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MRI brain atlases are widely used for automated image segmentation, and in particular, recent developments in
multi-atlas techniques have shown highly accurate segmentation results. In this study, we extended the role of
the atlas library from mere anatomical reference to a comprehensive knowledge database with various patient
attributes, such as demographic, functional, and diagnostic information. In addition to using the selected (heavi-
ly-weighted) atlases to achieve high segmentation accuracy, we testedwhether the non-anatomical attributes of
the selected atlases could be used to estimate patient attributes. This can be considered a context-based image
retrieval (CBIR) approach, embedded in themulti-atlas framework.We first developed an image similaritymea-
surement to weigh the atlases on a structure-by-structure basis, and then, the attributes of the multiple atlases
were weighted to estimate the patient attributes. We tested this concept first by estimating age in a normal pop-
ulation; we then performed functional and diagnostic estimations in Alzheimer's disease patients. The accuracy
of the estimated patient attributes wasmeasured against the actual clinical data, and the performance was com-
pared to conventional volumetric analysis. The proposed CBIR framework bymulti-atlas votingwould be the first
step toward a knowledge-based support system for quantitative radiological image reading and diagnosis.
© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In this paper, we developed and tested a multi-atlas voting method
that can capture brain anatomical features that are associated with cer-
tain functional deficits or diagnostic categories of dementia patients,
based on existing knowledge database (atlases), and applied this
knowledge to individual patients to support clinical image reading. An-
atomicalMRI is an indispensable tool to diagnose various brain diseases.
Three types of MRI methods—T1-weighted, T2-weighted, and
FLAIR—have been themost widely used clinically. Based on specific fea-
tures that appear in these images, radiologists estimate the likely causes
of the features and arrive at the best medical judgment. There are three
types of critical information radiologists extract from the images: the
type, degree, and location of the features. These features are then com-
pared to the radiologist's knowledge about the range of normal appear-
ance at a given age of the patient. If considered abnormal, the type,
degree, and location of the abnormality are documented in a radiologi-
cal report. Radiologists often go one step further by performing a
chool of Medicine, Traylor 330,
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similarity search within their knowledge base of various diseases and
provide potential diagnoses. In the field of computer vision, this is a
type of context-based image retrieval (CBIR) (Hsu et al., 2012; Muller
et al., 2004; Smeulders et al., 2000; Tang et al., 1999). Namely, there is
a knowledge database that contains images and associated text-based
attributes, such as demographic, functional, and diagnostic information.
When an image of a new patient is provided, along with his/her demo-
graphic and clinical information, past cases with similar features are ex-
tracted, together with the desired diagnostic information. The long-
term goal of this study is to develop a new image analysis tool that
will emulate this evaluation process by experienced radiologists.

In clinical setting, the degree of abnormality varies widely among
different brain diseases. Ischemic infarction and tumor are diseases
that often demonstrate large effect sizes, and MRI is considered one of
the most effective diagnostic tools. At the other end of the spectrum
are psychiatric diseases, for which MRI is not considered effective
enough for routine clinical diagnosis. Dementia populations are located
in themiddle of the spectrum. Various dementia diseases with different
causes and time courses are known to demonstrate brain atrophy in
specific brain structures. However, this is compounded by the natural
course of brain atrophy in aging brains and the coexistence of multiple
pathology states unique to each patient, which would make the study
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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of simple anatomy-pathology correlations challenging. Through past
clinical experience and research, loose relationships between brain pa-
thology and anatomical features have been established. For example,
hippocampal atrophy is often used as an indicator of Alzheimer's dis-
ease, and frontotemporal dementia usually accompanies atrophy of
the frontal and temporal lobes. However, such correlations may not be
strong enough to be reliably perceived by subjective evaluations.

In conventional image analysis, the patient populations are first ho-
mogenized into specific dementia groups based on clinical symptoms
(e.g., MCI, AD, etc.), and then, voxel-based analysis is performed to iden-
tify certain anatomical features that differentiate the population from a
control group. The challenges faced by clinicians are fundamentally dif-
ferent as the patient population is inherently heterogeneous both in the
anatomical and clinical domains, and the initial stratification of patients
is often unknown. In addition, patients may have a heterogeneous “na-
ture” and “degree” of pathologies that co-exist in multiple “locations.”
Thus, to support clinical image reading, it is an important effort to devel-
op and test tools that can detect not only abnormalities (with respected
to age-matched controls), but also apply past knowledge to individual
patients and provide a quantitative and systematic evaluation of their
anatomical states.

In the past, CBIR has been attempted for several radiological images,
such as lung CT andmammography (Muller et al., 2004). For brain MRI,
Coupe et al. (2012) devised a simultaneous segmentation and grading
approach, which graded the test subjects based on several pre-selected
structures, according to their similarity to the corresponding structures
in the training subjects. This approach has been shown to provide re-
spectable accuracy (up to 90% success rate) in discriminating AD pa-
tients and normal controls. The performance was superior or
equivalent to other recent studies for AD classification, e.g., single-
atlas based studies by Cuingnet et al. (2011) (88.5% accuracy) and Liu
et al. (2012) (90.8% accuracy), or multi-atlas based studies by
Koikkalainen et al. (2011) (86.0% accuracy) and Min et al. (2014))
(91.64% accuracy), just to name a few from the extensive literature
about AD studies. The analysis in Coupe et al. (2012), however, was
based on a hypothesis that the pre-selected structures (the hippocam-
pus and the entorhinal cortex) carry key anatomical features for AD pa-
tients. This is a valid assumption for pre-stratified AD populations, but,
for clinical patient populations with heterogeneous pathology, identify-
ing key brain anatomical locationswould be an important initial step, as
the abnormality is region specific to each disease (or functional deficit)
category.

This paper shares the same fundamental concept as the pioneering
work by Coupe et al., but employs a unique framework of multiple-
atlas brain segmentation to evaluate the anatomy of the entire brain.
In atlas-based segmentation approaches (Collins et al., 1995; Dawant
et al., 1999; Fischl et al., 2002; Joshi et al., 2004; Rohlfing et al., 2004),
an atlas with pre-defined structures is warped to a patient image, thus
transferring the structural definition for automated segmentation. In
the multiple-atlas approach (Artaechevarria et al., 2009; Heckemann
et al., 2006; Klein et al., 2005; Lotjonen et al., 2010; Warfield et al.,
2004), there are multiple atlases that are all warped to a patient
image. This leads to different segmentation results of a structure, follow-
ed by a fusion process (Langerak et al., 2010; Sabuncu et al., 2010;
Warfield et al., 2004) to derive the best estimation of the structure. Dur-
ing the fusion, if all atlases receive equal weighting, majority voting pre-
vails (Heckemann et al., 2006; Rohlfing et al., 2004). In more advanced
approaches, each atlas receives a weighting based on anatomical simi-
laritymeasures, such as the voxel intensity (Maes et al., 1997). By apply-
ing proper atlas-weighting, we expect to choose atlases with a similar
anatomy and better registration accuracy, and thus, higher segmenta-
tion accuracy. Depending on algorithms, this operation is performed
in a voxel-by-voxel or label-by-label manner. The content of the atlas li-
brary is the subject of various interesting questions. These include how
many atlases are needed (Heckemann et al., 2006),whether they should
be age-matched (Aljabar et al., 2009), or whether they should include
pathological cases. In this study, we used the JHU multi-atlas library
(Djamanakova et al., 2014; Wu et al., 2015) that contains images from
healthy volunteers with a wide range of age, as well as images from pa-
tients, including mild cognitive impairment (MCI) and Alzheimer's dis-
ease (AD).

In typical multi-atlas segmentation studies, segmentation accuracy
is usually the main interest of the studies, but in this paper, we focused
on the atlas weighting as a measure of diagnostic voting from multiple
atlases (called multi-atlas voting (MAV), hereafter); namely, if the AD-
type of atlases are heavily weighted among all atlases for a structure
of interest, the structure is judged as highly demented and the corre-
sponding attributes (functional/diagnostic) fromAD atlases are weight-
ed heavily in the estimation of patient attributes. To test this idea, we
first demonstrate the proof-of-principle using the age estimation,
which can be validated by the known age. Then, we used MCI and AD
cases from the Alzheimer's disease Neuroimaging Initiative (ADNI) to
evaluate the performance in estimating both the functional deficits,
such cognitive scores, and diagnostic categories (NC, MCI, or AD) of
these patients. The accuracy was thenmeasured by comparing the esti-
mated and actual clinical data from the ADNI database. If the MAV esti-
mation works, it would estimate AD patients as “highly demented”
based on the anatomical features of medial temporal lobe structures ,
as the atrophy of these structures has been repeatedly identified as
key discriminating features of AD in past morphometric studies. This
paper describes the results of this uniqueMAV approach for direct esti-
mation of the patients' diagnostic attributes in the context of
Alzheimer's disease.

2. Methods and materials

2.1. Subjects

2.1.1. Subjects used for age estimation
The age-specific, multi-atlas dataset consisted of T1-weighted im-

ages of healthy controls from a pediatric population (4–12 yr, 20
atlases), a mid-age population (20–50 yr, 20 atlases), and an elderly
population (60–80 yr, 20 atlases). Another 10 atlases from each age
group were used as test subjects. The atlases are a subset of the
MriCloud atlas repository (https://braingps.mricloud.org/atlasrepo),
whichwere segmented to 289 structureswith extensivemanual correc-
tion. All images were acquired on Philips 3 T scanners, with image res-
olution in the range of 1.0 × 1.0 × 1.0 mm to 1.0 × 1.0 × 1.2 mm.

2.1.2. Subjects used for dementia estimation
The dementia-specific, multi-atlases consisted of T1-weighted im-

ages from the ADNI database (http://adni.loni.usc.edu/), with 20 atlases
from the Alzheimer's disease (AD) population, 20 from the Mild Cogni-
tive Impairment (MCI) population, and 20 from the normal elderly con-
trols. Another 90 subjects (n = 30 in each group) chosen from ADNI as
test subjects (Table 1). We estimated the diagnostic categories, as well
as the functional attributes of the dementia patients, and we chose
one of the most widely used cognitive scores—the Alzheimer's Disease
Assessment Scale-cognitive subscales with 11 items (ADAS.11) (Llano
et al., 2011)—as the functional measure. The patient information, in-
cluding the ADAS.11 scores are summarized in Table 1. Other functional
measurements, such as The Mini Mental State Examination (MMSE),
can be calculated in the same way.

TheADNI data included data acquired fromPhilips, SIEMENS, andGE
scanners at 1.5 T and 3 T.We used an even number of subjects fromeach
protocol in each group (control, MCI, and AD) for both the training and
testing datasets (Table 1). Our analysis, therefore, contains effects from
image protocol differences. In our previous paper (Liang et al., 2015),we
evaluated the protocol effects on our pipeline, and found that the pipe-
line could robustly detect age-dependent anatomical changes regard-
less of the wide variety of protocols, including the different scanner
fields and manufacturers. We evaluated the effect of scan protocol on

https://braingps.mricloud.org/atlasrepo
http://adni.loni.usc.edu


Table 1
ADNI data used for diagnosis estimation. Abbreviations: P1.5 – Philips 1.5 T; P3 – Philips 3 T; S1.5 – Siemens 1.5 T; S3 – Siemens 3 T; G1.5 – GE 1.5 T; G3 – GE 3 T.

Group No. Usage Age (years) Diagnosis (ADAS.11) Number of subjects from P1.5/P3/S1.5/S3/G1.5/G3

Control 20 Atlas 70.8 ± 8.3 4.53 ± 2.20 3/4/3/4/3/3
Control 30 Test 71.6 ± 2.5 6.57 ± 3.49 5/5/5/5/5/5
MCI 20 Atlas 73.1 ± 9.5 11.75 ± 2.81 3/4/3/4/3/3
MCI 30 Test 71.4 ± 8.7 12.78 ± 4.07 5/5/5/5/5/5
AD 20 Atlas 70.7 ± 11.0 17.05 ± 3.99 3/4/3/4/3/3
AD 30 Test 69.7 ± 12.3 20.67 ± 5.05 5/5/5/5/5/5
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the estimation of patient attributes, as described in Section 2.3.4.We be-
lieve the inclusion of various MPRAGE protocols (all provided by the
manufacturers) in this study was highly important to ensure that the
observed biological effects would not be erased in practice when differ-
ent imaging protocols are used.

2.2. Algorithms

2.2.1. Multi-atlas segmentation framework
In multi-atlas based segmentation, the parcellation profiles of the

target image from each atlas, after registration, are combined according
to certain atlas-weighting and fusion schemes. The registration in this
study was achieved first by affine transformation, and then iterative
Large Deformation Diffeomorphic Metric Mapping (LDDMM)
(Christensen et al., 1996; Grenander and Miller, 1998; Miller et al.,
1993), along with iterative inhomogeneity corrections. The concept of
multi-atlas approach assumes that the warping of a single atlas to the
target image is not always perfect. Although LDDMMensures preserved
topology and invertible transformation from an atlas to the target, if the
anatomical differences are large, it could lead to a highly stretched
transformation.

Let IT be the target image, IAi (i=1,2,… ,N) be the atlas images
after warping to the target image, and LA

i be the label images associated
with the warped atlases. We used a weighted voting approach
(Artaechevarria et al., 2009; Isgum et al., 2009; Sabuncu et al., 2010)
for label fusion:

p̂ ljx; ITð Þ ¼ ∑
N

i¼1
wi

A xð Þ � p ljx; IiA
� �

ð1Þ

where p̂ðljx; IT Þ is the estimated probability of voxel x being labeled l in
the target image, and l=1,2,… ,L, with L the total number of labels.
p(l |x, IAi ) is the probability of voxel x being labeled as l in the warped
atlas, with p(l |x , IAi )=1 when LA

i (x)= l and p(l |x , IAi )=0 otherwise.
wA

i (x) represents the atlas-weighting term that measures the similarity
between the target and atlas i at voxel x, with ∑i=1

N wA
i (x)=1.

When p(l |x, IAi ) is binary, as it is used in this study, Eq. (1) reduces
to a weighted majority voting scheme. The atlas-weighting used in
this study is described in the next section. The final segmentation
can be obtained by the Bayes maximum a posteriori (MAP) estimation,
LT ðxÞ ¼ argmaxl∈f1;…;Lg p̂ðljx; IT Þ.

2.2.2. Atlas-weighting strategy
Atlas-weighting is the key component inMAV-based disease estima-

tion. We assign atlas-weightings to each individual structure, based on
the intensity similarity, on a label-by-label basis, as opposed to a
voxel-by-voxel based approach. The similarity is measured based on
the local intensity match along the boundary of each structural label
between the target and the warped atlases. Namely, a tentative,
“atlas-specific” boundary is casted from the atlas to the target first and
the degree of matching, based on the similarity of the voxel intensity
along the atlas-specific boundary, is evaluated. This process is repeated
for each atlas and the weighting was judged based on similarity. We
choose the boundary voxels rather than all voxels in the label, assuming
the image intensities inside the structure are relatively homogeneous
and the boundary voxels are more sensitive to the structural similarity.
LetNx=[x1,x2,… ,xK] be a vector of voxels in a local neighborhood patch
of radius r× r× r centered on a boundary voxel x, then the similarity
measure sA

i (x) of a warped atlas i is computed by

siA xð Þ ¼ corr IiA Nxð Þ; IT Nxð Þ
� �

ð2Þ

where corr(∙) is the Pearson correlation coefficient corrðIiAðNxÞ; IT ðNxÞÞ ¼
E½ðIiAðNxÞ−μðIiAðNxÞÞÞðIT ðNxÞ−μðIT ðNxÞÞÞ�

σðIiAðNxÞÞσðIT ðNxÞÞ
with E, μ, and σ being the expectation,

mean, and standard deviation operations, respectively. sAi (x) is a signed
quantity with negative values indicating anti-correlation. We assume
anti-correlations rarely occur in practice, as we use the atlas and target
images from the same modality, which are sufficiently co-registered to
each other. In case of anti-correlation, a negative sAi (x) valuewould indi-
cate very low similarity.

Since the similarity ismeasured based on thewarped atlases that are
already transformed through a large deformation to match the target
image, in order to properly weigh the patient attributes that are associ-
ated with the un-deformed atlases in their native space, we include a
deformation cost in the atlas-weighting. The LDDMM provides a struc-
ture-preserving diffeomorphism φ between the atlas and target
images by solving _φt ¼ vt ∘φt , t∈ [0,1], with v0 ¼ _φ0, and minimizing
‖IT− IA ∘φ1

−1‖2+ ∫01‖vt‖V2dt, where vt is the time-dependent velocity vec-
tor field of the flow of the deformation,φt is the diffeomorphism at time
t, _φt denotes the first-order differentiation ofφt, and ∫01‖vt‖V2dt represents
the integration of the norm of vt over the entire velocity field, V
(Christensen et al., 1996; Grenander and Miller, 1998; Miller et al.,
1993, 2015). The deformation energy at individual voxels can be ap-
proximated by the determinant of the Jacobian matrix of the LDDMM
transformation J(x). We calculate the deformation cost using a negative
exponential function of this quantity, αA

i (x)= exp(− JA
i (x)), for each

atlas IAi at voxel x, such that the larger the deformation, the smaller the
αA
i . In the boundary-based atlas-weighting, we obtain αA

i (x) at each
boundary voxel along an atlas label, and the dot product of sAi (x) ∙αA

i (x)
summed over all boundary voxels gives the weighting of atlas IAi for this
label.

wi
A lð Þ ¼ ∑

x∈biA lð Þ
siA xð Þ∙αi

A xð Þ ð3Þ

where wA
i (l) is the atlas-weighting of label l in atlas i, and bA

i (l) denotes
the boundary of label l in the warped atlas i.

There are slight differences in the use of atlas-weighting for segmen-
tation andMAVpurposes. In segmentation, the atlas fusion is performed
per spatial location and all voxels within the same label of an atlas
receive the sameweighting; whereas, for theMAV-based direct estima-
tion of patient attributes, the voting is performed per structure. In both
cases, the atlas-weightings are normalized such that∑i=1

N wA
i (l)=1. In

addition, we used a combined weighting based on the similarity of the
deformed atlas and the deformation cost for direct estimation of patient
attributes; whereas, for segmentation purposes, we used only the simi-
larity of the deformed atlas in atlas-weighting, wi

AðlÞ ¼ ∑
x∈biAðlÞ

siAðxÞ, as

the deformation cost is not related to the segmentation.
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2.2.3. MAV-based patient attribute estimation
Given the demographic or clinical information,D(IAi ), that is associat-

edwith atlas i, the same type of information about the target subject can
be inferred by

D IT jlð Þ ¼ ∑
N

i¼1
D IiA
� �

�wi
A lð Þ ð4Þ

whereD(IT | l) is the demographic or clinical estimation of structure l in a
target subject. In the age estimation test, D(∙) will be the age measure,
and in the functional estimation of the dementia patients, D(∙) will be
the ADAS.11 score.

We can also estimate the diagnostic categories of the dementia pa-
tients based on the probability of the target subject belonging to normal
elderly, MCI, or AD groups. The can be achieved by summing over the
weightings of the atlases associated with the specific diagnostic groups,
after normalizing the sum of all atlas weights to unity.

p GjjIT ; l
� � ¼ ∑

i∈G j

wi
A lð Þ ð5Þ

where p(Gj | IT , l) is the probability of the target belonging to atlas group
Gj in terms of label l, with j=1,2 ,… , J (the number of diagnostic
groups).

2.3. Performance evaluation and statistical tests

2.3.1. Correlation between the estimated and clinically measured patient
attributes

In the age estimation test, the ages estimated from the test subjects
(n= 30) on individual structures were comparedwith the subjects' ac-
tual ages by linear regression. The estimation of functional deficits in the
dementia population was similarly evaluated by linear regression be-
tween the estimated ADAS.11 scores and the clinically measured
ADAS.11 in the ADNI subjects (n = 90). The R2 was used to evaluate
the goodness-of-fit of the linear regression, and the p-value from the
t-statistics was used to evaluate the significance of linear regression
with False Discovery Rate (FDR) (Benjamini and Hochberg, 1995) cor-
rection. The linear correlations between volumes of each structure and
age or ADAS.11 were also computed for comparison. The volumes
were obtained using a multi-atlas segmentation pipeline, as described
in Section 2.2.1 and the proposed atlas-weighting in Section 2.2.2.

2.3.2. Group differences
To assess the significance of the estimated ADAS.11 among ADNI

groups, a one-way analysis of variance (ANOVA) was performed
among the AD/MCI/NC test subjects (n = 30 each), and the p-values
from ANOVA tests were obtained and corrected by FDR for multiple
ROI comparisons. The same ANOVA test was also performed on the vol-
umetric measurements.

2.3.3. Feature extraction and classification accuracy
In addition to the regional presentation of patient attributes

estimated from the MAV diagram, the regional features can also
be combined to classify the disease categories. We compared the
classification performance using the volumetric measurements,
estimated ADAS.11 scores, and the estimated diagnostic category
probabilities based on Eq. (5). In order to use the three types of
categorical probabilities (AD/MC/NC) for feature selection and classifi-
cation purposes, we integrated them into a single dementia probability
measurement with a simple linear combination: p(Dementia | IT , l)=
p(GAD | IT , l)×1.0+p(GMCI | IT , l)×0.5+p(GNC | IT , l)×0.0, for structure l
of target image IT.

To extract the most discriminative features from the high-
dimensional feature vector (volumes or dementia probabilities
estimated from 289 brain structures), we tested two approaches using
the training data (atlases, n = 20 per group): 1) the top one or top 20
structures that showed the most prominent group difference, based
on the p-values from the ANOVA tests; 2) the LASSO method (least ab-
solute shrinkage and selection operator) (Tibshirani, 1996), which is a
regression analysis method that selects the best subset of variables to
enhance prediction accuracy. In our study, we performed LASSO using
a regression model between the pre-determined diagnostic category
(response variable) and the volumes, estimated ADAS.11 scores, or de-
mentia probabilities from each structure (covariates). The LASSOmeth-
od determines the optimal number of structureswhen themean square
fitting error is minimum. The regional features selected by the top one
or top 20 criteria or LASSOwere then fed into a linear discriminant anal-
ysis (LDA) classifier, using a leave-one-out cross validation approach on
the ADNI test subjects (n = 90). The sensitivity, specificity, and overall
accuracy of two-category (AD/NC) or three-category (AD/MCI/NC) clas-
sifications were evaluated. The LASSO and LDAwere performed using R
packages (https://cran.r-project.org/).

2.3.4. Evaluation of protocol effect
We evaluated the effect of scan protocol by including the protocol

type (six types of protocols used in ADNI data acquisition) as another
factor in addition to the estimated ADAS.11 scores, and tested its signif-
icance among the three groups, using two-way ANOVA followed by FDR
correction. The protocol effect was statistically significant only in two of
the 289 brain segments (left fusiform gyrus and left subcortical white
matter of the inferior temporal gyrus).

3. Results

3.1. Framework of multi-atlas voting

The concepts of the two approaches are summarized in Fig. 1. The
first approach that is illustrated in the blue dashed box is based on
MAV, as described above. In this approach, the patient attributes (age
as an example) are obtained directly from the process of the multi-
atlas pipeline and the resultant segmentation ismerely a proof of proce-
dural accuracy (as long as the segmentation is accurately performed, the
segmentation results are discarded). The second approach, as illustrated
in the yellow dashed box, is a more conventional method, in which the
segmentation results (e.g., volumes) are compared with population-
based regression for indirect estimation of the patient's age. The popu-
lation-based regression between the volume and patient attributes
must be established beforehand as a priori knowledge for the estima-
tion of any new patients.

3.2. Testing of regional feature estimation using age

We used age estimation as a proof-of-concept of theMAV approach.
Because we knew the exact age of each subject, we could evaluate the
accuracy of the age estimation. The estimation was performed in each
test subject (n = 30) on a structure-by-structure basis according to
Eq. (4). The linear regression between the estimated ages and actual
ages showed significant linear correlation (family-wise p b 0.01) in a
majority of the structures (214 out of 289). Fig. 2 shows the correlation
plots in several cortical, subcortical gray matter, and white matter re-
gions. The subcortical structures and deepwhitematter structures dem-
onstrated high correlation between the estimated age (y-axes) and the
actual age (x-axes), with R2 values around 0.7. The correlationwith cor-
tical structures was relatively weak, with R2 around 0.3–0.5. The R2

values and the slopes of linear regression were mapped to the T1-
weighted images, and masked by a family-wise p-value threshold of
0.01 (Fig. 3). The R2 maps indicated that the age estimation is most pre-
cise in the subcortical gray matter, the anterior deep white matter, and
the cerebellum. Someperipheralwhitematter tracts and gyri in the pos-
terior and superior brain did not show significant correlation. The slopes
of the linear regression, which represent the systematic bias between

https://cran.r-project.org


Fig. 1. A schematic showing the concepts of multi-atlas voting (MAV)-based analysis and conventional region-of-interest (ROI)-based analysis. In the MAV approach (dashed blue box),
the similarity between the patient images and the atlases is measured based on the image features, which is then used to weigh the attributes (age as an example) associated with the
multiple atlases to obtain a weighted estimation of the patient's attribute. In comparison, in ROI-based analysis (dashed yellow box), the multi-atlases are used to segment the image,
and the volumes or intensities of the ROIs are used to estimate the patient's attribute in an indirect manner, which relies on a priori regression data between the volume and patient
attributes (age as an example here).
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the estimated and actual ages, suggested high estimation accuracy in
the thalamus and midbrain structures and a higher degree of bias in
the peripheral structures. Fig. 3C demonstrates the regional age estima-
tion across the brain in several representative individuals at 7, 22, 41, 63,
and 80 years of age. A clear increase in the estimated age was observed
Fig. 2. (A) Linear regression between the estimated ages (y-axes) and actual ages (x-axes) of 3
Linear regression between the structural volumes (y-axes) and ages (x-axes) in the same stru
Abbreviations: SFG_L- left superior frontal gyrus; STG_L- left superior temporal gyrus; Hipp
anterior limb of the internal capsule.
from the pediatric to the elderly brains. Regional variations were pres-
ent, especially in the middle-age range.

We compared the age estimation by theMAVwith a simple volume-
based approach. The linear correlation between volumes and ages
reached significance (family-wise p b 0.01) in 174 out of 289 structures.
0 test subjects in several cortical, subcortical gray matter, and white matter structures. (B)
ctures as in (A). The R2 and p-values of the linear regression are denoted in each graph.
o_L- left hippocampus; Caud_L- left caudate; CP_L: left cerebral peduncle; ALIC_L- left



Fig. 3.Whole-brain mapping of the R2 and linear correlation coefficients of the linear regression between the estimated age and actual age in each structure, overlaid on a T1-weighted
image. Only structures with significant linear regression (family-wise p-value b 0.01) are shown. Dark red indicates low R2 or correlation coefficients, and the bright color indicates
high values.
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Fig. 2B compares the volume-to-age linear correlation in the same struc-
tures as theMAV-based correlation plots in Fig. 2A. The R2 values of vol-
ume-based and multi-atlas-based linear regression are directly
compared in all 289 structures in Fig. 4. In the subcortical gray matter
and deep white matter, the MAV-based age estimation outperformed
volume-based estimation; whereas, in the cortical structures, the R2 of
volume-based correlation was relatively higher. With the MAV-based
approach, 48 structures reached R2 N 0.7, among which several subcor-
tical graymatter, deepwhitematter, and ventricle structures showedR2
Fig. 4. R2 of the linear regression between the structural volume and age (blue bars), compared
289 structures over the whole brain.
values of 0.8 or higher,while therewere only six structures that reached
R2 N 0.7 with the volume-based approach. In 200 of the 289 structures,
the MAV-based age prediction gave higher R2 values than the volume
approach.

3.3. Estimation of the functional states in the dementia population

Weestimated the cognitive assessment (ADAS.11 score) of the ADNI
subjects using the disease-specific, multi-atlas library according to Eq.
to the R2 of the linear regression between theMAV-based estimation and age (red bars), in



Fig. 5.Volumes (A) andMAV-based estimation of ADAS.11 scores (B) from theAD,MCI, and control test subjects (n=30 in each group, presented as groupmean± standarddeviation), in
the structures that showed themost significant group difference. The order of the structureswas determinedbased on their p-values (from low to high) fromby one-wayANOVA followed
by FDR correction. *pb 0.001, **p b 1×10−5. Abbreviations: CGH - cingulum(hippocampal part); CL – claustrum;Hippo – hippocampus, Amyg– amygdala; PHG - parahippocampal gyrus;
Fx/ST – fornix/stria terminalis; BasForeBr – basal forebrain.
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(4). We first examined the group average ADAS.11 scores estimated in
the normal elderly, MCI, and AD test subjects (n = 30 each). Fig. 5A–B
shows the top eight brain regions with the largest group differences in
Fig. 6. (A) Linear regression between the estimated ADAS.11 scores (y-axes) and clinically meas
the left and right hippocampus, amygdala, left parahippocampal gyrus and left entorhinal cort
axes) in the same structures. The R2 and p-values of the linear regression are denoted in each
terms of the volumes (Fig. 5A) or estimated ADAS.11 (Fig. 5B), ranked
according to the p-values from one-way ANOVA (after FDR correction).
The two charts shared similarities: six of the eight detected structures
ured scores (x-axes) of 90 test subjects in several structureswith the highest R2, including
ex. (B) Linear regression between the structural volumes (y-axes) and ADAS.11 score (x-
graph.
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were limbic graymatter structures, including the left and right amygda-
la, the left hippocampus, and the left parahippocampal gyrus, as well as
limbic white matter structures, including the cingulum and the fornix/
stria terminalis. Overall, fewer structures showed significant group
differences (family-wise p b 0.01) using volumetric measurement
(18 out of 289 structures), compared to those using estimated
ADAS.11 (67 out of 289 structures).

Linear correlation between the estimated ADAS.11 scores (y-axes)
and the clinically measured scores (x-axes) was plotted in Fig. 6A for
several structures that showed the strong correlations according to
the R2. The left and right amygdala showed highest correlation (R2 =
0.48 and 0.42), followed by the left and right hippocampus (R2 = 0.4).
These structures are known to bemost affected in Alzheimer's patients.
In comparison, the correlations between volumes and measured
ADAS.11 were lower in these structures (R2 b 0.2, Fig. 6B); whereas
the highest volume-based R2 were found in the left claustrum (R2 =
0.29). The R2 maps in Fig. 7A showed significant correlations between
the estimated and measured ADAS.11 (familywise p b 0.01) in multiple
subcortical gray matter structures, including the caudate, the thalamus,
and the basal forebrain; thewhitematter structures, including the inter-
nal capsule, the cingulum, and the corpus callosum; the lateral ventri-
cle; and selected cortical regions, especially in the temporal lobes.
Lateralization was observed in some structures toward the left hemi-
sphere. The slopes of the linear regression (Fig. 7B) were highest in
the hippocampus and the inferior lateral ventricle.

3.4. Testing of disease classification

The diagnostic categories (AD/MCI/NC) were predicted using three
types of MRI markers – the conventional structural volumes, the de-
mentia probabilities (as described in Section 2.3.3) and the ADAS.11
scores estimated from MAV. The results are summarized in Table 2. In
this analysis, the classification accuracy was tested using the most dis-
criminating structures, based on their significance in differentiating
the AD/MCI/NC groups, or based on the LASSO analysis using the train-
ing (atlas) data. For the group difference ranking,we used the top one or
top 20 structures of the total of 289 structures from both the volume or
dementia probability markers for classification, while LASSO deter-
mined an optimal number of 22 structures from the volume marker,
40 structures from dementia probability estimations, and 26 structures
from the estimated ADAS.11 scores. Table 3 lists the top 20 structures
selected from each approach. As expected, the limbic structures in the
medial temporal lobes dominated the list. For the volumetric markers,
the left cingulum, which gave the most significant group differences,
was used as the single feature for classifyingAD/MCI/NC,which resulted
in an overall accuracy of 0.53. The combination of the features based on
Fig. 7.Whole-brain mapping of the R2 (A) and linear correlation coefficients (B) of the linear re
overlaid on a T1-weighted image. Only structures with significant linear regression (family-wi
the ranking or LASSO improved the overall accuracy to 0.58 and 0.61, re-
spectively. The use of dementia probability estimated fromMAV further
improved the overall accuracy to 0.63, 0.69, and 0.82 for a single struc-
ture (left amygdala), combinations by ranking, and LASSO, respectively.
The classification performance using the estimated ADAS.11 scores
were in-between the performances of the volume and dementia proba-
bilitymarkers, with an accuracy of 0.56, 0.61, and 0.69 for a single struc-
ture (left amygdala), the group difference ranking, and LASSO,
respectively. In addition,we performed classification using the clinically
measured ADAS.11 scores, which resulted in an accuracy of 0.79. If the
estimation was limited to AD vs NC (MCI data excluded), the accuracy
was 0.85–0.88 with volumetric markers, 0.9–0.92 with dementia prob-
ability estimation, and 0.88–0.92 with the estimated ADAS.11 scores.
The AD/NC classificationwas 100% correct using the clinicallymeasured
ADAS.11 scores.

4. Discussion

4.1. Concept of multi-atlas voting for disease estimation

MRI atlases are commonly used for automated image segmentation
(Chupin et al., 2009; Collins et al., 1995; Dawant et al., 1999; Fischl et al.,
2002; Joshi et al., 2004; Rohlfing et al., 2004), and provide pre-segment-
ed maps as a priori knowledge about the shapes and locations of the
structures to guide the segmentation. The use of multiple atlases yields
robust and accurate segmentation (Artaechevarria et al., 2009;
Heckemann et al., 2006; Jia et al., 2012; Klein et al., 2005; Lotjonen et
al., 2010), as the rich anatomical information from multiple atlases of-
fers the flexibility to accommodate the diverse anatomy of the patient
population. The end-goal of the atlas- or multi-atlas-based approaches
is typically to obtain accurate segmentation, from which information
about volumes, intensities, or shapes of the segmented structures can
be extracted (Heckemann et al., 2008; Kloppel et al., 2008; Mori et al.,
2013; Tustison et al., 2014). Much of the previous effort has been fo-
cused on improving the segmentation accuracy through advanced
image registration (Gholipour et al., 2007; Klein et al., 2009; Lotjonen
et al., 2009) or atlas weighting and fusion strategies (Langerak et al.,
2010; Sabuncu et al., 2010; Tang et al., 2013; van Rikxoort et al., 2010;
Wang et al., 2013; Warfield et al., 2004).

An interesting aspect of these studies is that the determination of the
structural volumes is usually NOT the ultimate goal of the study; in-
stead, the raw volume numbersmust be interpreted to extract clinically
useful information. For example, the structural volumes are compared
between control and patient groups (and thus, can serve as a biomarker
for diagnosis) or correlate with brain function measures (and thus, can
be used to infer the functional loss). Therefore, the volume information
gression between the estimated ADAS.11 and clinically measured score in each structure,
se p-value b 0.01) are shown.



Table 2
The sensitivity, specificity, and overall accuracy of the LDA classification results. Three types of biomarkers were evaluated — the structural volumes, the dementia probabilities, and the
ADAS.11 score estimated based on the multi-atlas voting approach. Three feature extraction approaches based on the group difference rank (top one and top 20) and LASSOwere tested,
for each of themarkers.We performed both three-group (AD/MCI/NC) and two-group (AD/NC) classification. In addition, we tested the classification results using the clinicallymeasured
ADAS.11 score. In the three-group classification, sensitivity and specificity were determined for each group. The overall accuracy is the percentage of true-positive plus true-negatives.

Measurement Feature selection Classification groups Sensitivity Specificity Overall accuracy

Volume

Single structure (left cingulum)
AD/MCI/NC 0.73/0.27/0.60 (AD/MCI/NC) 0.80/0.73/0.77 0.53
AD/NC 0.80 0.90 0.85

Group difference rank (top 20)
AD/MCI/NC 0.77/0.47/0.50 0.80/0.75/0.82 0.58
AD/NC 0.83 0.83 0.83

LASSO (22 structures)
AD/MCI/NC 0.70/0.43/0.70 0.87/0.73/0.82 0.61
AD/NC 0.93 0.83 0.88

Dementia probability

Single structure (left amygdala)
AD/MCI/NC 0.83/0.40/0.67 0.80/0.80/0.85 0.63
AD/NC 0.97 0.83 0.90

Group difference rank (top 20)
AD/MCI/NC 0.63/0.63/0.80 0.87/0.77/0.90 0.69
AD/NC 0.93 0.90 0.92

LASSO (40 structures)
AD/MCI/NC 0.83/0.73/0.90 0.95/0.87/0.92 0.82
AD/NC 0.87 0.93 0.90

Estimated ADAS.11

Single structure (left Amygdala)
AD/MCI/NC 0.73/0.27/0.67 0.83/0.72/0.78 0.56
AD/NC 0.97 0.83 0.90

Group difference rank (top 20)
AD/MCI/NC 0.67/0.47/0.70 0.83/0.73/0.85 0.61
AD/NC 0.90 0.93 0.92

LASSO
AD/MCI/NC 0.77/0.63/0.67 0.92/0.73/0.88 0.69
AD/NC 0.93 0.87 0.90

Measured ADAS.11 None
AD/MCI/NC 0.73/0.63/1.0 0.88/0.87/0.93 0.79
AD/NC 1.00 1.00 1.00
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is an intermediate marker to infer more clinically meaningful informa-
tion about the patients, such as diagnosis, prognosis, and functional
risk factors.

The proposed MAV-based approach tries to directly estimate the
clinically meaningful information from the knowledge database (atlas
libraries) without going through the volume measurement step,
which is naturally incorporated in the multi-atlas selection processes.
The approach assumes that certain individual traits, such as demo-
graphics, functions, and diagnostics, have specific anatomical signatures
Table 3
The structures selected for classification from the volumetric marker and dementia probability
difference rank, the top 20 structures were chosen for classification; while LASSO method use
probabilities, and only the first 20 structures with the highest regression coefficients (absolute

Volume-based Dem

Group difference rank LASSO Grou

1 Left cingulum (hippocampal
part)

Left claustrum Left

2 Left claustrum Right claustrum Left
3 Right cingulum (hippocampal

part)
Left pontine crossing tract Left

4 Left hippocampus Left cingulum (hippocampal part) Righ
5 Left amygdala Right caudate tail Righ
6 Left parahippocampal gyrus Left hippocampus Left
7 Left fornix/stria terminalis Right sylvian fissure and posterior insular

sulcus
Left

8 Right amygdala Left parahippocampal gyrus Left
9 Right claustrum Left gyrus rectus Righ
10 Right hippocampus Left fornix/stria terminalis Left
11 Right parahippocampal gyrus Right cingulum (hippocampal part) Left
12 Right fornix/stria terminalis Left subcortical white matter of the lingual

gyrus
Righ

13 Left cerebral peduncle Left anterior part of the periventricular
white matter

Righ

14 Right inferior fronto-occipital
fasciculus

Left occipital lateral ventricle Righ

15 Right pontine crossing tract Left superior frontal gyrus/pole Righ
16 Left basal forebrain Right inferior fronto-occipital fasciculus Left

part)
17 Left pontine crossing tract Left parietal sulci Left
18 Left inferior cerebellar

peduncle/pons
Right hippocampus Left

19 Right substantia nigra Left subcortical white matter of the middle
frontal gyru

Righ

20 Right thalamus Right inferior lateral ventricle Righ
fasci
(shape and intensity) at certain anatomical locations. Through the
searching (weighting) for proper atlases based on anatomical similarity,
theMAV approach attempts to retrieve non-image individual traits. For
the anatomical similarity criteria, intensity-based atlas-weighting is
widely used, e.g., the intensity differences, cross-correlation, or mutual
information (Maes et al., 1997). Shaped-based averaging (Rohlfing
andMaurer, 2007) is also an option, which requires an initial segmenta-
tion of the target image. The deformation energy of transformation be-
tween the atlases and targets can also be used (Rohlfing et al., 2004), as
estimation, based on the group difference rank or LASSO method. Note that, in the group
d 22 structures from the volumetric measurements and 40 structures from the dementia
value) are shown here.

entia probability-based

p difference rank LASSO

amygdala Left parahippocampal gyrus

parahippocampal gyrus Right basal forebrain
hippocampus Right hippocampus

t amygdala Left claustrum
t hippocampus Left genu of corpus callosum
claustrum Right entorhinal cortex
basal forebrain Right subcortical white matter of the rostral anterior

cingulate cortex
fornix/stria terminalis Left amygdala
t fimbria Right subcortical white matter of the fusiform gyrus
ECCL Left hippocampus
entorhinal cortex Left sylvian fissure into supramarginal gyrus
t basal forebrain Left pontine crossing tract

t caudate tail Right fimbria

t entorhinal cortex Left fimbria

t claustrum Left basal forebrain
cingulum (hippocampal Left retrolenticular part of internal capsule

caudate tail Left entorhinal cortex
genu of corpus callosum Right caudate

t fornix/stria terminalis Right pontine crossing tract

t inferior fronto-occipital
culus

Right lateral part of the periventricular white matte
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less deformation indicates higher similarity between the images in the
native space. The similarity-based atlas-weighting can be evaluated on
a global scale, such as the whole brain (Aljabar et al., 2009), or on local-
ized scales, such as the voxels and structures (Wu et al., 2007).
Artaechevarria et al. showed that locally defined weights improved
the segmentation compared to the global approach (Artaechevarria et
al., 2009).

In this study, we computed the atlas-weighting on a structure-by-
structure basis to reflect the local pathology. Our strategy is to focus
on the boundary voxels of each structural label, trying to search for im-
ageswith similar anatomical features for not only the shape of the struc-
ture of interest, but also for the surrounding anatomical features. For
example, the medial, lateral, and dorsal surfaces of the hippocampus
are surrounded by the ventricles. In normal healthy brains, large por-
tions of the ventricles in the dorsal and lateral surfaces are closed (invis-
ible on MRI with 1 mm resolution) and the adjacent white matter
tissues seem attached to the hippocampus, while these ventricle spaces
enlarge and become visible in patients with severe brain atrophy. The
boundary-based similarity-matching method could be sensitive to
these surrounding anatomical features. This is significantly different
from volume-based analysis, in which the anatomical features of the
hippocampus would be contracted into one number.

4.2. Results of age-estimation

We first tested the efficacy of the MAV approach using age-depen-
dent anatomical changes. The age estimation tested in this study may
not have high clinical relevance, but as we knew the exact age, it was
an idealmodel withwhich to test the accuracy of our approach. Thema-
jority of the brain structures showed a high correlation between the es-
timated and actual ages, especially in the subcortical gray matter and
the deep white matter (R2 = 0.7–0.8). There was an overestimation of
age in the pediatric population and an underestimation for the elderly
population, leading to a regression slope of b1. This was likely due to
a boundary problem, e.g., for a four-year-old test subject, only atlases
with four-year-olds and older were available for the age estimation,
thus leading to the overestimation of the age. The spatial difference in
the R2maps and correlation slopes showed that the estimation accuracy
and precision varied from structure to structure.

In majority of the anatomical areas, the atlas-voting approach had
better estimation performance compared to volume correlation
(Fig. 4). We attributed the better performance to the better ability of
the atlas-voting to extract local anatomical features. There are two
ways to interpret the regional variability of the estimation power.
First, it is possible that certain anatomical regions have more age-
dependent changes. Second, the employed tools may not be sensitive
to changes in certain brain regions. The results in Fig. 4 could have
been affected by both factors. For example, MAV achieved higher age-
estimation accuracy for the subcortical graymatter and deepwhitemat-
ter structures, which tend to have simpler anatomical boundaries; but
age estimation accuracy was not as good for the cortical gyri, as it is ex-
tremely difficult to achieve accurate boundary-to-boundary registration
between atlases and targets. The atlas-voting strategy is still a field of
active research and further investigationmay be needed to achieve bet-
ter performances.

4.3. Estimation of clinical attributes

In conventionalmulti-atlas brain segmentation studies, demograph-
ic and clinical information from the atlases is usually not available or is
unused once satisfactory segmentation accuracy is achieved. In this
study, we proposed amulti-atlas voting approach that enabled us to re-
trieve such information from the atlas database and use it to estimate
the unknown attributes of new patients. In other words, each atlas is
considered a classifier, and the opinions from multiple classifiers are
rated and fused to reach a final decision. In this respect, the meaning
of the multi-atlas library changes. If in segmentation accuracy is the
only goal, a question like, “what is the minimum number of atlases
that would be required to achieve accurate segmentation?” is meaning-
ful, but if the multi-atlas library is considered a knowledge database
from which we want to extract patient attributes, it needs to be
enriched by cases with various anatomical and pathological conditions,
as well as comprehensive demographic and clinical information.

The multi-atlas voting estimation of brain function (ADAS.11 score)
demonstrated that the structures with the discriminating power were
concentrated in the limbic structures of the medial temporal lobes,
such as the amygdala, the hippocampus, the entorhinal cortex, the
parahippocampal gyrus, the cingulum, and the fornix. Similar to the
age estimation, the direct estimation of the functional outcome using
theMAV provided demonstrated higher estimation accuracy compared
to the conventional volume-functional correlation approach.

4.4. Diagnostic classification and comparison with existing studies

The diagnostic classification results in Table 2 also point out that the
direct estimation of the diagnostic category or ADAS.11 scores by MAV
outperformed the volume marker. The overall accuracy to differentiate
the AD and NC was 0.90–0.92, based on the best discriminating struc-
ture or the optimized combination of the structures. The list of the dis-
criminating structures and the AD-vs-NC discriminating power
reported in this study are highly similar to those reported previously
(Chupin et al., 2009; Cuingnet et al., 2011; Gerardin et al., 2009;
Koikkalainen et al., 2011; Liu et al., 2012;Min et al., 2014), which report-
ed AD/NC classification accuracies between 86%–92%, confirming the
validity of the proposedmulti-atlas voting approach. The estimation ac-
curacy deteriorated to 0.63–0.82 for multi-class estimation (AD/MCI/
NC). This was somewhat expected because the accuracy of a diagnosis
based on cognitive assessment is not perfect; a definitive diagnosis of
dementia cases can be achieved only by postmortem histology. In fact,
even using the clinically measured ADAS.11 score, the multi-category
classification accuracy was only 0.79 (Table 2). The performance of the
multi-class classification by MVA was equivalent to or exceed the
state-of-the-art algorithms. For example, in the computer-aided diag-
nosis of dementia (CADDementia) challenge (Bron et al., 2015), the
best-performing algorithm yielded an accuracy of 63.0% in classifying
AD/MCI/NC, among 29 competitors (accuracy ranging from 32% to
63%). It is also encouraging that the MAV-based approach achieved
higher clinical correlation and classification accuracy than the conven-
tional volume-based analysis with the same data and under the same
multi-atlas framework. By adopting more advanced machine-learning
methods, or even combining the structural volume or clinical data, it
is possible that we can further improve the classification performance,
but this is beyond the scope of the current proof-of-principle study. It
should also be noted that classification is not the only goal of comput-
er-aided diagnosis. Instead, quantitative descriptions of the regional fea-
tures – the foci and vulnerable regions of a particular disease, such as the
regional variations demonstrated in Figs. 5–7, are similarly important to
clinical image readings. The functional attributes, such as cognitive and
behavioral evaluations, estimated from the MRI (e.g., ADAS.11 score in
this study) can also provide valuable characterization of the disease sta-
tus besides categorical diagnosis.

The concept of our approach shared similarity with that of Coupe et
al. (2012), who developed a technique known as scoring by non-local
image patch estimator (SNIPE) for simultaneous segmentation and
grading of structuralMRI for Alzheimer's patients. Similarly, the authors
determined an AD/NC grading measurement based on the anatomical
similarity between the test subject and the training dataset in a few se-
lected structures, and they concluded that the best classification accura-
cy can be achieved by combining volumetric and grading information
from the hippocampus and entorhinal cortex. Despite the similarity in
the ways that training data (in our case, atlases) are conceived, our
work is also different from the previous work in several ways. First,
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our approach was incorporated into a general framework of a multi-
atlas method that can be potentially applied to any type of dementia
without a priori knowledge about the affected structures, which is a fea-
ture highly important for clinical applications. In Coupe's approach, two
structures (the hippocampus and the entorhinal cortex) that are most
appropriate for estimating the likelihood of AD are pre-selected and
manually defined in the “training” data. In the present study with the
AD patients, the MAV method evaluated 289 structures defined in the
atlases and could correctly identify the limbic structures as themost dis-
criminating structures (Table 3). The overall accuracy for AD estimation
was 0.90, replicating the results by Coupe et al. Another major differ-
ence from the previous work lies in the algorithm to measure anatomi-
cal similarity. In Coupe et al. (2012), the authors developed a voxel-
based approach using the intensity difference within a local patch, cen-
tered on each voxel between test and training image; whereas, in our
study, we developed a label-by-label procedure that integrated the
local correlation of the boundary voxels along a label. In theMAV frame-
work, it is possible to incorporate various types of similarly measure,
and thus, it would be interesting future study to compare the different
types of similarity functions.

4.5. Evaluation of anatomical patterns for disease classification

In the previous sections, the performance of the MAV approach was
evaluated for each anatomical structure independently. An interesting
question is whether we can evaluate the properties of a group of struc-
tures as a disease-specific anatomical feature. To test this idea, we eval-
uated the estimation accuracy for the clinical scores and disease
categories between a single (the best discriminating structure) vs a
group of structures. To select a group of structures, we tested the top
20 structures in the discriminating power ranking and the LASSO anal-
ysis. As shown in Table 2, the results using a test data set showed consis-
tent improvement using the multi-structure anatomical features. For
future clinical applications with heterogeneous pathological conditions,
this could be an important research direction.

4.6. Limitations and future directions

One limitation of this study is that we tested only the MAV method
in relatively well-characterized Alzheimer's disease for proof-of-con-
cept purposes. The results of this study showed that the accuracy of
this new approach was comparable to or slightly better than the con-
ventional volume-based analyses. However, this is only the first step to-
ward our long-term goal to evaluate the efficacy of the tools that
emulate the thought process of radiologists through the CBIR approach.
Our results for the region-specific estimation of functional deficits and
the categorical classification in AD, without a priori knowledge about
the locations of the abnormalities, demonstrated the potential to use
this approach for different types of neurodegenerative diseases or for
an assortment of dementia pathology. To be truly useful as a tool to sup-
port clinical evaluation of patient images, atlases with various types of
pathology (e.g., AD, Lewy bodies, Parkinson's, frontotemporal dementia,
vascular dementia, etc.) need to be included in the knowledge database
(atlases) and the diagnostic specificity needs to be tested. Another
important future direction is to incorporate non-anatomical features
(demographic information, lab tests, clinical data, etc.) in the diagnostic
estimator. Ultimately, the diagnostic or functional estimation are useful
only if these factors can contribute to the prediction of clinically impor-
tant functional deficits or treatment efficacy, whichwill require longitu-
dinal data for validation. This proof-of-concept study is, thus, only the
initial step in the development of clinically useful tools.

5. Conclusion

We proposed a novel MAV diagram to directly retrieve non-imaging
patient attributes, in which the clinical information from multiple
atlases were weighted and fused to estimate the patient's diagnosis.
We demonstrated the performance of this approach in age estimation,
as well as in the estimation of functional deficits and diagnostic catego-
ries in Alzheimer's disease. Although MAV is a markedly different con-
cept than conventional volume-based anatomical analyses, our results
indicated that MAV can classify patients with the comparable accuracy
and detect structures that are known to be affected by AD, indicating
the proof-of-principle of this new approach.
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