and M-wave amplitude values were measured by averaging peak-to-peak
values of waveform amplitude of each stimulation condition. RI was calculated as a percentage
(%) by dividing Sol H-reflex amplitude value by Mmax amplitude value. Percent notation was
calculated by dividing the H-reflex amplitude value of the conditioned stimulus by H-reflex amplitude
value of the test stimulus alone ([conditioned H-reflex amplitude value/test H-reflex amplitude
value] × 100). Background EMG (Sol), Mmax amplitude (Sol), and M-wave amplitude (TA) values
during the experiments were analyzed as reference data. Effects of tDCS condition, stimulation
condition, and measurement time was analyzed by repeated-measures three-way analysis of variance
(ANOVA). As a post-hoc analysis, the single and two stimulation conditions, for each tDCS intervention,
were compared using paired t-tests with Bonferroni correction. Comparisons of measurement times
for each tDCS condition were performed using paired t-tests with Bonferroni correction. Statistical
significance was considered at p < 0.05.



Brain Sci. 2020, 10, 587 5 of 10

3. Results

The Sol muscle background EMG, Mmax amplitude values of the Sol muscle, and the M-wave
amplitude values of the TA muscle are presented in Table 1a–c.

Table 1. The Sol muscle background EMG, Mmax amplitude values of the Sol muscle, and the M-wave
amplitude values of the TA muscle.

a. Background electromyography (EMG) (Sol)

Pre Int 5 Int 10 Post 0 Post 5 Post 10 Post 15 Post 20

Sham-tDCS 2.9 ± 0.1 2.9 ± 0.1 2.9 ± 0.1 2.9 ± 0.1 2.9 ± 0.1 3.0 ± 0.1 2.9 ± 0.1 2.8 ± 0.1
Anodal-tDCS 3.1 ± 0.3 3.1 ± 0.2 3.4 ± 0.3 3.4 ± 0.3 3.2 ± 0.2 3.1 ± 0.3 3.1 ± 0.2 3.3 ± 0.3

b. Mmax amplitude values (Sol)

Sham-tDCS Anodal-tDCS
10.96 ± 0.81 11.58 ± 0.92

c. M-wave amplitude values (TA)

Pre Int 5 Int 10 Post 0 Post 5 Post 10 Post 15 Post 20

Sham-tDCS 89.0 ± 1.6 90.1 ± 1.9 88.6 ± 1.3 87.7 ± 2.0 88.6 ± 1.3 91.0 ± 1.8 87.5 ± 1.8 87.9 ± 1.9
Anodal-tDCS 88.1 ± 3.0 88.4 ± 3.6 89.4 ± 3.1 90.2 ± 2.1 88.0 ± 3.0 88.2 ± 3.5 85.7 ± 5.2 86.9 ± 3.6

a. The data represents values as Mean ± SE. Sol background EMG (µV), EMG was measured 30–50 ms before the
test stimulus). b. The data represents values as Mean ± SE (mV). c. Data are reported as mean ± SE (µV).

Three-way ANOVA (tDCS condition, stimulation condition and measurement time) demonstrated
a primary effect of the tDCS conditioning (F(1, 19) = 4.717, p = 0.043, partial η2 = 0.199) and a primary
effect of the stimulus condition (F(2, 38) = 185.152, p < 0.001, partial η2 = 0.907) but not of measurement
time (F(7, 133) = 1.387, p = 0.216, partial η2 = 0.068). In addition, there was a significant interaction
among the three factors (F(14, 266) = 2.221, p = 0.007, partial η2 = 0.105). Among the measurement
times, no significant differences were observed in Sol H-reflex amplitude values for a single condition
(Table 2). Thus, after conditioning stimuli, changes in Sol H-reflex amplitude values were independent
of the test stimulus intensity.

Table 2. H-reflex amplitude (% Mmax).

Pre Int 5 Int 10 Post 0 Post 5 Post 10 Post 15 Post 20

Sham-
tDCS Single 20.0 ± 0.3 19.7 ± 0.3 20.4 ± 0.3 20.3 ± 0.2 20.2 ± 0.3 20.7 ± 0.3 20.5 ± 0.3 20.4 ± 0.4

CTI 2 ms 17.1 ± 0.4 ‡ 17.0 ± 0.4 ‡ 17.8 ± 0.4 ‡ 17.6 ± 0.4 ‡ 17.5 ± 0.4 ‡ 17.6 ± 0.4 ‡ 17.5 ± 0.4 ‡ 17.4 ± 0.5 ‡

CTI 20 ms 15.2 ± 0.4 ‡ 14.8 ± 0.4 ‡ 15.3 ± 0.4 ‡ 15.4 ± 0.4 ‡ 15.3 ± 0.4 ‡ 15.9 ± 0.4 ‡ 15.7 ± 0.4 ‡ 15.3 ± 0.4 ‡

Anodal-
tDCS Single 20.4 ± 0.4 20.6 ± 0.4 20.1 ± 0.3 20.1 ± 0.3 20.2 ± 0.4 20.5 ± 0.3 20.4 ± 0.3 19.6 ± 0.3

CTI 2 ms 17.1 ± 0.4 ‡ 16.2 ± 0.4 ‡ 16.0 ± 0.5 ‡ 16.0 ± 0.6 ‡ 16.6 ± 0.5 ‡ 17.0 ± 0.5 ‡ 17.1 ± 0.4 ‡ 16.7 ± 0.5 ‡

CTI 20 ms 15.4 ± 0.4 ‡ 14.5 ± 0.5 ‡ 13.8 ± 0.4 ‡ 14.4 ± 0.6 ‡ 14.3 ± 0.5 ‡ 14.8 ± 0.5 ‡ 15.2 ± 0.5 ‡ 14.6 ± 0.5 ‡

The data represents values as Mean ± SE. The table depicts the results of every measurement time and for every
tDCS condition. The Sol H-reflex amplitude values were calculated as mean ± SE of the peak-to-peak values of
amplitude of each waveform as H-reflex/Mmax × 100. (Paired t-test with Bonferroni correction was performed;
‡ p < 0.001).

H-reflex amplitude values after single or two stimuli were compared, and at each time interval,
H-reflex amplitude decreased significantly for CTIs of 2 and 20 ms after two stimuli compared with that
after a single stimulus (p < 0.001, Table 2). DRI and D1 inhibition were observed under all conditions.

Changes in the H-reflex amplitude values at CTIs of 2 and 20 ms were compared with the Pre
values (Figures 3 and 4). The sham-tDCS condition at CTIs of 2 ms and 20 ms did not produce any
significant change in H-reflex amplitude values compared with Pre values. Conversely, anodal-tDCS
caused significant reduction in H-reflex amplitude values at Int 5 (p < 0.001), Int 10 (p = 0.025), and Post 0
(p = 0.034) compared with the Pre values. Similarly, anodal-tDCS led to significantly reduced H-reflex
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amplitude value with CTI of 20 ms at Int 5 (p = 0.003), Int 10 (p < 0.001), Post 0 (p = 0.018), Post 5
(p = 0.006), and Post 10 (p = 0.041).
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Figure 4. Comparison of the temporal changes in RI. (a,b) Sham-tDCS; (c,d) anodal-tDCS; (a,c) CTI of 2
ms; and (b,d) CTI of 20 ms. The thin solid lines show changes over time for 20 subjects, and the thick solid
line indicates mean values. The vertical axis is the amplitude of the conditioning H-reflex/amplitude of
the test H-reflex× 100. The horizontal axis is the measurement time of RI. Pre values were compared with
those at different measurement times using a paired t-test with Bonferroni correction. Values indicated
by filled symbols did not show significant differences compared with the Pre values. The open symbols
indicate values significantly different from the Pre values (p < 0.05). CTI, conditioning stimulation–test
stimulation interval; tDCS, transcranial direct current stimulation.
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4. Discussion

This study is the first to report that SMA activity enhances RI. Intervention in the SMA via
anodal-tDCD for 15 min upregulated DRI from Int 5 to Post 0 and also upregulated the D1 inhibition
from Int 5 to Post 10.

The results in the current study demonstrated that in comparison with single stimuli, H-reflex
amplitude values were significantly reduced at CTIs of 2 and 20 ms for all tDCS conditions. This finding
is indicative of the presence of DRI and D1 inhibition [14,15].

Previous studies of brain stimulation for RI enhancement report M1 stimulation [19–21,24,26].
An intervention of anodal-tDCS in M1 shows that DRI produces no aftereffects, whereas there
was an increase in inhibition during the intervention; the authors reported no changes in D1
inhibition [19–21,24,26]. These aftereffects might be explained by the hypothesis that tDCS applied to
the lower limb region of M1 causes concomitant activation of the TA and Sol regions. As the activity is
similar to that of M1 during co-contraction, it is considered that RI was inhibited and aftereffects were
not observed [24]. Conversely, iTBS, which activates more localized brain regions than tDCS, enhanced
D1 inhibition immediately after the intervention, whereas DRI remained unchanged [26]. Compared
with these previous studies, the current study found that anodal-tDCS of the SMA is an efficacious
method of brain stimulation to enhance RI. Both DRI and D1 inhibition yielded aftereffects during and
immediately after the intervention; in addition, D1 inhibition led to aftereffects until Post 10.

The SMA is the origin of the cortico–reticulospinal projection and mobilizes much of the
reticulospinal tract via this projection [35,36]. The reticulospinal tract, via the cortico–reticulospinal
projection, displays a large number of nerve endings in the spinal gray matters and projects intervening
inhibitory cells in this region [37]. These cells contain many inhibitory interneurons (Ia inhibitory
and PAD interneurons) that support DRI and D1 inhibition. Thus, downward input provided by
SMA activity could activate inhibitory interneurons and subsequently lead to enhancement of RI.
The activity of the SMA improves gait, balance and coordinated movement [32–34], and RI plays an
important role in these functions. Therefore, it was suggested that SMA and RI is involved in an
important regulatory pathway.

The current study had an experimental design that required rapid measurement of RI before and
after the tDCS conditioning. Thus, we could not evaluate the excitability of SAHCs. This parameter
would have been measured by H/M recruitment curves. Moreover, a few previously performed
studies [18,24,26,27] that calculated RI, had also calculated Hmax using stimulus intensity of the Sol
H-reflex normalized to Mmax. The current study used the same method to quickly calculate RI and
assess the aftereffects of tDCS in real-time.

Clinical Application

The SMA activity explored in this study suggests an efficacious therapy that could be used as
adjuvant therapy for the revival of associated motor functions following central nervous system injury.
This study shows an effective brain-stimulation intervention for RI enhancement in healthy individuals.
Previous brain stimulation methods did not report an enhancement of both DRI and D1 inhibition.
Further, D1 inhibition resulted in aftereffects persisting up to 10 min after the intervention. Prolonging
the duration of aftereffects is an effective adjuvant therapy for rehabilitation. Future studies should
examine a combination of brain stimulation (targeting SMA) with RPM or PES because the combination
of brain and peripheral stimulation is expected to prolong the aftereffect. In addition, next steps should
include validation of the long-term effects of this therapy, including improvement of the functional
abnormalities and dysregulated motor function in patients.

5. Conclusions

The present study examined whether intervention with tDCS of the SMA would contribute
to RI enhancement. The results showed that DRI and D1 inhibition were both enhanced during
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and immediately after the intervention. In addition, D1 inhibition persisted up to 10 min after the
intervention. This study is the first to report that anodal-tDCS intervention in the SMA contributes to
RI enhancement in healthy individuals.
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