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1  | INTRODUC TION

The incidence of non-alcoholic fatty liver disease (NAFLD) is in-
creasing rapidly worldwide.1-3 In China, the national prevalence 
of NAFLD is estimated at 29.2% and the burden of NAFLD is ex-
pected to increase dramatically.4 Hepatic ischaemia reperfusion 
(I/R) injury is an inevitable complication associated with liver 
transplantation, partial hepatectomy and hypovolemic shock.5 
Steatotic liver appears to be more sensitive to I/R injury.6 Fat-
laden hepatocytes are damaged by chronic oxidative/nitrosative 

stress, which is further increased during I/R, leading to extensive 
parenchymal damage.7

Irisin, an exercise-induced and muscle-secreted myokine, 
was first discovered for driving browning of white fat and ther-
mogenesis in 2012.8 As then, many studies have revealed that 
irisin is also a potent antioxidant.9-16 Our previous studies have 
also shown irisin improves mitochondrial function and decreases 
oxidative stress via binding to αVβ5 integrin in I/R injury.17,18 
However, the effect of irisin on I/R injury in steatotic liver re-
mains unknown.
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Abstract
Liver steatosis is associated with increased ischaemia reperfusion (I/R) injury. Our 
previous studies have shown that irisin, an exercise-induced hormone, mitigates I/R 
injury via binding to αVβ5 integrin. However, the effect of irisin on I/R injury in stea-
totic liver remains unknown. Kindlin-2 directly interacts with β integrin. We there-
fore suggest that irisin protects against I/R injury in steatotic liver via a kindlin-2 
dependent mechanism. To study this, hepatic steatosis was induced in male adult 
mice by feeding them with a 60% high-fat diet (HFD). At 12 weeks after HFD feed-
ing, the mice were subjected to liver ischaemia by occluding partial (70%) hepatic 
arterial/portal venous blood for 60 minutes, which was followed by 24 hours reper-
fusion. Our results showed HFD exaggerated I/R-induced liver injury. Irisin (250 μg/
kg) administration at the beginning of reperfusion attenuated liver injury, improved 
mitochondrial function, and reduced oxidative and endoplasmic reticulum stress in 
HFD-fed mice. However, kindlin-2 inhibition by RNAi eliminated irisin's direct effects 
on cultured hepatocytes. In conclusion, irisin attenuates I/R injury in steatotic liver 
via a kindlin-2 dependent mechanism.
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Kindlin-2 is a focal adhesion protein that regulates integrin sig-
nalling and cell-matrix adhesion.19 It directly interacts with the cy-
toplasmic tail of β integrin,20 which is recognized as a part of the 
irisin receptor.21 A recent study has shown kindlin-2 expression is 
up-regulated in human and mouse fibrotic livers and depletion of 
kindlin-2 reduces CCL4-induced liver injury in mice. However, the 
role of kindlin-2 in irisin's biological function is currently unclear.

We therefore suggested that irisin attenuates hepatic I/R injury 
via a kindlin-2 dependent mechanism in steatotic liver. The aim of the 
present study was to explore the effects and likely mechanisms of iri-
sin on hepatic I/R injury in high-fat diet (HFD)-fed mice.

2  | MATERIAL S AND METHODS

2.1 | Experimental animals and diets

Male wild-type C57BL/6J mice (18 ± 3 g; 6-8 weeks) were purchased 
from the Experimental Animal Center of Xi'an Jiaotong University 
and bred in a pathogen-free environment under 12-hour light-dark 
cycle at a temperature of 23-25°C. Standard chaw (Control diet; CD) 
or 60% high-fat diet (D12492, Research Diets Inc) were provided for 
12 weeks. All mice were treated according to the guidelines of the 
China Council on Animal Care and Use. This project was approved 
by the Institutional Animal Care and Use Committee of the Ethics 
Committee of Xi'an Jiaotong University Health Science Center, China.

2.2 | Mouse model of hepatic I/R and 
experimental design

After 12 weeks on a control diet or high-fat diet, the mouse 
hepatic I/R model was established as we described before.17 
Briefly, mice were anaesthetized with isoflurane inhalation and 
maintained at a concentration of 1.5%-2%. Liver ischaemia was 
induced by occluding partial (70%) hepatic arterial/portal venous 
blood for 60 minutes by a microvascular clip. Then, clip was re-
moved and reperfusion began. Sham operation underwent all the 
procedures except hepatic ischaemia. There were five groups in-
volved in present study: (a) CD-Sham: CD-fed mice underwent 
sham operation, and 0.5 mL saline was administrated intraperi-
toneally; (b) CD-I/R: CD-fed mice underwent hepatic I/R, and 
0.5 mL saline was administrated intraperitoneally immediately 
after the initiation of reperfusion; (c) HFD-Sham: also showed 
as sham group, HFD-fed mice underwent sham operation and 
0.5 mL saline was administrated intraperitoneally; (d) HFD-I/R: 
also showed as vehicle group, HFD-fed mice underwent hepatic 
I/R, and 0.5 mL saline was administrated intraperitoneally im-
mediately after the initiation of reperfusion; (e) HFD-irisin: also 
showed as irisin group, HFD-fed mice underwent hepatic I/R, 
and irisin (250 μg/kg, 0.5 mL; 067-29A, Phoenix Pharmaceuticals, 
Inc)17 was administrated intraperitoneally immediately after the 
initiation of reperfusion.

2.3 | Haematoxylin and eosin (H&E) staining and oil 
red O staining

The liver sections fixed in 4% paraformaldehyde were embedded in 
paraffin. Then cut the paraffin blocks into 5 mm-slices and stained 
with haematoxylin and Eosin. Liver injury score was evaluated as we 
described before.17 The frozen liver sections were stained with Oil 
Red O to evaluate hepatic fat content.

2.4 | Measurement of serum alanine 
aminotransferase (ALT), aspartate aminotransferase 
(AST) and glutathione peroxidase activity (GSH-Px)

The alanine aminotransferase (ALT) assay Kit (C009-2, NanJing 
JianCheng Bioengineering Institute, Nanjing, China), aspartate 
aminotransferase (AST) assay Kit (C010-2, NanJing JianCheng 
Bioengineering Institute, Nanjing, China) and glutathione per-
oxidase activity (GSH-Px) assay Kit (A005, NanJing JianCheng 
Bioengineering Institute, Nanjing, China) were used for measuring 
the level of serum ALT, AST and liver GSH-Px according to the in-
structions of the manufacturer.

2.5 | Western blot analysis

The protein extraction and Western blot analysis were performed 
as previous described.22 The antibody information was as following: 
kindlin-2 antibody (13562s, Cell Signaling Technology), Bax anti-
body (14796, Cell Signaling Technology), Bcl-2 antibody (ab194583, 
Abcam), GRP78 antibody (GRP78, 3183, Cell Signaling Technology), 
CHOP antibody (2895, Cell Signaling Technology), PDI antibody (3501, 
Cell Signaling Technology), Ero1-Lα antibody (ab81959, Abcam), Drp-1 
antibody (ab184247, Abcam), Tfam antibody (ab131607, Abcam), 
ND3 (ab192306, Abcam), Mfn-2 (9482, Cell Signaling Technology), 
Fis-1 (ab71498, Abcam), ATPB (ab170947, Abcam), β actin Antibody 
(HRP-60008, Proteintech), Goat anti-rabbit IgG antibody (SA00001-
2, Proteintech) and Goat anti-mouse IgG antibody (SA00001-1, 
Proteintech). The Image J software was used for quantitative analys-
ing, and relative protein levels were expressed as the intensity ratio of 
target protein and β actin.

2.6 | RNA extraction, reverse transcription and 
quantitative PCR (q-PCR)

RNA was extracted from liver samples using TRIzol Reagent (9108, 
TAKARA BIO INC). One thousand nanograms of RNA was reverse 
transcribed to cDNA using PrimeScript™ RT Master Mix (RR036A, 
TAKARA BIO INC) and amplified by q-PCR using SYBR green PCR 
Master Mix (RR820A, TAKARA BIO INC). The following primer sets 
(TAKARA BIO INC) were used: mouse IL-1β (forward 5′ TCC AGG 
ATG AGG ACA TGA GCA C 3′; reverse, 5′ GAA CGT CAC ACA CCA 
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GCA GGT TA 3′), mouse IL-6 (forward 5′ CCA CTT CAC AAG TCG 
GAG GCT TA 3′; reverse, 5′ TGC AAG TGC ATC ATC GTT GTT C 
3′), mouse MCP-1 (forward 5′ AGC AGC AGG TGT CCC AAA GA 3′; 
reverse, 5′ GTG CTG AAG ACC TTA GGG CAG A 3′), mouse CXCL-1 
(forward 5′ TGC ACC CAA ACC GAA GTC 3′; reverse, 5′ GTC AGA 
AGC CAG CGT TCA CC 3′), mouse Fis-1 (forward 5′ TGG GCA ACT 
ACC GGC TCA A 3′; reverse, 5′ TTA TCA ATC AGG CGT TCC AGC TC 
3′), mouse PGC-1α (forward 5′ AAC AGG AAC AGC AGC AGA GAC A 
3′; reverse, 5′ GAG GAG TTG TGG GAG GAG TTA GG 3′) and mouse 
β actin (endogenous control; forward 5′ GTG ACG TTG ACA TCC 
GTA AAG A 3′; reverse, 5′ GTA ACA GTC CGC CTA GAA GCA C 3′).

2.7 | Immunohistochemistry and 
immunofluorescence staining

Immunohistochemistry and immunofluorescence staining were 
performed as previous described.17 The MPO antibody (Santa Cruz 
Biotechnology, Inc) was used for detection of liver MPO expression 
by immunohistochemistry staining. Liver Terminal Deoxynucleotidyl 
Transferase-Mediated dUTP Nick End Labelling Assay (TUNEL, 
Roche), CD11b antibody (GB11058, Servicebio) and Dihydroethidium 
(DHE) dye (D7008, Sigma-aldrich) were used for detection of liver 
apoptosis cells, CD11b positive inflammatory cells and reactive oxy-
gen species (ROS) levels via immunofluorescence staining. Image J 
software was used to quantitative analysis.

2.8 | Cell culture, lipotoxic induction and hypoxia/
reoxygenation (H/R)

HL-7702 cells (Normal human hepatocytes) were cultured in RPMI-
1640 medium with 10% foetal bovine serum (FBS) and 100 units/ml 
penicillin/ streptomycin mixture (Gibco) at 37°C with 100% humidity 
and 5% CO2 in vitro. HL-7702 cells were treated with palmitic acid 
(PA, 0.2 mmol/L) and oleic acid (OA, 0.1 mmol/L) to induce lipotoxic-
ity injury of hepatocytes. Cells were deprived of oxygen (94% N2, 5% 
CO2, 1% O2) in a serum-free and deoxyglucose-rich (5 mmol/L) me-
dium to simulate hepatic ischaemia and hypoxia of mice for 1 hour; 
then, the cells were changed to 5% CO2 condition with RPMI-1640 
medium containing 10% FBS for 6 hours.

2.9 | Transfection of small interfering RNA (siRNA)

The siRNA was constructed by GenePharma Corporation and trans-
fected according to the experimental instructions. The siRNA-kindlin-
2:5′-GCU UCC CAA CAU GAA GUA UTT-3′ and 5′-AUA CUU CAU 
GUU GGG AAG CTT-3′ (GenePharma) was used to deplete the expres-
sion of kindlin-2 cells and a siRNA-negative control: 5′-UUC UCC GAA 
CGU GUC ACG UTT-3′ and 5′-ACG UGA CAC GUU CGG AGA ATT-3′ 
(GenePharma) was used as negative control in HL-7702 cells.

2.10 | Statistical analysis

The data were expressed as mean ± standard error (SE). The t test 
or one-way ANOVA was used to analyse the differences between 
groups. SPSS version 18.0 (IBM) was used for statistical analysis, and 
P value < .05 was considered statistically significant.

3  | RESULTS

3.1 | HFD exaggerates I/R-induced liver injury

To study the effects of HFD on hepatic I/R injury, mice were fed either 
a control diet (CD) or a high-fat diet (HFD) for 12 weeks. As showed 
in Figure S1A, HFD-fed mice were heavier than CD-fed mice (P < .05). 
HFD-fed mice were associated with more prominent liver histological 
damage and more fat content (Figures S1B-D, P < .05). Then, HFD-fed 
and CD-fed mice underwent hepatic I/R (CD-I/R or HFD-I/R) or sham 
operation (CD-Sham or HFD-Sham). Figure S2A showed that hepatic 
I/R increased serum irisin level in HFD-fed mice (P < .05). As showed 
in Figure 1A,B, HFD induced significant liver injury characterized by 
hepatic steatosis (P < .05). After I/R, HFD-fed mice showed more se-
vere liver injury and larger necrosis area than CD-fed mice (Figure 1A-
C, P < .05). The changes of serum AST and ALT were consistent with 
histological lesions (Figure 1D,E, P < .05). In addition, HFD exagger-
ated I/R-induced ROS production (Figure 1F,G, P < .05).

3.2 | Irisin attenuates hepatic I/R injury in HFD-
fed mice

Next, the effect of irisin on hepatic I/R injury in HFD-fed mice was 
explored. Figure 2A,B demonstrated that irisin administration reduced 
I/R-induced hepatic necrosis in HFD-fed mice (P < .05). Similarly, 
serum ALT levels were also significantly decreased by irisin treatment 
(118.6 ± 17.0 U/L vs 76.1 ± 6.2 U/L, Figure 2C, P < .05). Figure 2D,E 
indicated that TUNEL positive cells increased markedly at 24 hours 
after I/R in HFD-fed mice. Irisin treatment significantly decreased liver 
TUNEL positive cells after I/R in HFD-fed mice (P < .05). Consistently, 
irisin treatment reduced the expression of cleaved-caspase 3 at the pro-
tein level (Figure 2H,I) and decreased the expression of Bax in mRNA 
(Figure 2F) and protein levels (Figure 2H,J), while increased the expres-
sion of Bcl-2 in mRNA (Figure 2G) and protein levels (Figure 2H,K) after 
hepatic I/R in HFD-fed mice (all P < .05).

3.3 | Irisin alleviates oxidative stress after hepatic 
I/R in HFD-fed mice

Then, the effects of irisin on oxidative stress were evaluated. As 
shown by liver DHE staining in Figure 3A,B, irisin administration 
inhibited the production of ROS compared to vehicle-treated 
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mice (P < .05). Antioxidant GSH-Px decreased in hepatic I/R and 
increased after irisin administration in HFD-fed mice (Figure 3C, 
P < .05).

3.4 | Irisin improves mitochondrial function and 
reduces ER stress after hepatic I/R in HFD-fed mice

Figure 4A-C showed that irisin inhibited the excessive expression of 
mitochondrial fission proteins Drp-1 and Fis-1 at mRNA or protein 
levels (P < .05). Moreover, irisin treatment also restored the reduced 
expression of mitochondrial biogenesis proteins PGC-1α and Tfam 
(Figure 4D-F, P < .05). As showed in Figure 4G-K, the expressions 

of liver endoplasmic reticulum (ER) stress-related proteins (GRP78, 
CHOP, PDI and Ero1-Lα) were significantly up-regulated after he-
patic I/R in HFD-fed mice but reduced after irisin administration 
(P < .05).

3.5 | Irisin inhibits inflammatory response after 
hepatic I/R in HFD-fed mice

Inflammatory response was evaluated after hepatic I/R in HFD-fed 
mice. The recruitment of neutrophils and macrophages was de-
tected by liver MPO and CD11b immunostaining, while the release 
of inflammatory factors was detected by q-PCR. In Figure 5A-D, 

F I G U R E  1   HFD exaggerates I/R-induced liver injury. Hepatic ischaemia was induced by occluding partial (70%) hepatic arterial/portal 
venous blood for 60 min, followed by 24 h of reperfusion. Sham mice underwent all the procedures except hepatic ischaemia. After 12 wk 
of control diet (CD) or high-fat diet (HFD), mice underwent sham operation (CD-Sham, HFD-Sham) or hepatic I/R (CD-I/R, HFD-I/R). Liver 
H&E staining (A), histological score (B) and necrosis area (C). Original magnification, 100× and 200×. The levels of serum AST (D) and ALT 
(E). F, Liver DHE staining (red) and counterstained with DAPI (blue). Original magnification, 200×. G, The quantitative analysis of liver DHE 
fluorescence intensity. Results are expressed as mean ± SE (n = 4-5/group) and compared by t test or one-way ANOVA. *P < .05, NSP > .05
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F I G U R E  2   Irisin attenuates hepatic I/R injury in HFD-fed mice. Hepatic ischaemia was induced by occluding partial (70%) hepatic 
arterial/portal venous blood for 60 min, followed by 24 h of reperfusion. Sham mice underwent all the procedures except hepatic ischaemia. 
After 12 wk of high-fat diet (HFD), HFD-fed mice underwent sham operation (Sham) or hepatic I/R treated with 0.5 mL saline (Vehicle) or 
irisin (250 μg/kg, 0.5 mL). Liver H&E staining (A) and necrosis area (B). Original magnification, 100× and 200×. C, The level of serum ALT. D, 
Liver TUNEL staining (green) and counterstained with DAPI (blue). Original magnification, 200×. E, The quantitative analysis of liver TUNEL 
positive cells. Liver relative mRNA levels of Bax (F) and Bcl-2 (G). Western blot analysis of Bax and Bcl-2 (H) and the quantitative analysis of 
Bax (I) and Bcl-2 (J). Results are expressed as mean ± SE (n = 4-5/group) and compared by t test or one-way ANOVA. *P < .05 vs sham group, 
#P < .05 vs vehicle group
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hepatic I/R increased liver MPO and CD11b positive cells in HFD-
fed mice, which were reversed after irisin administration (P < .05). 
Consistently, compared to HFD-fed mice of hepatic I/R, the mRNA 
levels of liver inflammatory factors (IL-1β, IL-6, MCP-1 and CXCL-
1) were also reduced after irisin administration in HFD-fed mice 
(Figure 5E-H, P < .05).

3.6 | Kindlin-2 inhibition by RNAi eliminates irisin's 
direct effects on cultured hepatocytes

To investigate the role of kindlin-2 in irisin's biological function, we 
knocked down kindlin-2 expression in HL-7702 cells (Figure S3A,B, 
P < .05). The cells were exposed to palmitic acid (PA, 0.2 mmol/L) 
and oleic acid (OA, 0.1 mmol/L) to induce lipotoxicity injury and then 
subjected to hypoxia and reoxygenation treatment with/without 
the presence of irisin. As shown in Figure 6, kindlin-2 knockdown 
eliminated the effects of irisin on cell apoptosis (Figure 6A-C), ROS 
production (Figure 6D,E), mitochondrial function (Figure 6F-L) and 
ER stress (Figure 6M-Q) (all P < .05). Meanwhile, the effect of irisin 
on kindlin-2 was detected after irisin treatment in HFD-fed mice 
and irisin did not change the expression of kindlin-2 (Figure S4A,B, 
P > .05).

4  | DISCUSSIONS

In the present study, using an established model of hepatic I/R in 
HFD-fed mice, we found that HFD exaggerated I/R-induced liver 
injury and ROS production. And irisin administration attenuated 
hepatic injury, improved mitochondrial function, and reduced oxida-
tive and ER stress in HFD-fed hepatic I/R mice. However, in cultured 
hepatocytes, inhibition of kindlin-2 by RNAi eliminated irisin's ef-
fects on apoptosis, mitochondrial function, oxidative and ER stress 
(Figure 7).

Hepatic I/R is a life-threaten complication in liver surgery and 
associated with significant morbidity and mortality, especially in he-
patic I/R of steatotic liver.6,23-27 Research has shown that about 20% 
of patients undergoing hepatectomy have various degrees of hepatic 
steatosis.28 Moreover, steatotic liver (about 20%-30% of liver do-
nors) has been introduced as the most common type of ‘extended 
criteria’ organs due to organ shortage.29-31 However, hepatic steato-
sis exaggerates I/R-induced liver injury, which has been proven in 
clinical and experimental studies.6,23-27 Although the exact mecha-
nism remains unclear, ROS is believed to play an important role in 
both hepatic steatosis32,33 and I/R injury.34-36 In NAFLD, fat-laden 
hepatocytes are damaged by chronic oxidative/nitrosative stress 
(ONS). And ONS is acutely exacerbated during hepatic I/R, leading 

F I G U R E  3   Irisin alleviates oxidative stress after hepatic I/R in HFD-fed mice. Hepatic ischaemia was induced by occluding partial (70%) 
hepatic arterial/portal venous blood for 60 min, followed by 24 h of reperfusion. Sham mice underwent all the procedures except hepatic 
ischaemia. After 12 wk of high-fat diet (HFD), HFD-fed mice underwent sham operation (Sham) or hepatic I/R treated with 0.5 mL saline 
(Vehicle) or irisin (250 μg/kg, 0.5 mL). A, Liver DHE staining (red) and counterstained with DAPI (blue). Original magnification, 200×. B, 
The quantitative analysis of liver DHE fluorescence intensity. C, The level of liver GSH-Px. Results are expressed as mean ± SE (n = 4-5/
group) and compared by t test or one-way ANOVA. *P < .05 vs sham group, #P < .05 vs vehicle group
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to extensive parenchymal damage.7 In the present study, we also 
showed more severe liver injury and ROS production after hepatic 
I/R in HFD-fed mice, suggesting inhibition of ROS production may be 
an effective therapeutic target.

Irisin, an exercise-induced hormone, has emerged as a key reg-
ular of energy homeostasis in obesity, diabetes and NAFLD.37-40 A 
recent study has shown that irisin expression increased in non-pa-
renchymal cells of fatty liver and was associated with the increase 
in innate immune cells (ie CD11b positive cells).41 In the present 
study, liver CD11b positive cells were increased significantly in 
HFD-hepatic I/R mice, which may be the reason for the increase 
of serum irisin levels under such conditions. We and others have 
shown irisin plays a protective role in I/R of multiple organs and 

improvement of mitochondrial function and oxidative stress are 
the most common mechanisms.9-17 However, the effect of irisin 
on I/R in steatotic liver remained unknown. The present study is 
the first one to reveal that irisin attenuated liver injury, improved 
mitochondrial function, and reduced oxidative and ER stress after 
I/R in steatotic liver. The dosage of irisin was based on our previ-
ous study.17 As shown in the present study, it was also protective 
in HFD-hepatic I/R mice. However, the optimal dosage and the 
dose-dependent effect of irisin in HFD-hepatic I/R warrants fur-
ther investigation. Hepatic I/R is accompanied by increased pro-
duction of ROS. Mitochondria are a main source of ROS and ROS 
impairs mitochondrial function.42-45 Endoplasmic reticulum (ER) 
stress is closely related to mitochondrial dysfunction. ER stress 

F I G U R E  4   Irisin improves mitochondrial function and reduces ER stress after hepatic I/R in HFD-fed mice. Hepatic ischaemia was 
induced by occluding partial (70%) hepatic arterial/portal venous blood for 60 min, followed by 24 h of reperfusion. Sham mice underwent 
all the procedures except hepatic ischaemia. After 12 wk of high-fat diet (HFD), HFD-fed mice underwent sham operation (Sham) or hepatic 
I/R treated with 0.5 mL saline (Vehicle) or irisin (250 μg/kg, 0.5 mL). Western blot analysis of Drp-1 (A) and its quantitative analysis (B). C, 
Liver relative mRNA level of Fis-1. Western blot analysis of Tfam (D) and its quantitative analysis (E). F, Liver relative mRNA level of PGC-1α. 
Western blot analysis of ER stress-related proteins (G) and their quantitative analysis of liver GRP78 (H), CHOP (I), PDI (J) and Ero1-Lα (K). 
Results are expressed as mean ± SE (n = 4-5/group) and compared by t test or one-way ANOVA. *P < .05 vs sham group, #P < .05 vs vehicle 
group
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inhibition protects steatotic and non-steatotic liver from hepatic 
I/R.46-48 ER-stressed steatotic hepatocytes activate apoptotic and 
inflammatory pathways in hepatic I/R and NAFLD,49,50 leading to 
liver injury.

Kindlin-2, a member of kindlins, directly interacts with the cy-
toplasmic tail of β integrin to mediate cell adhesion, cell motility, 
cytoskeletal organization, cell survival, gene transcription and cell 
proliferation.51-53 Kindlin-2 has been shown to promote tumour 

invasion and metastasis.54,55 It is also essential for preserving in-
tegrity of the heart, vascular permeability in angiogenesis, chon-
drogenesis, regulation of podocyte structure and function, control 
of adipogenesis and lipid metabolism as well as bone homeosta-
sis.56-61 Kindlins protect cells against oxidative damage.62-65 Ling 
Guo et al have discovered that depletion of kindlin-2 increased 
ROS production.66 αVβ5 integrin was reported to be the receptor 
of irisin,21 and our recent studies have shown irisin mitigated I/R 

F I G U R E  5   Irisin inhibits inflammatory response after hepatic I/R in HFD-fed mice. Hepatic ischaemia was induced by occluding partial 
(70%) hepatic arterial/portal venous blood for 60 min, followed by 24 h of reperfusion. Sham mice underwent all the procedures except 
hepatic ischaemia. After 12 wk of high-fat diet (HFD), HFD-fed mice underwent sham operation (Sham) or hepatic I/R treated with 0.5 mL 
saline (Vehicle) or irisin (250 μg/kg, 0.5 mL). Liver MPO staining (A) and its quantitative analysis of liver MPO positive cells (B). Original 
magnification, 200×. Liver CD11b staining (red) (C) and its quantitative analysis of liver CD11b positive cells (D). Original magnification, 
200×. Liver relative mRNA levels of IL-1β (E), IL-6 (F), MCP-1 (G), CXCL-1 (H). Results are expressed as mean ± SE (n = 4-5/group) and 
compared by t test or one-way ANOVA. *P < .05 vs sham group, #P < .05 vs vehicle group

F I G U R E  6   The knockdown of kindlin-2 eliminates the protective effect of irisin. The HL-7702 cells were transfected with siRNA of 
kindlin-2 (or negative control) for 48 h and treated with palmitic acid (PA, 0.2 mmol/L) and oleic acid (OA, 0.1 mmol/L) to induce lipotoxicity 
injury of hepatocytes. Cells were deprived of oxygen (94% N2, 5% CO2, 1% O2) in a serum-free and deoxyglucose-rich (5 mmol/L) medium 
to simulate hepatic ischaemia and hypoxia of mice for 1 h; then, the cells were changed to 5% CO2 condition with RPMI-1640 medium 
containing 10% FBS for 6 h. Western blot analysis of Bax and Bcl-2 (A) and their quantitative analysis of Bax (B) and Bcl-2 (C). DHE staining 
(red) (D) and its quantitative analysis of DHE fluorescence intensity (E). Western blot analysis of mitochondrial related proteins (F) and their 
quantitative analysis of Mfn-2 (G), ND3 (H), Tfam (I), ATPB (J), Drp-1 (K) and Fis-1 (L). Western blot analysis of ER stress-related proteins (M) 
and their quantitative analysis of GRP78 (N), CHOP (O), PDI (P) and Ero1-Lα (Q). Results are expressed as mean ± SE (n = 3-4/group) and 
compared by t test. NSP > .05
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injury via binding to αVβ5 integrin.18 However, the effect of iri-
sin on kindlin-2, an important regulator of αVβ5 integrin function, 
remained unknown. In the present study, we found irisin did not 
change the expression of kindlin-2 after hepatic I/R in HFD-fed 
mice. However, kindlin-2 knockdown by RNAi eliminated the ben-
eficial effects of irisin in hypoxia/reoxygenation-treated hepato-
cytes, suggesting kindlin-2 is involved in irisin's biological function. 
However, whether depletion of Kindlin-2 inhibits irisin induced 
protection in hepatic IR in the HFD-mice warrants further investi-
gation. And the detailed mechanism of kindlin-2 after hepatic I/R in 
the HFD-mice will be further explored in our future studies.

In summary, using a model of hepatic I/R in HFD-fed mice, we 
demonstrated that irisin attenuates I/R injury in steatotic liver. The 
protective effect of irisin under such conditions requires kindlin-2. 
Irisin may be a novel effective treatment for NAFLD patients with 
hepatic I/R.
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