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Cigarette smoke extract‑mediated FABP4 
upregulation suppresses viability and induces 
apoptosis, inflammation and oxidative stress 
of bronchial epithelial cells by activating p38 
MAPK/MK2 signaling pathway
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Abstract 

Background:  Long-term inhalation of cigarette smoke is considered to be one of the main causes of bronchial epi-
thelioid cell damage, but its underlying mechanism has to be further clarified.

Methods:  Gene expression at mRNA level and protein levels were detected by qRT-PCR and western blot analysis 
respectively. CCK-8, TUNEL assays, ELISA, western blot analysis and commercial kits were utilized to test cell viability, 
apoptosis inflammatory response and oxidative stress. The correlation between fatty acid binding protein 4 (FABP4) 
and the p38 mitogen-activated protein kinase (MAPK)/MAPK activated kinase 2 (MK2) signaling pathway was verified 
by western blot analysis and rescue assays.

Results:  Cigarette smoke extract (CSE) exposure decreased viability, induced apoptosis and inflammatory response 
in 16HBE cells. Moreover, the expression of FABP4 in CSE-treated 16HBE cells was up-regulated in a time and dose-
dependent manner. Ablation of FABP4 in 16HBE cells significantly protected against CSE-mediated cell viability 
decline and apoptosis. Further, FABP4 knockdown suppressed inflammatory response by down-regulating the ele-
vated levels of cellular inflammatory factors including TNF-α, IL-1β, IL-6, Cyclooxygenase-2 (Cox-2) and inducible nitric 
oxide synthase (iNOS) in CSE-treated 16HBE cells. The oxidative stress induced by CSE in 16HBE cells was also inhibited 
by FABP4 silence as evidence by reduced ROS and MDA level but increased SOD activity caused by FABP4 silence. 
Finally, all the above effects of FABP4 silence on CSE-treated 16HBE cells were reversed by asiatic acid, an agonist of 
p38 mitogen-activated protein kinase (MAPK).

Conclusions:  The up-regulation of FABP4 expression mediated by CSE exerted pro-inflammatory, pro-oxidative stress 
and pro-apoptotic effects on bronchial epithelial cells by activating the p38 MAPK/MK2 signaling pathway. Our find-
ings help to further understand the underlying mechanism of cigarette smoke-induced bronchial inflammation.
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Background
Tobacco leads to nearly 6 million deaths worldwide each 
year and is the most preventable cause of morbidity 
and death [1]. Metallic substances in cigarettes includ-
ing arsenic, cadmium and lead are transferred through 
cigarette smoke (CS), accumulated in the lung tissues 
of smokers and greatly threaten human health [2]. In 
addition, the potential carcinogenicity of the additives 
contained in cigarettes cannot be ignored [3]. More 
importantly, cigarette-smoke exposure (CSE) is one of 
the common risk factors of chronic obstructive pulmo-
nary disease (COPD), a leading cause of death nationally 
and worldwide [3]. Besides, CSE exposure contributes 
to airway remodeling and tumor-like transformation of 
bronchial epithelial cells [4, 5]. Hence, identifying effec-
tive biomarkers in CSE-treated bronchial epithelial cells 
is of great significance in the therapy for COPD.

Fatty acid binding protein 4 (FABP4) is mainly 
expressed by pulmonary macrophages, and differentially 
expressed in endothelial cells of the bronchial microvas-
cular system. It is an intracellular lipid chaperone and 
adipose factor that regulates metabolic and inflammatory 
pathways [6–8]. Accumulating studies have exhibited the 
important regulatory role of FABP4 in human diseases. 
For example, FABP4 is highly expressed in hyperoxic lung 
injury and may be implicated in bronchopulmonary dys-
plasia [9]. FABP4 has been detected to be overexpressed 
during sepsis-induced acute lung injury, which causes 
the production of inflammatory cytokines by increasing 
the level of reactive oxygen species (ROS) [10]. Research 
by Xiao Na Ge et al. have showed that FABP4 promotes 
the adhesion and migration of eosinophils and promotes 
airway inflammation under inflammatory conditions 
in allergic asthma [11]. Moreover, FABP4 may also be 
involved in the pathogenesis of COPD. For instance, it 
is found that FABP4 expression is up-regulated with the 
increase of GOLD grade in the serum of COPD patients 
which is related to the up-regulation of serum interleu-
kin 6 (IL-6) levels and the severity of hypoxia [12]. Zhang 
et al. have proposed that plasma FABP4 levels in females 
with COPD were significantly increased compared with 
both males with COPD and healthy females [13]. FABP4 
levels also positively correlated with adiponectin and 
tumor necrosis factor α in COPD patients [13]. On the 
contrary, another study has revealed that airway FABP4 
levels are reduced in COPD patients [14]. Although the 
above studies reported the controversial effect of FABP4 
on COPD, they all suggested the important role of FABP4 

in COPD pathogenesis. Hence, we hypothesize that 
FABP4 may also play a role in CSE-induced bronchial 
epithelial cell damage.

CSE induces phosphorylation of p38 mitogen-activated 
protein kinase (MAPK) in human bronchial epithelial 
cells by phosphorylation of a known downstream sub-
strate of MAPK, MAPK activated kinase 2 (MK2) [15]. 
Eupatiline, a pharmacologically active flavone, down-reg-
ulates levels of phosphorylated P38, extracellular regu-
lated protein kinases (ERK), and c-Jun N-terminal kinase 
(JNK) for anti-inflammatory activity [16]. What’s more, 
FABP4 inhibitor BMS309403 is discovered to inhibit p38 
MAPK activation and alleviate fatty acid-induced endo-
plasmic reticulum stress-related inflammation in skeletal 
muscle [17]. Therefore, we further explore the relation-
ship between FABP4 and the activation of p38 MAPK/
MK2 signaling pathway in CSE-mediated bronchial epi-
thelial cells.

Here, the study illustrates that CSE-induced bronchial 
epithelial cell damage is significantly correlated with 
FABP4 expression. The up-regulated FABP4 induces 
inflammatory response in bronchial epithelial cells by 
activating the p38 MAPK/MK2 signaling pathway, reduc-
ing cell viability and even causing cell apoptosis.

Results
CSE upregulates FABP4 expression in 16HBE cells
The 16HBE cells treated with cigarette smoke extract 
(CSE) showed a progressive upregulation in the FABP4 
expression at mRNA level (~ threefold enhancement 
with the maximum dose) and protein level (~ four 
fold enhancement with the maximum dose) in a dose-
dependent manner from 0.5% CSE to 4% CSE, as com-
pared with the normal 16HBE cells without CSE 
treatment (Fig. 1A, B). Considering that 2% CSE caused 
significant increase in FABP4 expression and was widely 
used for inducing bronchial epithelial cells injury [18, 19], 
it was subsequently chosen for treat 16HBE cells. Moreo-
ver, we noticed the increment of FABP4 expression in a 
time-dependent manner (0 h, 12 h, 24 h, 36 h and 48 h; 
Fig. 1C, D) caused by 2% CSE. For further study, we uti-
lized 2% CSE to treat 16HBE cells for 48 h to perform the 
subsequent experiments.

shRNA‑mediated FABP4 abrogation alleviates 
CSE‑mediated 16HBE cell viability decline and apoptosis
To investigate the role of FABP4 in 16HBE cell apoptosis 
and inflammatory response, shRNAs were synthesized 

Keywords:  Cigarette smoke extract, Bronchial inflammation, Fatty acid binding protein 4, p38 MAPK/MK2 signaling 
pathway, Inflammatory response, Cell apoptosis



Page 3 of 11Zhang et al. Journal of Inflammation            (2022) 19:7 	

for specific shRNA-mediated FABP4 inhibition after CSE 
treatment. Western blot and qRT‐PCR analysis showed 
a remarkable decrease in the FABP4 expression in 2% 
CSE treated-16HBE cells after transfection of shRNA-
FABP4-1/2, comparing with that in 16HBE cells trans-
fected with shRNA-NC (Fig.  2A, B). Also, we observed 
that shRNA-FABP4-1 exhibited a more effective knock-
down efficiency, thus shRNA-FABP4-1 was chosen for 
the subsequent experiments.

We firstly performed a CCK-8 assay to study the role of 
FABP4 in CSE-treated 16HBE cells. The result indicated 
that 16HBE cells exposed to 2% CSE for 48 h showed only 
50% of the viability of normal cells while FABP4 abroga-
tion showed an upregulation of viability of 16HBE cells, 
as compared with that in cells transfected with shRNA-
NC (Fig. 2C).

Subsequently, the TUNEL assay was performed to 
assess the function of FABP4 in CSE-mediated 16HBE 
cell apoptosis. Notably, after treated with 2% CSE for 
48  h, the apoptosis rate (TUNEL positive cells/DAPI 

positive cells; TUNEL, green; DAPI, blue) was nearly 
15%. After transfection of FABP4 specific shRNA, CSE-
mediated cell apoptosis was significantly alleviated, and 
the apoptosis rate decreased to about 8% relative to that 
in 16HBE cells transfected with shRNA-NC (Fig. 2D).

In conclusion, these results indicate that CSE-mediated 
FABP4 upregulation reduces the viability and promotes 
the apoptosis of 16HBE cells.

FABP4 abrogation alleviates CSE‑mediated 16HBE cell 
inflammatory response and oxidative stress
After contacting with harmful substances, bronchial 
epithelial cells are prone to be involved in inflammatory 
reactions which is caused by cell apoptosis [20, 21]. 
Hence, we next analyzed levels of inflammatory factors 
using ELISA assay. Indeed, exposure to 2% CSE dramat-
ically increased levels of the cellular inflammatory fac-
tors including TNF-α, IL-1β and IL-6. In 16HBE cells 
transfected with FABP4 specific shRNA, although the 
same 2% CSE treatment was accomplished for 48 h, the 

Fig. 1  CS mediates the up-regulation of FABP4 in 16HBE cells. A 16HBE cells were treated with different doses of CSE (0.5%, 1%, 2% and 4%) for 
24 h, and the normal 16HBE cells without CSE treatment were used as control. Representative Western blot images and quantitative analysis, using 
the rabbit anti-FABP4, showed an incremental increase in the FABP4 expression with CSE. GAPDH served as the loading control. B qRT-PCR analysis, 
using the primer of human FABP4, showed the experimental results consistent with (A). **p < 0.01, ***p < 0.001 vs. control group. C 16HBE cells 
were treated with 2% CSE for different time (0 h, 12 h, 24 h, 36 h and 48 h). 2% CSE treatment increased the FABP4 expression in a time dependent 
manner with a maximum expression at 48 h after the 2% CSE treatment. GAPDH served as the loading control. D qRT-PCR analysis, using the primer 
of human FABP4, showed the experimental results consistent with (C). ***p < 0.001 vs. 0 h 2% CSE group. 16HBE, Human bronchial epithelioid cell 
line; FABP4, Fatty Acid Binding Protein 4; GAPDH, Glyceraldehyde-3-Phosphate Dehydrogenase; CSE, cigarette smoke extract
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levels of inflammatory factors were much lower than 
that in cells transfected with shRNA-negative control 
(NC) (Fig.  3A). Cyclooxygenase-2 (Cox-2) and induc-
ible nitric oxide synthase (iNOS) are closely linked and 
are identified as pro-inflammatory cytokines. There-
fore, we used western blot analysis to test the protein 
levels of Cox-2 and iNOS and the results confirmed 
that FABP4 inhibition reduced CSE-mediated cellu-
lar inflammatory response in 16HBE cells (Fig. 3B). In 
addition, the changes in oxidative stress were assessed. 
As shown in Fig. 3C, exposure to 2% CSE caused a sig-
nificant increase in ROS and MDA level but decrease 
in SOD activity, suggesting the induction of oxidative 

stress. However, upon FABP4 silence, ROS and MDA 
levels were reduced and SOD activity was enhanced 
(Fig. 3C).

Taken together, these findings suggest that FABP4 
knockdown in 16HBE cells alleviates CSE-mediated 
inflammatory response and oxidative stress.

FABP4 silence inhibits 16HBE cell inflammatory response, 
oxidative stress and apoptosis by inactivating p38 MAPK/
MK2 signaling pathway
As reported, MAPK is activated in human bronchial 
epithelial cells exposed to CSE [22]. To explore whether 
FABP4 was involved in the p38 MAPK/MK2 signaling 

Fig. 2  CS-induced 16HBE cell apoptosis is alleviated by shRNA-mediated FABP4 abrogation. A, B The knockdown efficiency in 16HBE cells treated 
with 2% CSE was tested by the western blot analysis and qRT-PCR analysis. GAPDH served as the loading control. C CCK-8 assay showed a rescue 
of CSE-mediated cell viability decrease in 16HBE cells transfected with shRNA-FABP4-1 as compared with the cells transfected with shRNA-NC. 
D TUNEL assay showed a downregulation of CSE-mediated cell apoptosis (TUNEL positive cells/DAPI positive cells; TUNEL, green; DAPI, blue; Scale 
bar, 100 µm) in 16HBE cells transfected with shRNA-FABP4-1 as compared with the cells transfected with shRNA-NC. The normal 16HBE cells without 
transfection and CSE treatment were used as control. ***p < 0.001 vs. control group; #p < 0.05, ###p < 0.001 vs. 2% CSE + shRNA-NC group. 16HBE, 
Human bronchial epithelioid cell line; FABP4, Fatty Acid Binding Protein 4; GAPDH, Glyceraldehyde-3-Phosphate Dehydrogenase; CSE, cigarette 
smoke extract
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Fig. 3  CS-induced 16HBE cell inflammatory response was reduced by shRNA-mediated FABP4 elimination. A ELISA assay showed an alleviation of 
CSE-mediated promotion of TNF-α, IL-1β and IL-6 levels in 16HBE cells transfected with shRNA-FABP4-1 as compared with the cells transfected with 
shRNA-NC. B Western blot analysis showed a downregulation of CSE-mediated increase of Cox-2 and iNOS protein levels in 16HBE cells transfected 
with shRNA-FABP4-1 as compared with the cells transfected with shRNA-NC. The normal 16HBE cells without transfection and CSE treatment were 
used as control. ***p < 0.001 vs. control group; ###p < 0.001 vs. 2% CSE + shRNA-NC group. 16HBE, Human bronchial epithelioid cell line; FABP4, Fatty 
Acid Binding Protein 4; GAPDH, Glyceraldehyde-3-Phosphate Dehydrogenase; CSE, cigarette smoke extract; TNF-α, Tumor Necrosis Factor α; IL-1β, 
Interleukin 1 Beta; IL-6, Interleukin 6; Cox-2, Prostaglandin-Endoperoxide Synthase 2; iNOS, Nitric Oxide Synthase 2
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pathway in CSE-mediated 16HBE cell inflammatory 
response and apoptosis, we used western blot analysis 
to detect related proteins in this pathway. As predicted, 
phosphorylation levels of P38 and MK2 were significantly 
increased in 16HBE cells after 2% CSE treatment for 48 h. 
In FABP4-deficient cells, phosphorylation levels of P38 
and MK2 were limited approximately 40% (Fig. 4).

To further confirm the FABP4 signaling pathway 
involved in CSE-mediated 16HBE cell inflammatory 
response and apoptosis, asiatic acid, an agonist of p38 
MAPK was used [23]. After pretreated with 30  μM asi-
atic acid for 1  h, the protective effects of FABP4 abla-
tion against CSE exposure-mediated 16HBE cell injury 
were inhibited, with cell viability was decreased to about 
50% (Fig. 5A) and cell apoptosis was increased to about 
14% relative to those of the 2% CSE + shRNA-FABP4-1 
group (Fig. 5B, C). At this time, through ELISA assay and 
western blot analysis, the levels of inflammatory factors 
including TNF-α, IL-1β and IL-6 were slightly increased 
(Fig. 5D), and the levels of inflammatory proteins Cox-2 

and iNOS were also increased by asiatic acid (Fig.  5E), 
as compared with those in 2% CSE + shRNA-FABP4-1 
treated 16HBE cells. In addition, upon asiatic acid 
treatment, ROS and MDA levels were increased and 
SOD activity was decreased when compared with 2% 
CSE + shRNA-FABP4-1 treatment (Fig. 5F).

Thus, we conclude that upregulation of FABP4 pro-
motes CSE-mediated 16HBE cell injury by activating the 
P38 MAPK/MK2 signaling pathway.

Discussion
As early as 1997, a research report has pointed out that 
exposure to CS induces airway inflammation in smokers 
by inducing the release of IL-8 from bronchial epithelial 
cells [24]. Direct exposure to CSE significantly reduces 
the production of vascular endothelial growth factor in 
well-differentiated primary human airway epithelial cells 
by changing the extracellular signal-regulated kinase 1/2 
and protein kinase C signaling pathways [25]. Here, in 
this study, we aim to explore the potential link between 

Fig. 4  Interference of FABP4 inhibits p38 MAPK/MK2 signaling pathway in 16HBE cells. Western blot analysis showed a suppression of 
CSE-mediated activation of p38 MAPK/MK2 signaling pathway in 16HBE cells transfected with shRNA-FABP4-1 as compared with the cells 
transfected with shRNA-NC. The normal 16HBE cells without transfection and CSE treatment were used as control. ***p < 0.001 vs. control group; 
###p < 0.001 vs. 2% CSE + shRNA-NC group. 16HBE, Human bronchial epithelioid cell line; FABP4, Fatty Acid Binding Protein 4; p38, Mitogen-Activated 
Protein Kinase 14; p-p38, (Thr180/Tyr182); MK2, MAPK Activated Protein Kinase 2; p-MK2, (Thr334); GAPDH, Glyceraldehyde-3-Phosphate 
Dehydrogenase; CSE, cigarette smoke extract

Fig. 5  CS-induced 16HBE cell inflammatory response and apoptosis are generated by FABP4-mediated activation of p38 MAPK/MK2 signaling 
pathway. A CCK-8 assay showed that shRNA-mediated FABP4 ablation rescued the CSE-mediated cell viability decline, (B-C) TUNEL assay showed 
that shRNA-mediated FABP4 inhibition downregulated the CSE-mediated cell apoptosis (TUNEL positive cells/DAPI positive cells; TUNEL, green; 
DAPI, blue; Scale bar, 100 µm), (D) ELISA assay showed that shRNA-mediated FABP4 abrogation alleviated the CSE-mediated cellular inflammatory 
response (TNF-α, IL-1β and IL-6), (E) Western blot analysis showed that shRNA-mediated FABP4 abolition downregulated the CSE-mediated Cox-2 
and iNOS protein levels, which were all significantly reversed after treatment with 30 μM asiatic acid, an agonist of p38 MAPK at 37 °C for 1 h. The 
normal 16HBE cells without transfection and CSE or asiatic acid treatment were used as control. ***p < 0.001 vs. control group; #p < 0.05, ##p < 0.01, 
###p < 0.001 vs. 2% CSE + shRNA-FABP4-1 group. 16HBE, Human bronchial epithelioid cell line; FABP4, Fatty Acid Binding Protein 4; GAPDH, 
Glyceraldehyde-3-Phosphate Dehydrogenase; CSE, cigarette smoke extract; TNF-α, Tumor Necrosis Factor α; IL-1β, Interleukin 1 Beta; IL-6, Interleukin 
6; Cox-2, Prostaglandin-Endoperoxide Synthase 2; iNOS, Nitric Oxide Synthase 2

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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CSE exposure and FABP4 expression in bronchial epi-
thelial cells. Interestingly, our in  vitro results showed 
that FABP4 expression was increased in a time- and 
dose-dependent manner in CSE-treated 16HBE cells, a 
human bronchial epithelial cell line. FABP4 mainly plays 
a role in regulating metabolism and inflammation path-
ways [17, 26–28]. Chlamydia pneumoniae in mice infects 
and proliferates fat cells by inducing hormone-sensitive 
lipase-mediated lipolysis [7], and strongly induces fat 
cells to secrete FABP4 by stimulating endoplasmic retic-
ulum stress and unfolded protein response [6]. In addi-
tion, increased levels of FABP4 have also been found in 
inflammation-induced bronchopulmonary dysplasia and 
hyperoxia-induced lung injury [8, 9]. These literatures 
and research results imply the potential relationship 
among CS, FABP4 up-regulation and bronchial epithelial 
cell inflammation.

It is commonly reported that CSE causes chronic lung 
disease by changing the spectrum of inflammatory cells 
[29, 30]. We next carried out ELISA assay and western 
blot analysis to detect the levels of the cellular inflam-
matory factors including TNF-α, IL-1β and IL-6 and the 
protein levels of pro-inflammatory cytokines including 
Cox-2 and iNOS. Elevated Cox-2 and iNOS expressions 
has been confirmed to be associated with the develop-
ment of chronic lung diseases leading including COPD 
[31, 32]. Consistent with these findings, the results 
showed that CSE exposure elevated the levels of TNF-α, 
IL-1β and IL-6 and the protein levels of Cox-2 and iNOS 
in 16HBE cells. Also, the ablation of FABP4 in 16HBE 
cells alleviated the CSE-mediated inflammatory response.

Moreover, CSE is known to induce oxidative stress in 
COPD models both in  vitro and in  vivo [33, 34]. Con-
sistently, by observing the level of oxidative stress mark-
ers including ROS, MDA and SOD, we found that CSE 
remarkably promoted oxidative stress in 16HBE cells. 
Besides, FAPB4 inhibitor was reported to attenuate oxi-
dative stress in human alveolar epithelial A549 cells, 
suggesting the promotive effect of FABP4 on oxidative 
stress in respiratory endothelium [10]. We subsequently 
detected the influence of FABP4 on the oxidative stress in 
CSE-treated 16HBE cells, and found that CSE-mediated 
increase in oxidative stress in 16HBE cells was markedly 
blocked by FABP4 knockdown. This data suggested the 
inhibitory effect of FABP4 knockdown on CSE-mediated 
oxidative stress.

In the process of atherosclerosis, Gao Q et  al. have 
found that continuously activated FABP4 mediates endo-
plasmic reticulum stress and macrophage apoptosis 
[35]. Moreover, the up-regulation of FABP4 can cause 
spontaneous apoptosis in bone marrow adipocytes [36]. 

However, Elmasri H et al. have found that the aortic ring 
of FABP4-deficient mice shows reduced angiogenesis, 
and FABP4 deficiency are prone to stimulate the apopto-
sis of human umbilical vein endothelial cells [26]. There-
fore, we conclude that the regulation of cell survival by 
FABP4 may differ in different cell types. In this study, we 
discovered that shRNA-mediated FABP4 specific inhibi-
tion rescued the decrease in 16HBE cell activity and the 
increase in apoptosis caused by CSE exposure.

It is previously mentioned that FABP4 upregulation 
induces the apoptosis of bone marrow adipocytes by acti-
vating p38 MAPK signaling pathway [26]. In adipocytes, 
exogenous FABP4 can interfere with adipogenic differ-
entiation through p38 MAPK-mediated lipolysis and 
inflammation both in vivo and in vitro [27]. In addition, 
MK2, a known downstream substrate of MAPK, is phos-
phorylated in CSE-induced bronchial epithelial cells [15]. 
Another study also clarified that p38 inhibition attenu-
ates the expression of IL-6, iNOS, and Cox-2 [36]. Our 
experimental results confirmed that silencing of FABP4 
can inhibit the activation of p38 MAPK/MK2 signaling 
pathway in 16HBE cells. More importantly, asiatic acid, 
an agonist of p38 MAPK, reversed the protective role of 
FABP4 reduction against 16HBE cell injury upon expo-
sure to CSE. These results indicated that CSE-mediated 
up-regulation of FABP4 expression exerted pro-inflam-
matory, pro-oxidative stress and pro-apoptotic effects 
by activating the p38 MAPK/MK2 signaling pathway 
in 16HBE cells. However, the usage of only one cell line 
and the lack of in vivo experiments are limitations of this 
study, we may consider to validate our findings in other 
cell line models and animal models in research work. In 
addition, FABP4 has been reported to induce asthmatic 
airway epithelial barrier dysfunction via regulating ROS 
[37], while this study didn’t cover this issue. Furthermore, 
asiatic acid did not reverse the effect of FABP4 silence 
totally, indicating the possible involvement of other 
pathways in the actions of FABP4, which remains to be 
elucidated. Therefore, our future study aims to give an 
explanation of FABP4 role in bronchial epithelial cells in 
a more comprehensive perspective.

Conclusion
In a word, our results highlight a novel finding that the 
expression of FABP4 was increased in a time and dose-
dependent manner in 16HBE cells exposed to CSE. The 
knockdown of FABP4 protect bronchial epithelial cells 
against CSE-induced injury via inactivating p38 MAPK/
MK2 signaling pathway. Our results provide a novel 
markers or target for the development of therapies for 
COPD.
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Materials and methods
Preparation of CSE
100% CSE was prepared by allowing the smoke generated 
by two 3R4F standard research cigarettes (Tobacco and 
Health Research Institute, University of Kentucky) with 
filter removed to flow directly into RPMI-1640 (sigma) 
in a glass flask with side flow smoke exposure system. 
Each cigarette burns for 8 min. The absorbance value of 
the collected 100% CSE was measured at the wavelength 
of 260  nm for inter batch quality control. The qualified 
100% CSE was filtered and sterilized with 0.22 μm filter 
for the experiment.

Cell culture
Studies were performed using human bronchial epi-
thelioid cell line 16HBE cells purchased from American 
type culture collection (ATCC). Cells were maintained 
in RPMI-1640 containing 10% Fetal Bovine Serum (FBS; 
Gibco), 0.1kU/ mL penicillin and 0.1  mg/ml streptomy-
cin (Beyotime Biotechnology) at 37 °C in a humidified 5% 
CO2 atmosphere. The passage number of all cells used 
has no more than 10.

Cell transfection
FABP4-specific short hairpin RNAs (shRNA; shRNA-
FABP4-1, shRNA-FABP4-2) and nontargeting shRNA 
(shRNA-NC) were synthesized and purified by Ribo-
Bio. Briefly, 5 × 105 16HBE cells were transfected with 
25 pmol shRNA using Lipofectamine® RNAiMAX (Invit-
rogen) according to manufacturer’s recommendation.

Sequences are as follows: shRNA-FABP4-1, sense 5’- 
GGA​TGT​GAT​CAC​CAT​TAA​A-3’, antisense 5’- TTT​
AAT​GGT​GAT​CAC​ATC​C-3’; shRNA-FABP4-2, sense 
5’- GGG​ATG​TGA​TCA​CCA​TTA​A-3’, antisense 5’- TTA​
ATG​GTG​ATC​ACA​TCC​C-3’; shRNA-NC, sense 5’-GAT​
CCC​CCT​TCT​CCG​AAC​G-3’, antisense 5’-AGC​TAA​
AAA​TTC​TCC​GAA​C-3’.

RNA extraction, complementary DNA (cDNA) synthesis, 
real‐time quantitative reverse transcription‐polymerase 
chain reaction (qRT‐PCR)
Total cellular RNA was isolated from 5 × 106 16HBE 
cells using the Total RNA Isolation Kit (Biomarker), and 
5 µg of total RNA was used to reverse into cDNA using 
the PrimeScript™ RT reagent kit (Takara), according to 
manufacturers’ recommendations. Subsequently, the 
qRT‐PCR were performed using One Step TB Green® 
PrimeScript™ PLUS RT-PCR Kit (Takara) and detected 
by StepOnePlus™ Real-Time PCR System (Thermo Fisher 
Scientific).

Primer sequences were as follows: for human FABP4, 
forward 5’-ATG​GGG​GTG​TCC​TGG​TAC​AT-3’, reverse 
5’-CTT​TCA​TGA​CGC​ATT​CCA​CCA-3’; for human 

GAPDH, forward 5’-CAC​TAG​GCG​CTC​ACT​GTT​CT-3’, 
reverse 5’-GCC​CAA​TAC​GAC​CAA​ATC​CGT-3’.

Western blot (WB) analysis
Total cellular protein was prepared from 1 × 107 16HBE 
cells using 1 ml CelLytic™ MT Cell Lysis Reagent (Sigma) 
containing Phosphatase Inhibitor Cocktail (abcam). 
The proteins (20  µg/lane) were separated using 10% 
sodium dodecyl sulfate–polyacrylamide gel electropho-
resis (SDS-PAGE) and transferred onto 0.45  µm polyvi-
nylidene fluoride (PVDF) membranes (Millipore), and 
blocked with Tris-buffered saline containing 1% Tween-
20 (TBST, pH 7.6) and 5% skimmed milk powder at 
room temperature for 1 h. After washed with TBST, the 
blots were incubated with primary antibodies at 4  °C 
overnight. After additional three more washes with PBS 
(15  min each time), the corresponding horseradish per-
oxidase (HRP)-linked secondary antibodies were used 
at room temperature for another 1 h. Finally, the protein 
bands were visualized with Chemiluminescent Western 
Blot Reagents (Thermo Fisher Scientific) and scanned 
with the PDQuest 7.2.0 software (Bio-Rad). Protein 
expression was quantified using ImageJ software (version 
1.8.0; National Institutes of Health).

Primary antibodies: rabbit anti-FABP4 (1:1,000, 2120S, 
Cell Signaling technology); rabbit anti-GAPDH (1:1,000, 
5174S, Cell Signaling technology); rabbit anti-Cox-2 
(1:1,000, 12282S, Cell Signaling technology); rabbit anti-
iNOS (1:1,000, 13120S, Cell Signaling technology); rab-
bit anti-p38 (1:1,000, 8690S, Cell Signaling technology); 
rabbit anti-p-p38 (1:1,000, 4511S, Cell Signaling technol-
ogy); rabbit anti-p-MK2 (1:1,000, 3041S, Cell Signaling 
technology).

HRP-linked secondary antibody: Anti-rabbit IgG, 
HRP-linked Antibody (1:3,000, 7074S, Cell Signaling 
technology).

Cell Counting Kit‑8 (CCK‑8) assay
1 × 104 16HBE cells/well were seeded into 96-well plates 
and transfected with corresponding shRNA at 37  °C for 
24  h. After 1  h treatment with or without 30  μM asi-
atic acid, an agonist of p38 MAPK at 37 °C, 100 µl fresh 
RPMI-1640 completement medium containing 2% CSE 
were replaced and cultured for additional 48  h. Subse-
quently, Cell Counting Kit-8 (MedChem Express) was 
used to determine the cell viability according to the man-
ufacturer’s recommendation. The normal 16HBE cells 
without transfection and treatment were used as control.

Tunel assay
5 × 104 16HBE cells/well were seeded into 96-well plates 
and transfected with corresponding shRNA at 37  °C for 
24  h. After 1  h treatment with or without 30  μM p38 



Page 10 of 11Zhang et al. Journal of Inflammation            (2022) 19:7 

agonist asiatic acid at 37  °C, 500  µl fresh RPMI-1640 
completement medium containing 2% CSE were replaced 
and cultured for additional 48 h. Subsequently, One Step 
TUNEL Apoptosis Assay Kit (Beyotime Biotechnology) 
was used to determine the cell apoptosis according to 
the manufacturer’s recommendation. The normal 16HBE 
cells without transfection and treatment were used as 
control. The percentage of apoptotic cells was calculated 
using ImageJ software (version 1.8.0; National Institutes 
of Health).

Elisa assay
2 × 105 16HBE cells were seeded into cell culture dishes 
and transfected with corresponding shRNA at 37  °C for 
24 h. After 1 h treatment with or without 30 μM asiatic 
acid, an agonist of p38 MAPK at 37 °C, 8 ml fresh RPMI-
1640 completement medium containing 2% CSE were 
replaced and cultured for additional 48 h. Subsequently, 
Human TNF alpha SimpleStep ELISA® Kit, Human IL-1 
beta SimpleStep ELISA® Kit, Human IL-6 SimpleStep 
ELISA® Kit (abcam) were used to determine the levels of 
inflammatory cytokines in culture supernatant accord-
ing to the manufacturer’s commendation. The normal 
16HBE cells without transfection and treatment were 
used as control.

Measurement of oxidative stress
Production of ROS and MDA, and SOD activity in 
16HBE cells was measured by Cellular ROS Detection 
Assay Kit (ab186029; Abcam), Lipid Peroxidation (MDA) 
Assay Kit (ab118970; Abcam) and SOD Activity Assay 
Kit (ab65354; Abcam), respectively, strictly according 
to the manufactures’ protocols. Briefly, control or trans-
fected 16HBE cells were treated with or without 30 μM 
asiatic acid for 1  h, followed by being cultured in fresh 
RPMI-1640 medium containing 2% CSE for additional 
48  h. Subsequently, about 2 × 106 cells were harvested 
for corresponding Assay Kits. All experiments were per-
formed in triplicate and data were shown as relative level 
or activity after normalization to control group.

Statistics
All data were shown as the mean ± standard deviation 
from experiments in triplicate. Comparisons between 
multiple groups were evaluated using one-way ANOVA 
followed by Tukey’s test using GraphPad Prism 8. P 
value < 0.05 was considered significant.
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