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Structural analysis of genomic and proteomic
signatures reveal dynamic expression of intrinsically
disordered regions in breast cancer

Nicole Zatorski,1,5,* Yifei Sun,1 Abdulkadir Elmas,2 Christian Dallago,3,4 Timothy Karl,4 David Stein,1

Burkhard Rost,4 Kuan-Lin Huang,2 Martin Walsh,1 and Avner Schlessinger1
SUMMARY

Structural features of proteins capture underlying information about protein evolution and function,
which enhances the analysis of proteomic and transcriptomic data. Here, we develop Structural Analysis
of Gene and protein Expression Signatures (SAGES), a method that describes expression data using fea-
tures calculated from sequence-based prediction methods and 3D structural models. We used SAGES,
alongwithmachine learning, to characterize tissues from healthy individuals and thosewith breast cancer.
We analyzed gene expression data from 23 breast cancer patients and genetic mutation data from the
Catalog of Somatic Mutations In Cancer database as well as 17 breast tumor protein expression profiles.
We identified prominent expression of intrinsically disordered regions in breast cancer proteins as well as
relationships between drug perturbation signatures and breast cancer disease signatures.Our results sug-
gest that SAGES is generally applicable to describe diverse biological phenomena including disease states
and drug effects.

INTRODUCTION

With the advent of improved sequencing technology there has been a great emphasis placed on using proteomic and transcriptomic data to

understand underlying disease etiologies and characteristics.1 This has led to successful identification of biomarkers that have advanced pre-

cision medicine2 in fields such as oncology.3 For example, single cell RNA sequencing on primary breast cancer tumors has explored the het-

erogeneity of gene expression in tumor tissue and the preponderance of immune cell response to disease.4 Analysis of gene sets from RNA

expression can be based on a comparison of the gene names found to be differentially expressed in a sample population as compared to the

control population. The alternative, well-established method for analyzing sequencing data are through the use of a gene ontology (GO)

enrichment of the differentially expressed genes, which provides a standardized vocabulary and relationship for genes.5 This gives a slightly

more nuanced view of the signature; in that it provides annotations about the function of proteins encoded by genes. In proteomic analysis,

protein names or fragments of protein sequences found using mass spectroscopy are analyzed for their relative abundances in a sample.6

These gene expression and protein expression signatures can be further combined into interaction networks that reveal insights into

gene associations when compared between different biological states.7 Despite the developments in transcriptomic and proteomic analysis

tools however, the existing methods described above do not capture functional similarities of genes based on their encoded protein struc-

tures. Because protein function and structure are so intrinsically linked, a new approach, which takes into account protein structural features,

is need.

Structural features of proteins encompass a wide variety of characteristics, which provide insight into underlying functional and evolu-

tionary relationships between proteins. Structural features range from sequence based descriptors of secondary structure8 to hierarchical

structure based classifications9 to 3D model based descriptions of structure.10 Accurate classifiers predicting structural features are avail-

able,11–15 yielding 1D or string representations for input proteins. Moreover, the 3D structure prediction method AlphaFold216 allows

genome-scale 3D structure prediction, and representations from full 3D coordinates to distance and contact maps. These descriptors can

be applied to many types of data including genomic and proteomic expression as well as proteins assessed in chemical assays such as

the IC50.

Because structural features are sequence and three-dimensional model based, they provide a more generalizable orthogonal represen-

tation that may capture underlyingmechanistic information.17 Thus, structural features of proteins can robustly describe biological function in
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a complementary but different approach to gene and protein expression data. Structural features have formed the basis of a genetic disease

protein network that encompasses 3,453 disorders and reveals nearly 300 new links between genes and disease.18 Structural features, along

with machine learning approaches, have also predicted protein-protein interactions.19 This demonstrates that network-based approaches

and structural features can be applied together to reveal previously unexpected insights. Besides their general use to construct vast interac-

tion networks, protein structural features have also uncovered patterns in specific diseases and biological perturbations. One set of structural

features in particular, i.e., the structural fold, family, and superfamily compositions of gene sets from transcriptomics data, captured similar-

ities and differences among tissues and drug treated cell lines when combined with machine learning techniques.17 Furthermore, structural

features reveal the evolution of human lung adenocarcinoma identity over the course of disease progression when applied to single cell RNA

sequencing data.20 Use of structural features has also generated new insights into drug perturbations including the relationship between the

toxicities of kinase inhibitors on cardiomyocyte-like cell lines.17 Indeed, structural information can detect off target effects of drugswhen struc-

turally similar proteins were targeted.21 This holds true for structure-derived representations of proteins, such as secondary structure, solvent

accessibility, and intrinsically disordered regions (IDRs).11

Here we tested whether representation of the gene or protein set with a variety of structural features can describe phenotypes. We first

developed Structural Analysis of Gene and protein Expression Signatures (SAGES) (Figure 1), a method of generating structural features from

gene and protein sets. The novelty of this approach stems from the large number of new features, primarily those derived from 3D represen-

tations of proteins. Furthermore, the implementation of SAGES has been streamlined compared to other feature generation software17 to

include a database updating pipeline and fewer dependencies, all while generating significantly more features. We applied SAGES, in com-

bination with random forest models and recursive feature elimination (RFE), to GTEx,22 a dataset of RNA expression data taken from human

tissue samples.We also analyzed SAGESof breast cancer gene and protein expression data fromnewpatient cohorts, as well as breast cancer

data from the Catalog of Somatic Mutations In Cancer (COSMIC)23 database of mutated and overexpressed genes. Furthermore, we applied

SAGES drug perturbation signatures from the Connectivity map24 to investigate the similarity between existing breast cancer drugs and the

breast cancer SAGES signature.

RESULTS

Structural features are predictive of normal tissue type

To test whether or not structural features can capture meaningful biological patterns, we evaluated the ability of SAGES to predict normal

tissue from GTEx using only structural features and no gene name information. SAGES takes a set of genes or proteins and, using protein

sequences and 3D models, determines the structural features of protein regions representative of the set (Figure 1). The use of 3D models

sets SAGES apart from other feature generationmethods.17 SAGES was applied to the GTEx database to generate a structural feature set for

each tissue sample. For each of the 30 tissue types in GTEx, we trained three random forest models using different input features, including

structural features, gene names, and a combination of structural features with gene names (Figures S1 and S2). To reduce redundancy in pro-

tein similarity in the training and test sets, only the representative protein from each CD-HIT25 cluster with a threshold of 40% was included in

the features. Wemeasured average performance for all tissues following 10-fold cross validation (Table 1). Notably, accuracy and AUROC are

97% for all groups, including those trained on a combination of structural features and gene names.

Interestingly, because performance of the model trained on genes was already high, a comparable performance with structural features

alone that does not include any specific information on the genes is notable. For example, in the model trained on normal breast tissue

SAGES the AUROC and F score were 0.949G 0.012 and 0.951G 0.011, respectively (Figure 2), while the gene name trained model obtained

similar performance (0.949G 0.014 and 0.951G 0.013, respectively) (Table S2). This demonstrates that, while gene names contain adequate

information for recapitulating tissue type, remarkably, structural features alone also contain sufficient information for recapitulating biological

identity of tissues. The breast tissue prediction model trained on both types of features preformed similarly to the structural features trained

model with AUROC and F-score of 0.951G 0.016 and 0.953G 0.015 (Figure 2). This is unsurprising considering that it uses the same structural

features in addition to the gene names. SAGESwas further applied to independent normal human tissue data from the ARCHS426 human and

mouse tissue database. On average, predictive performance on the external dataset demonstrates that models trained onGTEx SAGES data

outperform those trained on gene names or gene names and SAGES data combined. Predictor performance of normal tissue type using

structural features compared to gene names alone demonstrates that the orthogonal information based on underlying protein characteristics

is comparable to the information used in gene expression analysis.

Structural features reveal characteristics of normal breast tissue

To interrogate the contribution of different features to the model, we used RFE27 to analyze the normal breast tissue predictor trained on a

combination of structural features and genes from GTEx samples (Table 2). Using all features as input to RFE allows us to explore the relative

importance of genes and structural features when used in tandem. We observe that prominent genes are differentially expressed in normal

breast tissue, including APOD, a component of HDL; FABP4, a fatty acid binding protein; SAA1, serum amyloid; and TIMP3, a metallopepti-

dase inhibitor. The identification of genes such as APOD and FABP4, which are known to be associated with breast tissue, increases our con-

fidence in the result.28 Other genes such as TIMP3 and SAA1 are knownmore for their breast cancer prognostic value29,30 and further support

the robustness of the feature selection process.

Notably, features related to IDRs and conserved regions contributed greatly to the breast tissue predictor, even among all features,

including gene names as well as other structural features (Table 2). These include the composition of glutamine, serine, and glutamate in
2 iScience 27, 110640, September 20, 2024
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Figure 1. SAGES workflow

(A) SAGES takes as input a set of genes or proteins.

(B) For each protein, SAGES determines structural features of protein regions from protein sequences and 3D models.

(C) SAGES normalizes features by the magnitude of their corresponding protein’s expression level.

(D) Sample structural features are then compared to a background using p values from a Fisher’s exact test or Welch’s t test. Bonferroni and false discovery rate

corrected significance levels are provided based on the found feature size.

(E) The output is a vectorized depiction of the structural features of a transcriptomics or proteomics sample that can be used as the input for biological analysis of

samples and machine learning applications.
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the protein list; threonine andphenylalanine in conserved regions of proteins; glutamate residues in beta sheet regions; and histidine residues

in the IDRs. In particular, this reveals that certain amino acids are differentially expressed in proteins that define breast tissue. For example,

glutamine can potentially contribute to protein structural instability when found in IDRs,32 and histidine, is known to be disorder promoting.33

In normal breast tissue, many of the important genes selected through RFE are contributed to this abundance of IDRs such as FABP4,34,35

SAA1,36,37 and TIMP3.38 Taken together, this demonstrates a trend of enrichment of proteins with IDRs and disorder related features in breast

tissue.

Breast cancer structural features differ from those of normal breast tissue

Transcriptomic data reveal an overexpression of proteins with IDRs and intrinsically disordered binding regions: Experimentally
derived samples

Human breast tumor samples and normal breast tissue controls were collected from 23 individuals during their surgical treatment procedures

and sequenced.We compared SAGES of these biopsied breast tumors to those of normal tissue samples from the same individual to identify

changes in the type of protein features overexpressed in the diseased tissue. The SAGES analysis of all 23 patients, as well as the following

subsets: HER2 negative patients, progesterone receptor (PR) negative patients, estrogen receptor (ER) negative patients, Taxotere, Carbo-

platin, Herceptin, Perjeta (TCHP) treated patients, and AC-T treated patients, all demonstrated statistically significantly different protein fea-

tures from background. Interestingly, the most highly represented features in overexpressed genes in breast cancer patients are long IDRs

and IDRs that interact with other proteins (intrinsically disordered binding regions) (Figure 3A). This trend is observed both in the agglomer-

ation of all 23 samples and specifically in HER2 negative patients (Figure 3B).

The important role of IDRs in tumorigenesis of a wide variety of cancers has previously been highlighted.39 For example, many of the cor-

responding proteins with IDRs associated with cancer have been implicated in cell signaling pathways.40 Consistent with these observations,

in breast cancer in particular, many known signaling exhibit enrichment of IDRs such as HER2,41 SIPA1,42 and BRCA1.43 An examination of

domains, folds, superfamilies, and families that are expressed in the breast cancer samples but not their corresponding normal breast tissues

reveals cell signaling related substructures such as the PDZ domain44 and the tyrosine-protein kinase catalytic domain.45 Additional features

of note include zinc finger domains and immunoglobulin substructures, which are both implicated in breast cancer progression.46,47 The

immunoglobulin V-set domain is highly overexpressed in the set of breast cancer with PR negative disease and does not appear in HER2

or ER negative patients (Figure 3B). Interestingly, patients treated with TCHP had some features that were overexpressed compared to
Table 1. Performance of tissue type predictors with different input features

Features Trained on Tissue Type Accuracy AUROC F score Precision Recall

Structural Features and Gene Names Average of all tissues 0.971 G 0.064 0.971 G 0.064 0.972 G 0.056 0.969 G 0.074 0.979 G 0.05

Gene Names Average of all tissues 0.968 G 0.065 0.968 G 0.065 0.97 G 0.058 0.966 G 0.076 0.976 G 0.052

Structural Features Average of all tissues 0.967 G 0.063 0.967 G 0.063 0.97 G 0.054 0.965 G 0.077 0.979 G 0.049

Averaged performance of random forest tissue type predictors on all thirty GTEx tissues following 10-fold cross validation. The Structural Features rows mark the

performance obtained when the model was trained using only structural features. The gene name row denotes the performance of the model trained on one hot

encoded gene name symbols. The structural features and gene names row represent the performance of the model trained on both structural features and gene

names.

iScience 27, 110640, September 20, 2024 3



Figure 2. SAGES performance in predicting tissue from GTEx

Graphs depicting performance of the random forest predictor of normal breast tissue trained on structural features, gene names, and a combination of all

features based on GTEx samples. The line labeled random represents performance of a model that has no skill and instead randomly selects a classification.

(A) The receiver operating characteristic curve (ROC) for the breast tissue prediction model trained on different features, which all perform comparably. The

AUROC for this model is 94.9% for training on structural features, 95.1% for training on gene names, and 95.3% for training on all features.

(B) The precision recall curve for the breast tissue prediction model trained on different features. The precision and recall for each of the feature sets used to train

the model are 92.8% and 97.5% for structural features, 92.6% and 98.0% for gene names, and 93.0% and 98.0% for all features combined.
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background (Figure S3A), while those treated with AC-T only had features that were under expressed at a low magnitude compared to back-

ground (Figure S3B). These trends provide motivation for further exploration of SAGES features in drug treatment.

These experimentally determined breast cancer gene expression samples were further analyzed using GOwith Bonferroni correction and

the Benjamini-Hochberg48 procedure. GO revealed no difference between diseased tissue and healthy breast tissue in the same patients.

This differs from the SAGES analysis discussed previously, which demonstrated statistically significantly different features between diseased

and non-diseased tissue. Use of GTEx breast tissue as the control for the breast cancer gene expression samples revealed overexpression of

proteins involved in the cell cycle (0022402, 0007049) andmetabolism (0090304, 0043170). As cancer is associatedwith cell cycle dysregulation

and unchecked growth,49 the abundance of gene expression with theses assignments is unsurprising. These genes correspond to proteins

that are found throughout all parts of the cell including the nucleus (0005634), cytosol (0005829), membrane (0016020), and intracellular or-

ganelles (0043229). This wide spread localization is consistent with protein translocation during signaling processes.50

Transcriptomic data reveal an overexpression of proteins with IDR and intrinsically disordered binding regions: COSMIC database

SAGES captured breast cancer disease trends across datasets frommultiple sources as seen in the analysis of breast cancer gene expression

data from COSMIC,23 an established cancer mutation database. Comparisons between mutated and unmutated but overexpressed breast

cancer genes from COSMIC against normal breast tissue gene expression from GTEx demonstrated clear overexpression of IDRs and intrin-

sically disordered binding regions (Figure 4), in agreement with the analysis of the patient-derived breast cancer gene expression samples

(Figure 3).

Further, SAGES of the COSMIC data also provide insight into the difference between breast cancer genes that aremutated and those that

are overexpressed but have unchanged amino acid sequences. Particularly, the most common mutations include: missense substitutions,

nonsense substitutions, frameshift insertions, and frameshift deletions.23 Both sets (i.e., mutated genes and overexpressed genes) over ex-

press proteins with long IDRs and intrinsically disordered binding regions, and the mutated genes are also enriched with immunoglobulin

subtype domains as compared to normal breast tissue. Overall, the mutated genes are more different, in terms of number of statistically

significantly different features and log ratio of expression, from normal background breast tissue than the unmutated genes. Interestingly,

both mutated and overexpressed gene sets are transmembrane helix depleted.

Addition of GO enrichment analysis further differentiates the roles associated with the mutated and unmutated but overexpressed breast

cancer genes. Mutated breast cancer genes are associated with adhesion (such as 0007156, 0098742, 0031344), signaling (such as 0099177,

0050804, and 0007267), cellular differentiation (such as 0000902, 0007420, and 0048858), metabolism-including those of lipids, (such as

0019222, 0044237, and 0044238), signaling related to immune response (such as 0002757, 0002429, and 0002768), and regulation of cell death

(0010941). Localization of these proteins primarily coincides with the plasma membrane (e.g., 0098590) and the extracellular region (e.g.,

0005615). Notably, the mutated genes were implicated in processes related to adhesion. This is unsurprising due to the loss of cellular adhe-

sion associated with most cancers.51 Overexpressed breast cancer genes that have no amino acid sequence changes are associated with

metabolism (such as 0008152, 0044238, and 0006629), development (such as 0030154), signaling (such as 0023052 and 0007165), regulation

of cell death (0010942), and immune response (such as 0045087). Some of these proteins are associatedwith the extracellular space (0005615),

however, many others are associated with the endoplasmic reticulum and ribosomes (e.g., 0005788 and 0005840). The localization to organ-

elles related to protein synthesis is supported by the known increased metabolic activity of cancer cells.52 Importantly, both of these RNA

expression derived samples have processes related to signaling.

Proteomic data reveal an overrepresentation of transmembrane proteins

Proteomic data, which can reveal differential protein abundance when compared to transcriptomic data,53 provides a unique view of ex-

pressed breast cancer protein features. This supplements our understanding of breast cancer proteins, which are revealed through gene
4 iScience 27, 110640, September 20, 2024



Table 2. Ranking and description of features found most informative in the breast tissue predictor

Ranka Feature Nameb Feature Descriptionc

1.3 FABP4 Fatty acid binding protein

1.7 APOD Component of HDL

3.3 SAA1 Serum amyloid

6.6 Number of glutamines in protein Structural feature

8.9 AZGP1 Zinc binding glycoprotein

9.8 Number of threonines in conserved regions Structural feature

9.8 CD59 CD59 blood group

13.9 Number of phenylalanines in conserved

regions

Structural feature

16 RPL23 Ribosomal protein

18.1 XBP1 X box binding protein

18.4 Number of serines in protein Structural feature

18.7 MGP Matrix Gla Protein

19.7 VIM Vimentin

22.2 TIMP3 TIMP metallopeptidase inhibitor 3

22.8 TXNIP thioredoxin interacting protein

23.3 C7 complement c7

25.3 IGFBP4 insulin like growth factor binding protein 4

26.5 SERPING1 serpin family g member 1

29.1 Number of glutamic acids in protein Structural feature

32.1 PNPLA2 Patatin Like Phospholipase Domain

Containing 2

32.2 C10orf10 DEPP1 Autophagy Regulator

32.5 Number of glutamic acids in sheet region Structural feature

34.6 GSN Gelsolin

34.6 RPLP2 Ribosomal Protein Lateral Stalk Subunit P2

37.4 Number of histidines in disordered regions Structural feature

The twenty-five features that contributed most to the random forest model predicting normal breast tissue from structural features and gene names of GTEx

samples.
aRank marks the lowest value of rank corresponds to the feature that contributes most to the model as assigned using RFE with 10 random seeds.
bFeature Name represents contains the gene name symbol or structural feature name that corresponds with the rank in that same row.
cFeature Description corresponds to additional information about the function or name of the feature in that row. Gene feature descriptors were summarized

from the Human Gene Database Gene Cards version 5.10.31
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expression analysis. Proteomics data from 17 breast cancer tumors with normal tissues from the same patients was analyzed using

SAGES.54 The result showed the presence of proteins with transmembrane helix regions containing a larger number of amino acids on

average and immunoglobulin domains (Figure 5). The proteomics data revealed different patterns in features from those calculated using

gene expression signatures from the 23 different breast cancer patients sequenced for this study and the COSMIC gene expression data

such as presence of the kinase regulatory SH3 domain,55 with the exception of the immunoglobulin like domain. Interestingly, both domain

types are often found in receptor tyrosine kinases (RTKs), which play a key role in signaling.56 Notably, features from the proteomics breast

cancer dataset had shorter IDRs and binding regions that are intrinsically disordered. Because these partially intrinsically disordered pro-

teins are often involved in cell signaling, such as RTKs, they are tightly regulated and have short half-life.57 The difference in structural

features found in the analysis of gene and protein expression of breast cancer therefore can be attributed to the transient nature of

signaling proteins, which contain IDRs.

This absence of transient signaling proteins in the proteomic sample is reflected in the GO analysis. On a biological process level,

the proteins in breast cancer had functions related to metabolic processes (e.g., 0044281) and transcription (e.g., 0006351, 0097659).

One of the areas where these proteins localize in the cell is the nucleus, specifically chromatin (0000785) and chromosomes

(0005694). This aligns with the biological processes related to transcription. The proteins also localize to the extracellular space

(0005615), which could be related to the increased presence of proteins with transmembrane helices, and the endoplasmic reticulum

lumen (0031093). Notably absent from the overrepresented proteins found in the proteomic analysis of breast cancer are the GO terms
iScience 27, 110640, September 20, 2024 5
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Figure 3. Structural features of normal and breast cancer tissue from newly generated human patient samples

Average log ratios of SAGES features that are statistically significantly different in breast cancer samples as compared to normal breast tissue. The log ratio of

sample divided by background for each feature was averaged if the calculated p value for that feature was less than the Bonferroni adjusted significance level.

Error bars represent the standard deviation of the values used to calculate the average. If there was only one instance of feature found to be statistically

significant, the error bars were set to zero. Features that are not families, folds, superfamilies, domains, or frequency counts of a secondary structure consist

of the number of amino acids within the protein that make up the secondary structure.

(A) The average log ratio of SAGES features for gene expression from 23 breast cancer tumors compared to normal breast tissue from the same individuals.

(B) The average log ratio of SAGES features for gene expression from 23 breast cancer patients separated by negative receptor status.
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related to any cellular signaling, as well as cellular adhesion. Taken together, our results suggest that combining analyzing using en-

richments of both GO and structural features generated with SAGES supports the correlation between lack of signaling molecules

and IDRs in the proteomic samples.

SAGES captures similarity between perturbation signatures of existing breast cancer therapies and disease

It has been proposed that gene signatures can be applied for drug repurposing.58 In particular, the signature reversion principle (SRP) is

based on the assumption that drug perturbation gene expression signature has a negative correlation with a disease gene

expression signature.58 To investigate the extension of the SRP, we applied SAGES to gene and protein expression changes induced

by breast-cancer drugs and breast cancer. The number of statistically significantly different SAGES features between the drug pertur-

bation and both genomic and proteomic breast cancer analyses were calculated and averaged for breast cancer treatments and all

other therapeutics. Comparisons between drug perturbation with proteomic and genomic breast cancer backgrounds show that breast

cancer drugs produce a perturbation in cell lines with SAGES features that are more similar to those obtained from breast cancer than

those obtained from other drugs (Figure 5A). With the proteomic background, the breast cancer drugs had a lower average number of

SAGES features with statistically significant differences (314) than other drugs (321) (p = 0.00070). With the genomic background, the

breast cancer drugs had a lower average number of features with statistically significant differences (323) than other drugs (327)

(p = 0.050).

This increased similarity between drug perturbation and breast cancer is captured in a gene-protein level comparison between

the perturbations and backgrounds but not in a gene-gene level comparison (Figure 6B). When the Jaccard coefficients of the

breast cancer (0.0060) and other (0.0055) drug genes are compared to the proteomic breast cancer background, there is smore

similarity to the background in the breast cancer drug genes (p = 0.00102). However, this trend of SAGES features and proteins

of breast cancer drug perturbations being more similar to the targeted disease is not recapitulated in the comparison of gene

expression of drug perturbations and breast cancer for both drug groups. Breast cancer drugs have an average Jaccard coefficient

of 0.00575 compared to other drugs with a Jaccard coefficient of 0.00572 (p = 0.77). Because drug repurposing using perturbation

signatures is classically done at a gene level,59 the emergence of this association at the protein and structural level demonstrates

the power of the orthogonal information provided with SAGES and raises a potential application of SAGES in the signature based

repurposing sphere.
6 iScience 27, 110640, September 20, 2024



Figure 4. Structural features of normal and breast cancer tissue from the COSMIC database

The average log ratio of SAGES features for gene expression of mutated and unmutated but over expressed genes from COSMIC breast cancer tumors

compared to normal breast tissue from GTEx. Features are displayed by size of average log ratio level for mutated genes, where positive values correspond

to features with increased length or frequency in breast cancer compared to normal breast tissue. Due to the fact that the COSMIC data were based on a set

of samples combined before analysis, there are no error bars.
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DISCUSSION

Genomic and proteomic data contains valuable information about biological states. Currently, gene expression is assessed on a gene name

similarity basis or through the use of enrichment of GO annotations in gene lists, however, these existing methods do not capture underlying

structure based functional information.

Application of features derived from different levels of protein structure can greatly enhance transcriptomic analysis. SAGES is distinct

from existing methods in that it provides both sequence and 3D structure based orthogonal data, which supplement transcriptomic bio-

logical insight (Figure 1). Furthermore, SAGES generates a large number of these features. These detailed, structural level, descriptions of

proteins encoded by the genes in the input protein dataset provide orthogonal information to gene names and GO functional

descriptions.

The analysis of normal tissue transcriptomic data from GTEx revealed the generalizability of structural features to all tissue types with the

development of tissue type random forest predictors (Table 1). Use of features alone captured just asmuch information about biological state

as the traditionally used gene names. Feature selection applied to the normal breast tissue samples further revealed that, interestingly, amino

acid composition of IDRs was shown to play an informative role in breast tissue prediction (Table 2).

We applied SAGES tomultiple breast cancer datasets to demonstrate how this method can be used to inform our understanding of breast

tissue and tumor biology. SAGES, applied to newly collected samples excised from 23 women during their breast cancer treatment surgeries,

revealed structural and functional differences between tumor and normal tissue. Notably, proteins with IDRs and intrinsically disordered bind-

ing regions are overexpressed in diseased breast cancer tissue (Figure 3). This was supported by SAGES analysis of breast cancer genes that

are mutated and overexpressed in breast cancer according to COSMIC (Figure 4). GO analysis of these samples reveals that the proteins that

are overexpressed in breast cancer and contain these IDR features are associated with cell signaling, metabolism, and immune response.

Uniquely, mutated breast cancer proteins also were associated with cellular adhesion. Proteomic analysis of human breast cancer samples

revealed a different feature landscape, which was correlated with a loss of representation of proteins related to cell signaling (Figure 5).

This is thought to be due to the transient nature of these cell signaling proteins. This SAGES difference can be traced to the underlying exper-

imental gene expression and protein expression results (Figure S4; Table S4). Analysis with Jaccard similarity60 of breast tissue genomic and
iScience 27, 110640, September 20, 2024 7



Figure 5. Structural features of primary breast tumors compared to matched normal tissues from a global proteomics dataset quantified using mass

spectrometry

The average log ratio of SAGES features for proteomics of 17 breast cancer tumors extracted from surgical patients compared to normal breast tissue from the

same patients. Negative values correspond to features with decreased length or frequency in breast cancer compared to normal breast tissue.

Error bars represent the standard deviation of the values used to calculate the average. In the case of a single instance of a feature having statistical signficance,

the error bars are set to zero.
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proteomic data demonstrates that there is very little overlap between the top 250 overexpressed genes (Figure S4A). Remarkably, application

of SAGES improves similarity of breast cancer signatures across data sources (Figure S4B), once again demonstrating the usefulness of this

tool in biological analysis.

SAGES was used to interrogate drug perturbation signatures from the Connectivity Map and the resulting analysis showed breast can-

cer drug perturbation signatures are more similar to breast cancer expression signatures on the feature and protein level than other drugs

(Figure 6). This, along with SAGES analysis of notable features in breast cancer patients before receiving AC-T or TCHP treatment (Fig-

ure S3), has interesting implications for SRP. This further demonstrates the capacity for structural features to capture both established

and novel underlying biological function. The scope of SAGES is wide and we anticipate that it has the potential for a vast number of future

applications.
Figure 6. Perturbation signatures of existing breast cancer drugs and drugs for all other indications compared to breast cancer signatures

Difference between connectivity map breast cancer and other drug perturbation signatures compared to signatures derived from breast cancer COSMIC gene

expression and experimental proteomics expression.

(A) Counts of statistically significant different features between SAGES of breast cancer and drug perturbation.

(B) Jaccard coefficient representing similarity of drug perturbation signatures to gene and protein breast cancer signature backgrounds.

8 iScience 27, 110640, September 20, 2024



ll
OPEN ACCESS

iScience
Article
Limitations of the study

This work investigates the structural features of genomic and proteomic signatures of tissues with an emphasis on breast cancer and tissue.

Original experimental data for genomic and proteomic samples originates from different groups of 23 and 17 individuals, respectively. In or-

der to increase the sample size and therefore the generalizability of this study, additional open-source genomic and proteomic datasets were

utilized.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Breast cancer gene expression Author generated data NCBI GEO: GSE227679

Software and algorithms

SAGES Presented here and GitHub:https://github.com/

schlessinger-lab/structural_features

1.0

Normal tissue predictor Presented here and GitHub: https://github.com/

schlessinger-lab/Structural-Analysis-of-

Genomic-and-Proteomic-Breast-Cancer-Signatures

1.0

Tissue feature selection Presented here and GitHub: https://github.com/

schlessinger-lab/Structural-Analysis-of-

Genomic-and-Proteomic-Breast-Cancer-Signatures

1.0

Data cleaning code Presented here and GitHub: https://github.com/

schlessinger-lab/Structural-Analysis-of-

Genomic-and-Proteomic-Breast-Cancer-Signatures

1.0

Paper figure generation code Presented here and GitHub: https://github.com/

schlessinger-lab/Structural-Analysis-of-

Genomic-and-Proteomic-Breast-Cancer-Signatures

1.0

Disordered regions IUPRED 2a; RRID: SCR_014632

Disordered binding regions ANCHOR 1

Transmembrane helical regions TMHMM 2.0; RRID: SCR_014935

Globular regions PredictProtein 2021

Helical regions PredictProtein 2021

Positive amino acid containing regions PredictProtein 2021

Negative amino acid containing regions PredictProtein 2021

Coiled-coil regions PredictProtein 2021

Sheet regions PredictProtein 2021

Loop regions PredictProtein 2021

Conserved regions PredictProtein 2021

Non-conserved regions PredictProtein 2021

310 helical regions DSSP 2; RRID: SCR_002725

Alpha helical regions DSSP 2; RRID: SCR_002725

Beta bridge regions DSSP 2; RRID: SCR_002725

Beta bulge regions DSSP 2; RRID: SCR_002725

Turn regions DSSP 2; RRID: SCR_002725

High curvature regions DSSP 2; RRID: SCR_002725

Distances from the center of mass biopython’s pdb parser 1.79; RRID: SCR_007173

Aggregation prone regions Aggrescan3d 2.0

Gene ontology Panther classification system 18.0; RRID: SCR_002811

Other

Normal tissue RNA expression data The Genotype-Tissue Expression project (GTEx) 8.0; RRID: SCR_013942

Independent normal tissue RNA expression

data for machine learning predictor

RNA-seq and ChIP-seq sample and

signature search (ARCHS4)

Downloaded July 2, 2023; RRID: SCR_015683

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Catalogue of Somatic Mutations In Cancer COSMIC V97; RRID: SCR_002260

Connectivity Map LINCS NCBI GEO: GSE92743, GSE70138,

GSE92743; RRID: SCR_002639

Breast cancer proteomics GDC data portal: https://portal.gdc.cancer.gov/ RNA-seq data for CPTAC cohorts;

RRID: SCR_014514
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead contact, Nicole Zatorski (Nicole.zatorski@icahn.mssm.edu).

Materials availability

� RNA-seq data for CPTAC cohorts are available at the GDC data portal: https://portal.gdc.cancer.gov/.
� All other previously publicly available data sets that the authors have used are described in the key resources table.
Data and code availability

� All original code has been deposited at GitHub: https://github.com/schlessinger-lab/Structural-Analysis-of-Genomic-and-Proteomic-

Breast-Cancer-Signatures- and https://github.com/schlessinger-lab/structural_features. The code is publicly available as of the date of

publication.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Structural features

SAGES calculates sequence-based features including length, frequency and amino acid composition from a variety of sources. These include

sequence predictions such as: IDRs predicted with IUPRED2a61; protein binding regions in intrinsically disordered peptides predicted with

ANCHOR62; transmembrane helical regions predicted with TMHMM 2.063; and globular, helical, positive amino acid containing regions,

negative amino acid containing regions, coiled-coil, sheet, loop, conserved, and non-conserved regions predicted with PredictProtein.8

SAGES also assigns SCOPe9 and UniProt64 folds, families, superfamilies, and domains using HHpred,65 with optimized parameters deter-

mined in previous work.17 SAGES applies the same amino acid frequency calculation to features derived from structural models generated

using AlphaFold216 (default parameters): 310 helix, alpha helix, beta bridge, beta bulge, turns, and high curvature regions from the Dictionary

of Protein Secondary Structure (DSSP)10; distances from the center of mass from biopython’s pdb parser66; and aggregation propensity from

Aggrescan3d.67 Structures were determined locally using the AlphaFold2 algorithm. Features of each protein are compiled in a novel data-

base, which SAGES accesses. This database can be updated with scripts found in the SAGES GitHub folder GitHub: https://github.com/

schlessinger-lab/structural_features, titled update_alphafold.db.py and udate_databases.py.

Breast cancer proteomics and transcriptomics

Breast tumor tissue and normal control breast tissue was excised from 23 breast cancer patients during surgery. The human specimen collec-

tion procedure was approved by the Institutional Review Board of Icahn School of Medicine at Mount Sinai / Mt. Sinai Health Care System

under the study ID HSM#-00135. Samples were then prepared and sequenced according to standard protocol.68 The women enrolled

had the following demographics: 13 were post-menopausal, 4 were Estrogen Receptor (ER) negative, 16 were Human Epidermal Growth Fac-

tor Receptor (HER2) negative, 5 were Progesterone Receptor (PR) negative, 16 had invasive ductal carcinoma, and 2 had internal mammary

chain involvement. Five women received treatment prior to sample collection. One womanwas administered Taxotere, Carboplatin, Hercep-

tin, Perjeta (TCHP). Three women were administered Adriamycin, cyclophosphamide, Taxol (AC-T). One woman was administered Anastro-

zole. Global proteomics data fromprimary breast tumors andmatched normal tissues were generated throughmass-spectrometry (MS)69 and

pre-processed as previously described.54 Data can be found at GSE227679. Data pertaining to mutated and overexpressed genes in human

breast cancer was also sourced from the Catalogue of Somatic Mutations In Cancer (COSMIC).23 This was divided into two sets, one contain-

ing only themost commonlymutated genes in breast cancer and the other containing only unmutated, overexpressed genes in breast cancer.

For weighting purposes, the number of times a gene wasmutated compared to the total number of times that gene was expressed served as

the weight for the first set and the number of times the gene was overexpressed was used as the weight for the second set. Breast cancer

proteomic data can be found at GDC: https://portal.gdc.cancer.gov/.
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METHOD DETAILS

Structural feature generation

Transcriptomic and proteomic signatures can be represented by the structural and functional features of the proteins transcribed in the gene

set (Figure 1). These structural features can be derived from protein sequence or from three-dimensional, resolved structure. SAGES calcu-

lates sequence based features including length, frequency and amino acid composition from sequence predictions from sources described in

the key resources table. SAGES applies the same amino acid frequency calculation to features derived from structural models generated us-

ing AlphaFold216 with default parameters). These models were created locally for all sequences using the AlphaFold2 algorithm. SAGES de-

termines the number of amino acids (length), the number of separate instances of a feature type (frequency), and the number of each type of

amino acid (composition) for secondary features. For all secondary features SAGESuses a cutoff of 50%predictedprobability according to the

various feature prediction tools listed above when determining amino acid content of a region. Unlike the other features, aggregation pro-

pensity is denoted with a range of values that can be negative or positive rather than a percentage of predicted probability so all amino acids

with positive values are included in the analysis. Additionally, SAGES tabulates the total number of contacts as well as the minimum,

maximum, and average amino acid distance from the protein’s center of mass. (Figure 1B) All features are listed in Table S1.

SAGES normalizes the features using the expression level of the input genes or proteins which correspond to each feature. This weighted

average normalization ensures feature frequency adequately reflects prominence within the sample. SAGES further normalizes the output

feature values using the number of genes or proteins input in the sample to ensure consistency between different sized samples. Family,

fold, superfamily, and domain were not normalized due to the underabundance of these features within each input set.
QUANTIFICATION AND STATISTICAL ANALYSIS

Structural feature statistical analysis

The statistical tests included in the method compare the current sample to a background sample (Figure 1C). The preloaded background

consists of the entire human proteome from all GTEx V8 samples.22 This background was replaced with a control background matched to

each experimental sample in the breast cancer feature analysis. The frequencies of categorical variables are compared to the background

using the scipy70 statistical package’s Fisher’s exact test to determine a p value. A two tailed, type two, t test was used to determine the t

value for averages of lengths of secondary structures compared to background Equation 1. Because variance between sample and back-

ground was not assumed to be equal, a Welch’s t-test was used.71

t value =
background mean � sample meanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

standard deviation background2

background size
� standard deviation sample2

sample size

s (Equation 1)

The scipy statistical package’s t.sf function with degrees of freedom equal to sample size minus two was used to determine the p value

from the t value.

The p value cutoff was set at 0.05 and Bonferroni corrected72 according to the number of found features in that set of feature types. For

families, folds, superfamilies, and domains, this means the number of each of those types of features found. For this correction, number of

amino acids and secondary structure elements were grouped together and always summed to 219 leading to an adjusted p value of 0.000228.

The p value cutoff for the averages was corrected by 13 resulting in an adjusted value of 0.00385. The statsmodels stats.multitest package’s

false discovery rate correction,73 was also calculated to provide an additional metric for determining significance for large samples. Base 2 log

ratios of feature frequency in samples over background was also provided for categorical variables (Figure 1C). The code for structural fea-

tures can be found on the following GitHub: https://github.com/schlessinger-lab/structural_features.
Prediction of normal tissues

Structural features were used to predict tissue type from RNA expression of normal tissues. Furthermore, the breast tissue model specifically

was also used to highlight important structural characteristics of proteins that were highly predictive in this tissue type (Figure 1E). The top 250

most highly expressed genes for each GTEx sample were extracted from GTEx V822 along with their level of overexpression, which is defined

as the log fold change greater than zero. As seen in previous work, this is a sufficiently sized number of genes for capturing underlying tissue

specificity.17 Structural features (section structural features are predictive of normal tissue type) for each sample were determined. There were

3,532 structural features. In order to reduce dataset redundancy, CD-HIT25 analysis was conducted with a similarity 40%, the lowest possible

allowable threshold. CD-Hit identified 3647 unique clusters of proteins corresponding to the genes in the tissues out of the initial 5,376 genes.

Non-representative proteins were excluded from the training features. Sample features weremin-max normalized (Equation 2) in preparation

for the tissue type prediction where xi equals the value of a feature for a sample and x equals the set of values for all samples corresponding to

that feature.

normalized value =
xi � min ðxÞ

maxðxÞ � min ðxÞ (Equation 2)
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For each of the 30 tissue types, the samples were split into 90/10 training and test sets with equal number of positive and negative labels.

The scikit learn version 0.24.1 random forest classifier was used to predict whether a sample could be classified as that type of tissue. The

random forest classifier had the following parameter values.
Argument Name Argument Input Value

criterion to measure split quality gini impurity

maximum depth none

minimum sample split 2

minimum samples leaves 1

minimum weight fraction leaf 0

maximum features square root of the number of features

maximum leaf nodes none

minimum impurity decrease 0

samples bootstrap

generalization score no out of bag samples used for estimation

number of parallel jobs none

verbosity none

warm start false

class weights none

pruning complexity parameter 0

maximum samples none
This classifier fits 100 decision trees on data subsets and averages them into a meta predictor to improve performance. Following 10-fold

cross validation with random seed 0-9, performance wasmeasured using: the area under the receiver operating characteristic curve (AUROC),

accuracy Equation 3 where yi is the value of the ith sample and y 0i is the corresponding predicted value, precision Equation 4 where TP is true

positives and FP is false positives, recall Equation 5 where FN is false negatives, and F-score Equation 6. Standard deviations for all metrics

were computed using python.statistics stdev.

accuracyðy; y 0Þ =
1

nsamples

Xnsamples � 1

i = 0

1
�
y 0
i = yi

�
(Equation 3)
P =
TP

TP+FP
(Equation 4)
R =
TP

TP+FN
(Equation 5)
F1 = 2
P R

P+R
(Equation 6)

Performance of the classifiers trained on GTEx was also validated on an external dataset - ARCHS4,26 a human and mouse tissue dataset.

Predictors for each tissue type were evaluated in a 10-fold cross validation fashion using AUROC and Equations 3, 4, 5, and 6 on the data type

originally used to train the predictor.

Additionally, the most predictive features for normal breast tissue were determined using sklearn recursive feature elimination (RFE) with

random forest as the estimator.27Weights were assigned to all features and then the less important features were eliminated recursively until a

single feature remained. To allow for full interrogation of the expressed proteins, no proteins were excluded on the basis of structural sim-

ilarity. This generated a ranking of features based on contribution to the model. RFE was conducted 10 times with random seeds 0-9 and

rankings were summed. The 25 features with the lowest score, and therefore best rank are reported in Table 2.
Breast cancer analysis

The 250 most highly expressed genes were extracted from each genomic and proteomic sample and SAGES was applied (Figure 1). Each

patient breast tumor sample had amatching normal breast tissue control from the same patient, which was used to generate the background

for the statistical analysis described as part of the SAGES method (Figure 1C). The SAGES of the top 250 genes from all GTEx normal breast
iScience 27, 110640, September 20, 2024 15
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tissue samples served as the background controls for the COSMIC samples (Figure 1C). For each sample, if a feature was statistically signif-

icant (p value less than the Bonferroni corrected significance level of 0.0011 determined by dividing 0.05 by the number of non-amino acid

specific features) compared to the background, the log ratio was included in the averages visualized in Figure 3. This statistical significance

based selection of features corresponds to Figure 1D in the SAGESmethodology. The standard deviation was determined for all features that

came frommore than one sample. Due to the large number of amino acid related features, these were excluded from the visualization. Folds,

superfamilies, and domains were present only in the breast cancer samples and not in the background were excluded from this analysis.

Gene Ontology (GO) analysis was also performed using the top 250 most overexpressed genes for each dataset with the panther classi-

fication system and the Bonferroni adjusted significance level.74 Results from the Benjamini-Hochberg48 procedure were also examined. The

following sample-background pairs were compared using this approach: breast cancer transcriptomic samples-normal breast transcriptomic

samples, breast cancer proteomic samples-normal breast proteomic samples, breast cancer proteomic samples- breast cancer transcrip-

tomic samples, normal breast tissue proteomic samples-normal breast tissue transcriptomic samples, COSMIC breast cancer samples

with and without mutations-GTEx normal breast tissue.

All data sets investigated were compared using Jaccard similarity to provide context for the results observed in SAGES and GO analysis.

These data sets were the same as those used in GO analysis, described above. Data sets were compared pairwise according to Equation 7. A

larger Jaccard coefficient indicated larger similarity.

Jaccard =
lengthðset 1Xset 2Þ
length ðset1Wset2Þ (Equation 7)

Breast cancer drug perturbation

Perturbation signatures of cell lines treated with drugs from the Connectivity Map1 were compared to various breast cancer backgrounds to

investigate how drug induced gene expression relates to disease signature. Unweighted SAGES for all overexpressed genes for each drug

were calculated and compared to unweighted SAGES of all proteins from the breast cancer proteomics samples with log ratio expression

greater than one and to unweighted SAGES of all genes from the COSMIC mutated breast cancer gene dataset. Unweighted SAGES

were used to ensure that all overexpressed proteins contributed equally to the analysis. For each sample, the number of significantly different

features from background were counted. The significance level of 0.05 was selected. Multiple hypothesis testing was not employed because

the aimwas ultimately to assess similarity to background rather than difference from background and using this technique would increase the

type II error. The samples were divided into breast cancer treatment drugs (doxorubicin, fulvestrant, letrozole,megestrol,methotrexate, pacli-

taxel, raloxifene, tamoxifen, and vinblastine) according to a list published by the National Cancer Institute, and all other drugs in the Connec-

tivityMapdatabase. The average number of statistically significantly different features for each groupwere calculated and a two-sided, type 2,

student t test was used to determine the p value.

Gene expression of the perturbation samples and the expression signatures used to calculate the SAGES of the two backgrounds were

also directly compared. The Jaccard coefficient (Equation 7)was used to determine signature similarity. Samples were divided into breast can-

cer and other drugs and compared with a two-sided, type 2, student t test. Additionally, the average Jaccard coefficient for both groups was

determined.
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