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Abstract

An efficient and informative statistical method to analyze genotype-by-environment interac-

tion (GxE) is needed in maize breeding programs. Thus, the objective of this study was to

compare the effectiveness of multiple-trait models (MTM), random regression models

(RRM), and compound symmetry models (CSM) in the analysis of multi-environment trials

(MET) in maize breeding. For this, a data set with 84 maize hybrids evaluated across four

environments for the trait grain yield (GY) was used. Variance components were estimated

by restricted maximum likelihood (REML), and genetic values were predicted by best linear

unbiased prediction (BLUP). The best fit MTM, RRM, and CSM were identified by the Akaike

information criterion (AIC), and the significance of the genetic effects were tested using the

likelihood ratio test (LRT). Genetic gains were predicted considering four selection intensi-

ties (5, 10, 15, and 20 hybrids). The selected MTM, RRM, and CSM models fit heteroge-

neous residuals. Moreover, for RRM the genetic effects were modeled by Legendre

polynomials of order two. Genetic variability between maize hybrids were assessed for GY.

In general, estimates of broad-sense heritability, selective accuracy, and predicted selection

gains were slightly higher when obtained using MTM and RRM. Thus, considering the crite-

rion of parsimony and the possibility of predicting genetic values of hybrids for untested envi-

ronments, RRM is a preferential approach for analyzing MET in maize breeding.

Introduction

Maize (Zea mays L.) is the most cultivated crop worldwide, with a global yield of 1.1 billion

tons in the 2018/2019 crop year [1]. An important advantage of this crop is that it can be culti-

vated across a range of environments and seasons. However, such aspects lead to differential

responses of genotypes to varied environmental conditions, which is known as genotype-by-

environment interaction (GxE) [2] or phenotypic plasticity [3].
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Due to the significant influence of environmental effects on the expression of quantitative

traits, multi-environment trials (MET) are an important tool to assess such effects. Variations

in phenotypic performance depend on the magnitude of GxE, which occurs when there is dis-

similarity in a genotype’s performance in different environments [4]. An environment can be

defined by biotic or abiotic factors to which plants are exposed, and can include other charac-

teristics, such as level of technology used or plant population density [5].

To assess GxE, the compound symmetry model (CSM) is the most simple and parsimoni-

ous, while the multiple-trait model (MTM) is the most complex and complete [6]. With CSM,

a small number of parameters can be estimated, however the assumptions of this model are

limited, such as the genetic correlation between environments being equal to 1 [7]. On the

other hand, MTM tends to present problems in relation to convergence due to the large num-

ber of parameters estimated [8]. Thus, the MTM became prohibitive when the number of envi-

ronments is high [6].

Random regression models (RRM) estimate the same genetic parameters as MTM but with

less parameterization [9] and capture the continuous change of a trait over time or environ-

mental gradient [8,10]. Furthermore, this approach is a powerful tool to predict reaction

norms [11,12] and, consequently, predict genotypic values of genotypes for untested environ-

ments [7]. The reaction norms consider the effects of GxE and can identify the underlying

causes, as they are plotted over an environmental gradient [13].

Selective accuracy is the most suitable approach to compare statistical methods in genetic

improvement [14], because it is directly related to the reliability of genetic selection [15].

Moreover, selection gains and heritability are also used to compare statistical methods for ana-

lyzing GxE in maize, as maximizing selection gains is the main objective of maize breeding

programs [16].

Considering the importance of GxE in maize breeding [16], effective and informative statis-

tical methods are necessary to assess MET, with the goal of improving selective accuracy and,

consequently, genetic gains with selection [8]. Recently, MTM and RRM models have been

successfully used in plant breeding to analyzing the GxE [11,17]. Thus, the objective of this

study was to compare MTM, RRM, and CSM in terms of analyzing MET for maize breeding.

Material and methods

Experimental data

The MET was carried out between January and July 2018, in Goiás State, Brazil (S1 Table).

The climate of the region is classified as humid temperate (Cwa), with dry winters and hot

summers [18]. The average annual temperature is around 21.5˚C and average rainfall is

between 1400 and 2000 mm year-1. The agricultural practices used in the trials are based on

those commonly employed for maize cultivation in the region [19].

A data set including 84 maize hybrids evaluated for the trait grain yield (GY) in four envi-

ronments (E1, E2, E3, and E4) was used (S1 Table). The trials were established using a com-

plete block design with three replications and 44 plants per plot. Plots consisted of four 4 m

rows, with a spacing of 0.40 m between plants and 0.45 m between rows. To eliminate the com-

petition effect, only the two central rows were evaluated. The GY was calculated considering

the weight of the grain produced per plot, converted to kilograms per hectare (kg ha-1).

Statistical analyses

Three classes of statistical models, with homogeneous and heterogeneous residual variance

structures, were considered: (i) CSM; (ii) MTM; and (iii) RRM fitted through Legendre poly-

nomials. The estimation of variance components and prediction of the genotypic values for
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GY were conducted via the restricted maximum likelihood/best linear unbiased prediction

(REML/BLUP) procedure [20].

(i) Compound symmetry models. CSM was determined by the following equation:

y ¼ Xr þ Zg þWgeþ e;

where: y is the vector of phenotypes; r is the vector of block-environment combinations

(assumed to be fixed), which encompasses the effects of environment and block within envi-

ronment, added to the overall mean; g is the vector of genotypic effects (assumed as random);

ge is the vector of GxE effects (random); and e is the vector of residuals (random). Uppercase

letters refer to the incidence matrices for the respective effects.

In this model g � Nð0; Is2
gÞ; ge � Nð0; Is

2
geÞ; and e~N(0,R), where: s2

g is the genotypic vari-

ance between hybrids; s2
ge is the GxE variance; I is an identity matrix with appropriate order to

the respective effect; and R refers to a diagonal matrix of residual variances (homogeneous or

heterogeneous).

(ii) Multiple-trait models. MTM was determined by the following equation:

y ¼ Xr þ Zg þ e:

In this model g~N(0,Sg�I) and e~N(0,R), where: Sg is the genotypic covariance matrix; I is

an identity matrix with the appropriate order;� is the Kronecker product; and R refers to a

diagonal matrix of residual variances (homogeneous or heterogeneous).

(iii) Random regression models. In order to use Legendre polynomials, the phenotypic

mean of each environment (μi) must be scaled to a range of -1 to +1. The environmental gradi-

ent values (Ei) were obtained with the following expression [21]:

Ei ¼ � 1þ 2½ðmi � mminÞ=ðmmax � mminÞ�:

The RRM were fitted through Legendre polynomials, considering all possible degrees of fit,

as follows:

Yijk ¼ mþ Sj þ RðSjkÞ þ
PD
d¼0
aidFijd þ eijk;

where: Yijk is the ith genotype (i = 1, 2, . . ., 84) in the jth environment (j = 1, 2, 3, 4) in the kth

block (k = 1, 2, 3); μ is the overall mean; Sj is the fixed effect of environment j; R(Sjk) is the

fixed effect of block k within environment j; d is the Legendre polynomial degree, ranging

from 0 to D (D = number of environments—1); αid is the random regression coefficient for the

Legendre polynomial for the genotype effects; Fijd is the dth Legendre polynomial for the jth

environment for the ith genotype; and eijk is the residual random effect associated with Yijk.
In the matrix notation, the above model was described using the following equation:

y ¼ Xr þ Zg þ e:

In this model g~N(0,Kg�I) and e~N(0,R), where: Kg is the covariance matrix for the coeffi-

cients of genotypic effects;� is the Kronecker product; I is an identity matrix with the appro-

priate order; and R refers to a diagonal matrix of residual variances (homogeneous or

heterogeneous).

Model selection

In order to compare the residual variance structures (homogeneous and heterogeneous) of

CSM, MTM, and RRM the Akaike information criterion (AIC) [22] was used. The difference

among the AIC values (ΔAIC) [23] were calculated to indicate which model provided the best
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fit. Significance of the random effects of CSM, MTM, and RRM were tested using the likeli-

hood ratio test (LRT) [24].

Variance components and genetic parameters

For CSM, phenotypic variance (ŝ2
p), broad-sense heritability (h2), coefficient of determination

of GxE (c2ge), and genotypic correlation across environments (rgloc), were estimated using the

following expressions:

ŝ2

p ¼ ŝ
2

g þ ŝ
2

ge þ ŝ
2

e ;

h2 ¼
ŝ2
g

ŝ2
p

;

c2ge ¼
ŝ2
ge

ŝ2
p

; and

rgloc ¼
ŝ2
g

ŝ2
g þ ŝ

2
ge

:

For RRM, the estimates of genotypic variance (ŝ2
g) and predicted genotypic values (~g ij) at

the original scale, were estimated/predicted as follows [21,25]:

ŝ2

g ¼ FijdK̂ gF
0

ijd; and

~g ij ¼
PD
d¼0
â idF

0

ijd:

For MTM and RRM, phenotypic variance (ŝ2
p) and broad-sense individual heritability (h2)

were estimated as [6]:

ŝ2

p ¼ ŝ
2

g þ ŝ
2

e ; and

h2 ¼
ŝ2
g

ŝ2
p

:

The selective accuracies (rĝ g) were calculated for CSM, MTM, and RRM, with the following

expressions, respectively [6]:

rĝ g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
1 � 1 � PEV

ŝ2
g

� �h i
1 � 1 � PEV

ŝ2
ge

� �h i

1 � ð1 � PEV
ŝ2
g
Þð1 � PEV

ŝ2
ge
Þ

v
u
u
u
t ;

rĝ g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
PEV
ŝ2
g

s

; and

rĝ g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
FijdPEVF

0

ijd

ŝ2
g

s

;
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where PEV is the prediction error variance, obtained by the diagonal elements of the inverse of

the coefficient matrix (information matrix) of the mixed model equations.

The experimental coefficient of variation (CVe) was calculated with the following expression:

CVe ¼
ŝe
mi
;

where μi is the phenotypic mean of environment i.

Genetic selection

The genotypes were ranked for each environment by each model. Then, selection gains (SG)

were predicted considering the selection of 5, 10, 15, and 20 genotypes, based on the following

expression [26]:

SG %ð Þ ¼
½ðSni¼1

GViÞ=n� � mp
mp

 !

x 100;

where: GVi is the predicted genotypic value of genotype i; n is the number of genotypes

selected; and μp is the overall mean.

The coincidence index was calculated to determine the similarity of the ranking of geno-

types by the compared models in each environment. This index was calculated as the number

of similarly ranked genotypes in the two compared models in each environment, divided by

the total number of compared genotypes. The values were given in percentage for 5, 10, 15 or

20 selected genotypes, for the three models in the four environments.

Software

Statistical analyses were performed using ASReml 4.1 Software [20] and ASReml-R package

[27] of the R Software [28].

Results

Model selection

Based on the differences among the AIC values (ΔAIC), the best fit CSM was CS.Rhe, the best fit

MTM wasMT.Rhe, and the best fit RRM was RR.2.Rhe, since a difference below 2 suggests a

competitive model with the best fit (ΔAIC = 0) [29] (Table 1). Thus, the selected models (CS.
Rhe,MT.Rhe, and RR.2.Rhe) were used to estimate the variance components and to predict the

genotypic values. Considering all models (CSM, MTM, and RRM), the best fit was RR.2.Rhe.
In addition, according to the LRT, significant genotypic effects were detected by all models

and GxE effects were detected, explicitly, by CSM (Table 1).

Variance components and genetic parameters

Based on CSM, single estimates of genotypic and GxE variance were obtained (Table 2). On

the other hand, one estimate of genotypic variance in each environment was obtained using

MTM and RRM, but with no estimate of GxE variance (Table 2). For MTM and RRM, the

highest estimates of genotypic variance were detected in environments E1 and E2, respectively.

Environment E4 presented the lowest estimates of genotypic variance, and E3 presented the

highest estimates of residual variance (Table 2).

Broad-sense heritability estimates did not follow any pattern across the evaluated environ-

ments. Considering CSM, the estimates of broad-sense heritability varied from 0.21 (E3) to
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0.29 (E4), with similar results obtained for MTM and RRM (Table 2). Regarding the mean

selective accuracies, a single estimate was obtained using CSM (0.88), while MTM and RRM

provided one estimate for each environment (Table 2 and S2 Table). E4 was the only environ-

ment in which CSM presented a higher mean selective accuracy compared to MTM and RRM

(Table 2 and S2 Table). In the other environments, the mean selective accuracies estimated by

MTM or RRM were slightly higher than CSM (Table 2 and S2 Table). Based on CSM, the

genotypic correlation across environments was 0.72.

Reaction norms

The reaction norms (Fig 1), fitted through Legendre polynomials of degree two, confirmed the

significance of the GxE interaction effects detected by CSM, because the reaction norms inter-

sected, diverged, or converged (Fig 1B). Therefore, the ranking of genotypes changed across

the environmental gradient (S3 Table) [30].

Genetic selection

Based on the three selected models, the greatest selection gains were obtained in environments

E1 and E2 (Table 3), while MTM provided the highest selection gains for all selection intensi-

ties (5, 10, 15, and 20 hybrids). In general, the predicted selection gains using RRM were

slightly lower than those predicted by MTM and higher than those predicted by CSM. As

expected, selection gains decreased as the number of selected genotypes increased (Table 3).

The coincidence indices between the selected genotypes for CSM, MTM, and RRM and

each pair of environments are shown in the Fig 2.

Our results show a decrease in coincidence index values with an increase in selection inten-

sity, and we can identify which environment had lowest coincidence values compared to other

environments and across models. This information can be used to evaluate the most divergent

Table 1. Model, Akaike information criterion (AIC), difference among AIC values (ΔAIC), and likelihood ratio

test (LRT) for genotypic effects and GxE effects (in parentheses), for grain yield (GY) evaluated for 84 maize

hybrids in four environments.

Modela kb AIC ΔAIC LRT

CS.Rho 3 14904.06 8.49 72.16�� (14.11��)

CS.Rhe 6 14895.57 0 74.06�� (11.92��)

MT.Rho 11 14888.15 6.44 211.74��

MT.Rhe 14 14881.71 0 203.61��

RR.1.Rho 2 14764.32 27.56 82.95��

RR.2.Rho 4 14751.88 15.12 91.17��

RR.3.Rho 7 14754.96 18.2 92.63��

RR.4.Rho 11 14736.76 0 105.73��

RR.1.Rhe 5 14753.98 17.22 81.08��

RR.2.Rhe 7 14738.36 1.6 90.89��

RR.3.Rhe 10 14741.68 4.92 92.23��

RR.4.Rhe 14 14748.26 11.5 92.94��

a: CS.R_ refers to compound symmetry models,MT.R_ refers to multiple-trait models, and RR.O.R_ refers to random

regression models, where R_ is assumed to be homogeneous (Rho) or heterogenous (Rhe) residual variance

structures, and O represents the Legendre polynomial order fit for the genetic effects.
b: Number of estimated parameters.

��: Significant at 0.01 probability of error type I by the chi-square test; the null hypothesis was that random effects did

not differ from zero.

https://doi.org/10.1371/journal.pone.0242705.t001
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environment isolated and study it deeper, trying to understand its characteristics and being

able to draw different breeding strategies to it.

Discussion

Model selection

Although both MTM and RRM enable the assessment of genetic and residual (co)variance

structures [6], RRM is considered a reduced and simplified MTM, in that it provides estimates

of the same genetic parameters of interest (heritability, genetic correlation), but with less

parameterization and computational effort [31]. Effective modeling of genetic and residual

Table 2. Variance components and their standard errors (in parentheses) and genetic parameters considering the compound symmetry (CSM), multiple-trait

(MTM), and random regression (RRM) models for grain yield (GY) evaluated for 84 maize hybrids in four environments.

Component/Parameter CSM MTM RRM

ŝ2
g1 324884.60 (± 67100.27) 785802.30 (± 170462.29) 467421.77 (± 122300.34)

ŝ2
g2 537714.80 (± 125347.84) 533106.91 (± 148594.44)

ŝ2
g3 313339.20 (± 115232.96) 391987.53 (± 92283.01)

ŝ2
g4 250269.40 (± 80175.67) 226533.74 (± 29299.47)

ŝ2
e1 971531.00 (± 105422.84) 852670.90 (± 94406.49) 1054350.00 (± 104702.09)

ŝ2
e2 743312.90 (± 77480.13) 752053.70 (± 82076.15) 753868.00 (± 76071.44)

ŝ2
e3 1092919.30 (± 111712.22) 1125631.50 (± 124218.84) 1208480.00 (± 115423.11)

ŝ2
e4 678742.60 (± 71483.92) 690943.60 (± 75721.01) 702445.00 (± 77022.48)

ŝge 124696.50 (± 40296.2) - -

h2
1

0.23 0.48 0.31

h2
2

0.27 0.42 0.41

h2
3

0.21 0.22 0.24

h2
4

0.29 0.27 0.24

c2ge1 0.11 - -

c2ge2 0.14 - -

c2ge3 0.10 - -

c2ge4 0.16 - -

rĝ g 1
0.88 0.89 0.91

rĝ g 2
0.91 0.90

rĝ g 3
0.82 0.91

rĝ g 4
0.83 0.81

CVe1 13.04 12.21 13.58

CVe2 11.01 11.07 11.09

CVe3 14.53 14.74 15.28

CVe4 14.74 14.87 14.99

rgloc 0.72 - -

μ1 7560.18

μ2 7832.41

μ3 7196.73

μ4 5590.70

ŝ2
gi: Genotypic variance in environment i; ŝ2

ei: Residual variance in environment i; ŝ2
ge: GxE interaction variance; h2

i : Broad-sense heritability in environment i; c2gei:

Coefficient of determination of GxE interaction effect in environment i; rĝ g i : Mean selective accuracy in environment i; CVei: Experimental coefficient of variation in

environment i; rgloc: Genotypic correlation across environments; μi: Phenotypic mean in environment i.

https://doi.org/10.1371/journal.pone.0242705.t002
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effects enables breeders to mitigate the adverse effects of GxE and maximize selective accuracy

[32]. Resende et al. [6] highlight the importance of testing different residual variance struc-

tures, since these structures can directly affect the estimation of genetic parameters and the

prediction of genetic values.

The selected models (CS.Rhe,MT.Rhe, and RR.2.Rhe) fit heterogeneous residuals (i.e., one

residual variance for each environment). Heterogeneous residuals in MET analyses were also

reported by Melo et al. [32] in analyzing progeny of the common bean, and Alves et al. [12] in

Fig 1. Reaction norms for grain yield (GY) evaluated for maize hybrids in four environments. “A” presents the reaction norms of the 84 maize hybrids, and “B”

presents the reaction norms of around 25% of the 84 maize hybrids, and detach the reaction norms intersections using yellow dots. Both scenarios highlight the five best

and worst ranked hybrids reaction norms with red color.

https://doi.org/10.1371/journal.pone.0242705.g001

Table 3. Predicted selection gains in percentage by the compound symmetry (CSM), multiple-trait (MTM) and

random regression (RRM) models for grain yield (GY) evaluated for 84 maize hybrids in four environments.

Selection intensity E1 E2 E3 E4

CSM

5 21.79 20.07 13.11 13.49

10 15.65 14.48 8.95 10.76

15 13.17 11.02 7.82 8.92

20 11.43 9.33 6.45 6.98

MTM

5 25.54 20.29 13.91 15.69

10 19.29 15.35 10.78 12.26

15 16.05 12.38 8.92 10.50

20 13.75 10.56 7.74 9.12

RRM

5 25.06 20.29 13.00 14.74

10 18.86 15.35 9.78 11.45

15 14.86 12.29 8.43 10.27

20 12.95 10.48 7.16 8.90

https://doi.org/10.1371/journal.pone.0242705.t003
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analyzing eucalyptus clones. In this study, CSM, MTM, and RRM provided estimates for 6, 14,

and 7 parameters, respectively. Thus, the parsimony (i.e., fewer parameters to be estimated) of

CSM offers a significant advantage over MTM and RRM. Despite the efficacy of the Average

Information REML [33], there are some issues regarding convergence for MTM (an unstruc-

tured model), particularly when the number of environments is high [6]. In the present study,

RRM with the highest order (order four) was equivalent to MTM. Therefore, RRM (RR.2.Rhe)
outperformed MTM (MT.Rhe) in terms of parsimony [7]. In addition, RRM enabled us to cap-

ture changes in GY continuously over the environmental gradient.

Variance components and genetic parameters

The estimates of variance components and genetic parameters using MTM and RRM are more

realistic because these models consider the heterogeneity of genetic variances among environ-

ments [6]. Based on the scale proposed by Resende and Alves [15], GY showed heritabilities of

moderate magnitude (0.15<h2<0.50) in all environments, independently of the model used.

Selective accuracy is one of the most relevant parameters in evaluating the effectiveness of

inferences of predicted genetic values [12]. This parameter is defined as the correlation

between the predicted and true genotypic values and offers evidence of experimental quality,

since it considers residual and genetic variances [14]. Based on Resende and Duarte [14], the

mean selective accuracy magnitudes ranged from high (0:70 < rĝ g < 0:90) to very high

(rĝ g � 0:90), with RRM providing very high selective accuracies in three (E1, E2, and E3) of

the four evaluated environments.

The genotypic correlation across environments (0.72) estimated by CSM, underscores the

need for more robust models for genetic selection [34], as CSM assumes a constant genetic

variance and a correlation across environments equal to one. However, these assumptions are

not prerequisites in MTM and RRM [9]; as such, the latter two models are preferred [34].

Reaction norms

Based on CSM, GxE variance was estimated directly, and its significance was verified by LRT.

For MTM and RRM, GxE variance cannot be estimated directly, since these effects are

Fig 2. Coincidence index for all environments in all models. The compound symmetry (CSM), multiple-trait

(MTM) and random regression (RRM) models are followed by each environment (E1, E2, E3, and E4). Letters A, B, C,

and D correspond to each selection scenario of 5, 10, 15, and 20 hybrids, respectively.

https://doi.org/10.1371/journal.pone.0242705.g002
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confounded with the genetic effects (ŝ2
gi
¼ ŝ2

gi
þ ŝ2

gei
). In the random regression context, the

significance of GxE effects can be determined through reaction norms; the interaction is sig-

nificant when the reaction norms intersect, diverge, or converge [30]. Herein, the significance

of the GxE effects is very clear because the ranking of genotypes was different across the envi-

ronments, independently of the model used.

Phenotypic plasticity is essential for genotype performance in changing environments [10].

The reaction norms in the present study show that the evaluated hybrids present various forms

of phenotypic plasticity. In this context, phenotypic plasticity can be considered favorable or

unfavorable changes for genotype adaptedness [30].

Genetic selection

The difference among the ranking of genotypes observed in all models is due to the GxE

effects, which have an impact on genotype performance in different environments [13]. As

mentioned by van Eeuwijk et al. [30], when genes are expressed differently in different envi-

ronments, GxE occurs.

Regarding genetic selection, in general MTM and RRM indicate slightly higher genetic

gains than the results obtained with CSM. This result can be attributed to the best statistical

properties of MTM and RRM [6]. Environments E1 and E2 stood out in terms of genetic

gains, when considering the same selection intensity, independently of the model used. These

differences among selection gains can be explained by the estimates of broad-sense heritability,

which were higher in environments E1 and E2, except for CSM in environment E4, which pre-

sented the highest estimate of broad-sense heritability. Furthermore, E1 and E2 presented the

lowest coefficients of experimental variation.

The coincidence index demonstrates some characteristics of the environmental correla-

tions. Firstly, we can see a decrease in the coincidence index with an increase in the number of

selected genotypes. Secondly, the less coincident an environment i is with the others, the

greater the variability of an environment i across the three models, and, the higher is the CVei
of the environment i, the poorer experimental quality this environment i presents.

Furthermore, CSM, MTM, and RRM can be fitted through Bayesian inference or through

Hierarchical Generalized BLUP (HG-BLUP) [35], both in the phenotypic and in the genomic

context. Thus, relevant studies can be carried out using these approaches.

Conclusion

The RRM presented the best fit and, consequently, provided more accurate estimates of

genetic parameters and predicted genetic values. Furthermore, this model enabled to generate

realistic reaction norms. Thus, the results suggest that among the three classes of statistical

models, RRM is a preferential approach for analyzing MET in maize breeding.
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