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Abstract

Tendinopathy is a complex multifaceted tendinopathy often associated with overuse and

with its high prevalence resulting in significant health care costs. At present, the pathogene-

sis and effective treatment of tendinopathy are still not sufficiently elucidated. The purpose

of this research is to intensely explore the genes, functional pathways, and immune infiltra-

tion characteristics of the occurrence and development of tendinopathy. The gene expres-

sion profile of GSE106292, GSE26051 and GSE167226 are downloaded from GEO (NCBI

comprehensive gene expression database) and analyzed by WGCNA software bag using R

software, GSE26051, GSE167226 data set is combined to screen the differential gene anal-

ysis. We subsequently performed gene enrichment analysis of Gene Ontology (GO) and

"Kyoto Encyclopedia of Genes and Genomes" (KEGG), and immune cell infiltration analy-

sis. By constructing the LASSO regression model, Support vector machine (SVM-REF) and

Gaussian mixture model (GMMs) algorithms are used to screen, to identify early diagnostic

genes. We have obtained a total of 171 DEGs through WGCNA analysis and differentially

expressed genes (DEGs) screening. By GO and KEGG enrichment analysis, it is found that

these dysregulated genes were related to mTOR, HIF-1, MAPK, NF-κB and VEGF signaling

pathways. Immune infiltration analysis showed that M1 macrophages, activated mast cells

and activated NK cells had infiltration significance. After analysis of THE LASSO SVM-REF

and GMMs algorithms, we found that the gene MACROD1 may be a gene for early diagno-

sis. We identified the potential of tendon disease early diagnosis way and immune gene reg-

ulation MACROD1 key infiltration characteristics based on comprehensive bioinformatics

analysis. These hub genes and functional pathways may as early biomarkers of tendon inju-

ries and molecular therapy level target is used to guide drug and basic research.
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Background

Tendinopathy is usually described as pathological changes in injured and diseased tendons,

which in turn lead to limb pain and functional decline. It is characterized by abnormalities in

the molecular structure, composition and cell matrix of the tendon [1]. In recent years, the

prevalence of tendinopathy has gradually increased, and some tendinopathy patients have

long-term or permanent limb dysfunction and loss [2]. Tendinopathy is more common in

limbs and accounts for 30%-50% of muscle skeletal system and locomotor system diseases

[3,4]. It is well known that the causes of tendinopathy include internal and external factors.

External factors mainly cause acute tendon injury, while chronic tendinopathy is the result of

both external and internal factors [5]. Previous studies have suggested that the imbalance of

normal homeostasis in tendon tissue, including immune cell infiltration, stromal cell dysfunc-

tion, cell apoptosis, oxidative stress, and stromal dysfunction, and these comprehensive con-

junct factors lead to the early pathological changes of tendon [1]. Unfortunately, the current

diagnosis of tendinopathy has reached the middle and late stage, but the treatment plans are

mostly targeted at the later stage of the disease, including centrifugal exercise [6,7] drug injec-

tion and surgical treatment [8], etc. Studies have shown that the efficacy and evidence of most

treatment plans for tendinopathy are still insufficient. Therefore, early diagnosis and treatment

are the key to complete recovery of the disease. At present, the hub genes and pathways in the

early stage of tendinopathy are blank studied, and understanding the key pathways that affect

the regulation and dynamic homeostasis of the extracellular matrix in the early stage is critical

for future targeted therapies of tendinopathy. Therefore, more in-depth studies are urgently

needed to elucidate the hub genes.

With the development of high-throughput omics, bioinformatics analysis has become an

important tool for identifying potentially hub genes and signaling pathways in a variety of dis-

eases [9,10]. At present, the research progress of bioinformatics analysis of tendinopathy gene

expression has not been insufficient, and only a small amount of lncRNA and mRNA related to

tendinopathy has been studied. Among them, studies have analyzed the related characteristics

of lncRNAs and mRNAs in rotator cuff tendinopathy, including NONHSAT209114.1,

ENST00000577806, NONHSAT168464.1, PLK2, TMEM214 and IGF2 [11,12]. Unfortunately,

the use of bioinformatics to analyze DEGs related to tendinopathy still needs further research.

In this study, we downloaded the original data from the NCBI Gene Expression Synthesis Data-

base (GEO) and constructed a co-expression network through the data set GSE106292 and

determined the correlation gene module. By processing the data set GSE26051 and GSE167226

carry on incorporative and differential gene screening. We take the intersection of differential

genes and gene modules to obtain common differential genes, and then performed gene Ontol-

ogy (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Then,

we used the whole gene expression data of tendon tissues for immune cell infiltration analysis.

By establishing LASSO regression model [13], Machine learning algorithm Support vector

Machine (SVM-REF) [14], Clustering algorithm Gaussian Mixture model(GMMs) [15], Screen-

ing of genes for early diagnosis. The objective of this study was to identify hub genes and path-

ways that contribute to the occurrence and development of tendinopathy at the molecular level,

and to identify candidate genes for early diagnosis and treatment targets.

Materials and method

Data collection and download

GEO (Gene Expression Omnibus) database (http://www.ncbi.nlm.nih.gov/geo/) is an interna-

tional public database, used to store and provide free microarray, second-generation
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sequencing and high-throughput functional genome data sets [16]. We searched and down-

loaded the GSE106292, the GSE26051, the GSE167226 data set using the R software GEO data-

base [17–19]. The GSE106292 data sets included the gene expression profiles of 35 cases of

tendon, bone, muscle, cartilage and ligament. The GSE26051 data sets included gene expres-

sion profiles from 23 patients with chronic tendonopathy and 23 normal tendons; the

GSE167226 data sets included gene expression profiles from 19 patients with tendonopathy.

Institutional Review Board approval was not required because the study was based on a public

database and did not involve animal or human studies.

Data preprocessing and DEG screening

The original data of GSE106292, GSE26051 and GSE167226 datasets were corrected and nor-

malized by using log2 of the R software. Bioconductor platform (http://www.bioconductor.

org/) gene comments file is used to probe the matrix [20]. At the same time, the expression

matrix of GSE26051 and GSE167226 datasets was merged, and the differences between batches

were eliminated using the Limma software package. The differences of gene expression profiles

between GSE26051 and GSE167226 datasets were analyzed by using the Limma function and

the Remove Batch Effect function using Limma [21]. By deleting the genes with too low

expression value, the expression profile value was converted to log2-counts per million

(logCPM), and linear regression was performed to construct the comparison matrix. Where

each row represents the gene name and each column represents the sample name of this study.

Based on Bayesian calculation of T-values, F-values and log-odds, the eligible differential genes

were screened for |log2(FC)| > 1 and PValue < 0.05, and the data was visualized by plotting

volcano plots using the ggplot2 program package [22].

Gene WGCNA analysis

The expression matrix of GSE106292 data sets was selected to construct the expression profile

of potential related genes in tendinopathy. The WGCNA software package is an open source

and widely used method for identifying co-expression networks in R software [23]. The Pear-

son correlation coefficient is calculated to construct the correlation matrix, and the soft thresh-

old function is used to transform the correlation matrix into a weighted adjacency matrix. In

order to obtain a balanced co-expressed network between scale independence and mean con-

nectivity, a soft connectivity algorithm is used to calculate the scale independence and mean

connectivity with different powers. We transform the adjacency matrix into topological over-

lap matrix (TOM). According to 1-tom as distance measurement, we classified gene clustering

as co-expression modules, with a depth split value of 2, a minimum size cutoff value of 20, and

a maximum module size of 5,000. To determine the association between co-expressed modules

and clinical features, we cut the tree into different modules (minimum number of genes in a

module is 30) using a dynamic shearing method by setting the soft threshold power to 1–10

and β = 16 (scale-free R^2 = 0.83) and cut the height to 0.3, using 0.25 as the merging threshold

(shearing height), under which modules will be merged (correlation (modules with a correla-

tion higher than 0.75 will be merged).

GO and KEGG enrichment analysis

Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-

way enrichment analysis were calculated using the R package Clusterprofiler program [24]. It

includes annotation mining the function and path of the module, and identifying the dysfunc-

tional module with function and path. Pvalue < 0.05 was considered significant, and the iden-

tified significant analyses were classified by gene counting.
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The analysis of immune cell infiltration

Cibersort is an online analysis tool for immunocell infiltration for a variety of diseases, includ-

ing osteoarthritis, lupus nephritis, atopic dermatitis, acne and rosacea dermatitis [25–28]. At

present, few studies have used the Cibersort method to study the characteristics of immune

cell infiltration in tendinopathy. We assessed the proportion of immune cells in patients and

the normal population by Cibersort analysis based on the genome-wide level of tendinopathy

[29]. This revealed the characteristics of tendinopathy immune cell infiltration by heat map-

ping using ggplot2.

Screening and identification of gene prediction model for early diagnosis

Lasso logistic regression is a machine learning method, which determines the variable by find-

ing the λ value with the smallest classification error [30]. By processing the data of GSE26051

and GSE167226 processed, 75% of the samples in the data set are selected as the test set, 25% of

the samples are used as the validation set, and the glmnet package of R is used as the binomial

LASSO model of the training set. We plotted the operating characteristic curve of the recipient

and determined its AUC. The diagnostic value of hub genes was evaluated using the pROC

software package in R [31]. SVM-RFE is a machine learning method based on support vector

machine, which finds the best variable by subtracting the feature vector generated by svm. We

run the e1071 package to eliminate the recursive features of the difference genes obtained, and

use the svmRFE function for data calculation. We set up folding by wrapping the entire feature

selection and generalization error estimation process in the top loop of external cross-valida-

tion. Then, we use the Lapply function to perform feature ordering on all training sets. Finally,

we obtain all folded top features through the top.features function, and use the loop function

to estimate the generalization error of different numbers of top features using the 10x CV stan-

dard, so that the error rate reaches the lowest point, and finally the best gene signature is

obtained. We used the above two algorithms to screen the hub genes of tendinopathy at the

same time and obtained the same hub genes. Finally, the same hub genes were classified and

screened by the Gaussian mixture model (GMMS). The Gaussian mixture model (GMMS) is a

feasible screening method with better clustering performance [32]. Through repeated training

of Gaussian mixture model algorithm, we screened the highest cluster in the optimal cluster in

the figure, screened the optimal AUC value in the fifth category as 0.95, and identified the final

candidate hub genes.

Results

Data preprocessing and the screening of differential genes

The flow chart of this study is shown in Fig 1. After gene annotation and standardization of

the data, GSE26051 data set contains 46 samples (2088 genes), and GSE167226 data set con-

tains 19 samples (19402 genes). We showed by performing a whole-gene expression profile

analysis of the combined data, Fig 2A shows the DEG expression heat map. Subsequent differ-

ential analysis and volcano mapping of counts genes (20,188 genes) in patient tissue and nor-

mal tissue samples were noted. A total of 2995 DEGs were identified, including 2729 up-

regulated genes and 266 down-regulated genes (Fig 2B).

Construction of weighted co-expression network and identification of key

modules

We performed WGCNA analysis on 20,226 genes that data set GSE106292 has been annotated.

We preprocessed the sample expression values, and screened 15034 genes by screening
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standard deviation > 0.5. Based on the proximity matrix β = 16, we made the gene distribution

conform to the scale-free network, sample tree and soft threshold estimation according to the

connectivity degree. We set the vertical axis as the scale-free topology fitting index R^2 (the

values in the SFT.R.Sq column in the statistical results) (Fig 3A) and the average connectivity

of the network (Fig 3B). According to the negative correlation between k and p(k) (correlation

Fig 1. Flowchart of this study. The following datasets were used for the identification of potential diagnostic genes

and mechanisms associated with the development of sepsis: GSE106292, GSE26051, GSE167226.

https://doi.org/10.1371/journal.pone.0259475.g001

Fig 2. The gene differential expression analysis of GSE26051 and GSE167226 data set. (A) Whole gene expression

heat map: Whole gene expression heat map of tendon tissue, with high expression in red and low expression in blue

(B) The DEG Volcano map shows upregulated genes in red and down-regulated genes in blue.

https://doi.org/10.1371/journal.pone.0259475.g002
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coefficient 0.84), it can be shown that the selected β = 16 meets the standard of establishing the

gene scale-free network (Fig 3C and 3D).

We set the soft threshold power to 1–10, β = 16 (without scale R^2 = 0.83) to obtain the

final template as shown in Fig 4A. In the results of the respruning of the cluster tree, we identi-

fied 20 modules in the heat map of correlation between the tree diagram of gene expression

and module features (Fig 4B). We selected the two modules with the highest correlation as the

Fig 3. The screening criteria of WGCNA. (A)Soft Threshold (Power) represents the weight, and the vertical axis

shows the scale-free topology fitting index R^2 (B) Soft Threshold (Power) represents the weight, and the vertical axis

shows the average connectivity of the network (C) Distribution of node connectivity K (D) Correlation graph of K and

P (K).

https://doi.org/10.1371/journal.pone.0259475.g003
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research target module, among which ModuleTraitCor in Purple = 0.54,

ModuleTraitPvalue = 9E-04 and ModuleTraitCor in Skyblue2 = 0.41, ModuleTraitPvalue = 0.02

meets the criteria (Fig 4C and 4D).

GO and KEGG enrichment analysis of differential genes

A total of 171 genes were obtained from the intersection of genes and differential genes in the

module, including 150 up-regulated genes and 21 down-regulated genes. GO and KEGG

enrichment analysis were used for enrichment analysis of the obtained DEG using the cluster-

Profiler package of the R language. The results showed that the biological processes (BP) of the

up-regulated genes were mainly related to the regulation of mitochondrion organization, the

regulation of apoptotic signaling pathway, regulation of reactive oxygen species biosynthetic

process, the regulation of tumor necrosis factor-mediated signaling pathway and other path-

ways. In terms of cell composition (CC), it is mainly related to peroxisome, microbody and

ubiquitin ligase complex. In terms of molecular function (MF), it is mainly related to guanyl-

nucleotide exchange factor activity, RNA helicase activity, GTPase regulator activity and phos-

phatidylinositol binding (Fig 5A and 5B). Among the down-regulated genes, biological pro-

cesses (BP) are mainly related to protein acylation, positive regulation of protein-containing

complex assembly, and I-kappaB kinase/NF-kappaB signaling. In terms of cell composition

(CC), it is mainly related to catalytic step 2 spliceosome and a cluster of actin-based cell projec-

tions. In terms of molecular function (MF), it is mainly related to the binding of small GTPase

binding and Ras GTPase binding (Fig 5A and 5B). The upregulated genes were mainly concen-

trated in mTOR, HIF-1, MAPK, NF-κB, NOD-like receptor and VEGF signaling pathways in

the KEGG pathway rich concentration. The relatively down-regulated genes were mainly

Fig 4. The WGCNA analysis of GSE106292 data set. (A)Tree of all gene expressions based on the Difference

Measure (1-TOM) cluster (B)The heat maps of correlations between modules feature genes and samples, with each cell

containing correlation coefficients and P values (C)The expression calorimetry and feature vector histogram of

PURPRE module (D)The expression calorimetry and feature vector histogram of Skyblue2 module.

https://doi.org/10.1371/journal.pone.0259475.g004
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concentrated in T cell receptor signaling pathway, spliceosome, and sphingolipid signaling

pathway (Fig 5C and 5D).

The analysis of immune cell infiltration

We obtained the CIBERSORT absolute score for the analysis of immune cell infiltration based

on the CIBERSORT algorithm, which can reflect the absolute content of 22 immune cells in

each sample. According to CIBERSORT absolute score, we calculated the proportion of each

infiltrating cell when the total infiltration rate was 100%. We mapped the overall proportion

pattern of 22 subgroups of immune cells in tenopathy and healthy controls. The results showed

that M2 macrophages, resting mast cells, neutrophils, activated NK cells and regulatory T cells

(Tregs) were the highest infiltrating cells in all samples (Fig 6A). Heat maps of immune cell

infiltration between the tendinopathy group and the control group showed significant enrich-

ment of M1 macrophages, activated mast cells, γ-δT cells, regulatory T cells (Tregs), neutro-

phils, and M0 macrophages (Fig 6B). We found that M2 macrophages, resting memory CD4

+ T cells, memory B cells, resting mast cells, CD8 + T cells, activated NK cells and regulatory T

cells (Tregs) were highly infiltrated in all samples (Fig 6C). The differential expression between

the two groups showed that the infiltration of regulatory T cells (Tregs), activated NK cells and

naive B cells was higher than that of the control group (p< 0.05), while the infiltration of

plasma cells and memory B cells in the tendon disease group was lower (p< 0.05) (Fig 6D).

Screening and identification of hub genes in tendinopathy

First, we combine GSE26051 and GSE167226 data sets, and randomly divide all samples into a

training set (75%) and verification set (25%). In order to prevent data snooping errors and

Fig 5. Baseball figure of differential gene enrichment analysis. The horizontal axis represents the proportion of differential genes in GO and

KEGG enrichment analysis, and the vertical axis represents the enrichment category. (A)Up-regulated GO enrichment distribution of

differentially expressed genes (B) Down-regulated GO enrichment distribution of differentially expressed genes (C) Up-regulated differential

gene KEGG enrichment distribution (D) Down-regulated differential gene KEGG enrichment distribution.

https://doi.org/10.1371/journal.pone.0259475.g005
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avoid sample characteristics in the test set, we use the sample function in the R language to

randomly use 80% of the data set as the training set and 20% as the test set. We implement

model prediction through the predict function, that is, the fitCV object is the construction

model, and the evaluation is performed in the two data sets of train and test. By constructing

the LASSO model in the training set and selecting λ = 18 to determine the hub genes that can

predict early tendinopathy accurately (Fig 7A). Based on the optimal λ value of 18, we obtained

the LASSO coefficient spectrum of differentially expressed genes (Fig 7B). Normally, the train-

ing set is used to train the model, and the test set is used to evaluate the performance of the

model as a whole. In this study, the AUC of the training set is 0.981>0.7, indicating that the

built model has good real performance, and the AUC of the test set is 0.807>0.7, indicating

that the built model has good generalization performance and excellent verification perfor-

mance (Fig 7C). Finally, we obtained 18 genes with nonzero coefficients, including

MACROD1, CES2, GFER, MRPL52, SKIV2L, B3GNT4, LYNX1, C19orf57, SAFB2, NOM1,

C7orf43, FRMPD1, MLPH, MFSD10, PIEZO1, FAM222A, PRG4, POU2AF1.

At the same time, we used multiple support vector machine recursive feature elimination

(mSVM-RFE) algorithm to screen 171 different genes, and obtained 167 hub genes. Build the

SVM model by selecting the first 171 variables and check that the model error rate is 167–

0.139, and the accuracy rate is 167–0.861. The position of the red circle is the lowest point of

error rate (Fig 8A). The position of the red circle is the point with the highest accuracy (Fig

8B). We obtained common hub genes from the above two algorithms, including MACROD1,

CES2, GFER, MRPL52, SKIV2L, B3GNT4, LYNX1, C19orf57, SAFB2, NOM1, C7orf43,

FRMPD1, MLPH, MFSD10, PIEZO1, FAM222A, PRG4, POU2AF1(Fig 8C).

Fig 6. Infiltration patterns of immune cells in different groups. (A)Relative percentage of 22 immune cell subsets in tendon disease

samples (B) Heat map of immune cell infiltration between tendinopathy group and control group, green represents tendinopathy group,

red line represents control group (C) Infiltration degree of 22 immune cell subsets in tendon disease samples (D) Box Diagram of Immune

Infiltration Difference between Tendon Disease Group and Control Group, Green as Tendon Disease Group, Red as Control Group.

https://doi.org/10.1371/journal.pone.0259475.g006
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Fig 7. The potential key genes of tendinopathy were screened by LASSO regression model. In Fig 7A and 7B, the ordinate is the value of

the coefficient, the lower abscissa is log(λ), and the upper abscissa is the number of non-zero coefficients in the model at this time. (A)

Selection of the best parameter (number of non-zero coefficients in the model at this timet (B) LASSO coefficient spectrum of 18

differentially expressed genes selected by optimal (s timeti (C) Comparison of ROC curves between training set and validation set for gene

signature.

https://doi.org/10.1371/journal.pone.0259475.g007

Fig 8. MSVM-RFE algorithm for screening key genes. (A)Shows the error rate of the SVM model (B) Shows the accuracy of the

SVM model (C)The Venn diagram shows the same key genes obtained by the two algorithms.

https://doi.org/10.1371/journal.pone.0259475.g008
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In order to more accurately predict genes for the early diagnosis of tendinopathy. Based on

the Gaussian finite mixture model, we use the model-based hierarchical agglomerative cluster-

ing method for classification. We use a Gaussian Mixture Model (GMM) to classify miRNA

clusters, and use Logistic regression analysis to establish a combined model for predicting

recurrence. At the same time, we constructed a receiver operating characteristic (ROC) curve,

and calculated AUC to evaluate the predictive value of the model, using a predictive miRNA

signature model. We used the Gaussian mixture model algorithm to calculate and verify the

best hub genes from 18 candidate hub genes by constructing 262143 AUC models. Finally, we

screened 6 potential hub genes, including MACROD1, CES2, SKIV2L, LYNX1, MFSD10 and

PIEZO1 (Fig 9A). The FoldChange and p-value populations were used to display differential

gene waterfall plots, and the predictive mRNA signature model was described using Gaussian

finite mixture model markers (Fig 9B). The overall situation of the 6 potential hub genes is

listed in Table 1.

Discussion

Tendinopathy is not only a very common chronic disease, but also a disease that lacks real

effective treatment [33]. So far, tendinopathy is still a major challenge in musculoskeletal dis-

eases due to the widespread disease population, low cure rate, and huge medical expenditure.

However, the mechanism of the occurrence and development of tendinopathy is not yet fully

Fig 9. Displays the patterns of AUC and 262143 logistic regression model based on Gaussian finite mixture model. (A)The

pattern of the logistic regression model is related to the AUC score and is determined by Gaussian mixture (B) The waterfall

diagrams of 6 key genes in different genes.

https://doi.org/10.1371/journal.pone.0259475.g009

Table 1. 6 potential hub gene display.

logFC AveExpr t P.Value Type

MACROD1 1.167552501 5.712454732 5.41405282 8.56E-07 Up

CES2 1.809870576 7.075108564 5.355859588 1.07E-06 Up

SKIV2L 1.026460579 6.111613386 4.671443796 1.44E-05 Up

LYNX1 1.148012232 6.163685681 4.321936756 5.13E-05 Up

MFSD10 -1.250111926 5.106939598 -3.626082073 0.000548936 Down

PIEZO1 -1.112748319 6.687175452 -3.52261718 0.000765663 Down

https://doi.org/10.1371/journal.pone.0259475.t001
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understood. At present, there are many hypotheses about the etiology of tendinopathy, includ-

ing Biomechanical theory [34], inflammation theory [33], apoptosis theory [35], vascular or

neurogenic theory [36], etc. Although these theoretical models closely link the basic science of

tendinopathy with clinical applications, none of the theoretical theories can fully clarify the

pathological mechanism of tendinopathy and the complex relationship between tendon pain

and function. Although the current research on tendinopathy has involved many aspects, the

hub genes of early tendinopathy are rarely studied. We believe that early diagnosis and treat-

ment of tendinopathy is essential to prevent the further progression of tendinopathy to avoid

the subsequent pathological cascade of tendinopathy. In this study, we finally screened out 6

key genes, including MACROD1, CES2, SKIV2L, LYNX1, MFSD10, and PIEZO1. Among

them, the gene with the smallest PValue is MACROD1. We speculate that this gene may be

important in the occurrence and development of tendinopathy.

The MACROD1 gene is still rare in current research and its specific function is unclear. A

few studies have proved the functions of MACROD1 in the nucleus and the cytoplasm of the

body, including MACROD1 binding and regulating transcription factors ERα and NF-κB

related proteins [37,38]. Recent studies have shown that endogenous MACROD1 protein is

highly enriched in mitochondria and is highly expressed in human and mouse skeletal muscle

[39]. As we all know, mitochondria, as a kind of organelle, have abundant biological functions

in cells [40]. Mitochondria are not only factories that produce ATP but also participate in

many biological processes, such as steroid biosynthesis [41], metal ion homeostasis in the

human body [42,43], immune cell activation and regulation [44], cell signaling [45], apoptosis

[46] and inflammation [47]. At the same time, mitochondrial dysfunction can cause many dis-

eases, such as atherosclerosis [48], Alzheimer’s disease [49]. Mitochondria can produce reac-

tive oxygen species (ROS) in the process of oxidative phosphorylation. When the

accumulation of ROS exceeds the cellular antioxidant defense system, the accumulation of

ROS levels will cause oxidative stress. Oxidative stress can cause ROS-mediated damage to

molecular substances such as proteins, nucleic acids, and lipids [50]. And some studies believe

that oxidative stress is closely related to vascular disease [51], neurodegeneration [52], and can-

cer [53]. Similarly, ROS can also regulate the cascade reaction in the MAPK signaling pathway

by activating apoptosis signal regulator 1 (ASK1) to induce apoptosis [54,55]. Therefore, based

on the high enrichment of MacroD1 gene in mitochondria, high expression in skeletal muscle,

and the biological function of mitochondria, we speculate that the occurrence of MacroD1

gene in early tendinopathy is related to the comprehensive cascade reaction of hypoxic micro-

environment, inflammatory response, apoptosis and so on.

The MACROD1 gene may trigger the hypoxic microenvironment-mediated tendon inflam-

mation through mitochondrial dysfunction. As we all know, hypoxic cell injury has been con-

sidered as the basic mechanism of tendinopathy [56]. Research suggests that hypoxia may be a

potential cause of early tendinopathy. Under the action of mechanical stimulation and injury,

hypoxia promotes the release of inflammatory cytokines in human tendon cells, the expression

of key apoptosis mediators, the formation of blood vessels [57], and significantly affects the

synthesis of collagen matrix [58]. Previous research suggests that chronic tendinopathy is

caused by a degenerative process without inflammation. In a study of biopsy components of

tendinopathy rupture tissue, no obvious inflammation was observed, and more than 85% of

the biopsy specimens had almost no inflammatory cells. On the contrary, there was a marked

increase in tissue degeneration, including thinning and disorientation of collagen fibers, myx-

oid degeneration, hyaluronic acid degeneration, chondroid metaplasia, tissue calcification,

angiogenesis, and fatty infiltration [59,60]. Interestingly, some recent studies have reached the

opposite conclusion that there is an early and important inflammatory response in the process

of tendinopathy. Molloy et al found that the expression of the inflammatory cell receptor and
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immunoglobulin was up-regulated in the rat supraspinatus tendon disease model by microar-

ray analysis [61]. Matthews et al. showed that a small-area tear is more obvious in the inflam-

matory infiltration of macrophages and mast cells, reflecting more degenerative changes

through a biopsy sample of tearing tendon tissue [62]. Interestingly, in our study, the KEGG

enrichment pathway was significantly up-regulated by the NF-κB signaling pathway and the

MAPK signaling pathway. Studies have shown that these two pathways are related to inflam-

mation, apoptosis and ossification. For example, ERK regulates apoptosis, while P38 mediates

apoptosis and inflammation [63]. And there are also studies suggesting that the activation of

NF-κB can induce the activation of the MAPK pathway [64]. Another study showed that TNF-

α can induce TDSC inflammation and apoptosis, and promote the development of tendinopa-

thy by up-regulating the activation of MAPK and NF-κB pathways [65]. Our analysis of the

difference in immune cell infiltration of the whole gene of the samples showed that the infiltra-

tion of M1 macrophages, activated mast cells, activated NK cells, and regulatory T cells (Tregs)

in tendinopathy samples increased, while the infiltration of plasma cells and memory B cells

decreased. Through a cross-sectional and case-control study, Maja et al. found that in chronic

tendinopathy tissues, compared with healthy tendons, most (52%-96%) biopsy specimens

were observed in macrophages, T lymphocytes, and hypertrophy Cells and natural killer cells

[66]. This indicates that M1 macrophages, activated mast cells, and activated NK cells play an

important role in the progression and treatment of tendinopathy. It can be considered that the

MACROD1 gene may induce inflammatory cell infiltration by mediating the hypoxic

microenvironment.

Disregulation of apoptosis is thought to be one of the causes of tendinopathy [35]. Apopto-

sis is a kind of programmed cell death, which plays a key role in tissue homeostasis. Apoptosis

causes many diseases, such as autoimmune diseases and skeletal muscle degeneration [67].

Current research believes that cell apoptosis are crucial in the occurrence and development of

tendinopathy [35]. The reasons include: mechanical overuse of tendons [68], hypoxic micro-

environment [69], and oxidative stress [70]. In our study, the differential gene enrichment

pathway was significantly up-regulated on the HIF-1 signaling pathway. However, hypoxia-

inducible factor 1 (HIF-1), as a transcriptional activator sensitive to oxygen [71], is a key regu-

lator in the process of cell apoptosis [72]. In hypoxia, HIF-1α can initiate cell apoptosis by

inducing high concentrations of pro-apoptotic proteins. Vascular endothelial growth factor

(VEGF) is a glycosylated protein of about 45 kDa, composed of two subunits connected by

disulfide bonds, which can mediate angiogenesis. Previous studies have suggested that VEGF

is at a high level of expression in degenerative tendinopathy, while its expression is almost

completely down-regulated in healthy Achilles tendons [73]. There are many factors that cause

high expression of VEGF in tendon cells, including hypoxia, inflammatory factors and

mechanical stress load [74]. As for the mechanism of action of VEGF in tendinopathy, some

studies have shown that VEGF activates the binding of VEGF and its receptor VEGFR-2 to

promote angiogenesis in tendon tissue by up-regulating the expression of matrix metallopro-

teinases (MMPs) and down-regulating the expression of metalloproteinase-3 (TIMP-3) in ten-

don cells [74–77]. Dakin et al. studied the tendon biopsy in symptomatic patients with

tendinopathy or rupture and found that the superposition of inflammatory infiltration and

neovascularization promotes tendon rupture [78]. Interestingly, in our study, based on KEGG

enrichment, the VEGF signaling pathway is significantly up-regulated, which may lead us to

speculate that VEGF plays an important role in the early pathogenesis of tendinopathy under

hypoxic factors.

In the development of tendinopathy, the wrong differentiation of tendon cells may promote

the occurrence of tendinopathy [79]. Hypoxia and inflammation are related to the occurrence

of heterotopic endochondral ossification (HEO), but the specific molecular mechanism is
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unclear. It has been proven that hypoxic environment can stimulate the differentiation of pro-

genitor cells into cartilage during the development of the skeletal system [80]. Wang et al.

believed that cell hypoxia promoted heterotopic ossification by amplifying BMP signal trans-

duction [81]. Shailesh et al. in the rat Achilles tendon, muscle ossification model and FOP

mouse model found that HIF-1α was significantly up-regulated in the chondrogenic differenti-

ation stage [82]. Tendon-derived stem cells (TDSC) have the potential to differentiate into ten-

don cells, osteoblasts, chondrocytes and fibroblasts [83]. TDSC plays an important role in the

healing of tendon injuries. However, if the tendon is not properly healed, it will cause tendon

ossification and promote the formation of tendinopathy [84–86]. Studies have shown that

TNF-α can induce apoptosis of TDSC [87], and chronic tendinopathy is closely related to the

up-regulation of TNF-α [88]. This is closely related to our study and screening of different

genes in the regulation of tumor necrosis factor-mediated signaling pathways on GO enrich-

ment. Some studies believe that Wnt pathway mediators are expressed in chondrocyte-like

cells and ossification deposits, and are related to endochondral ossification [89]. Differentia-

tion of tendon stem cells into non-tendon cells, such as osteoblasts, may reduce the total

amount of tendon stem cells used for tendon repair and lead to failure of tendon healing. Stud-

ies have shown that activation of the Wnt pathway can promote calcification of related tissues,

such as cardiovascular calcification [90,91]. In our study, the Wnt pathway was significantly

up-regulated. We believe that the Wnt pathway is activated and at a high level of expression in

tendinopathy injuries. And Wnt induces the osteogenic differentiation of tendon stem cells,

and promotes the differentiation of tendon cells in the wrong direction, which ultimately leads

to tendinopathy [92]. Studies have shown that in the rat Achilles tendon injury model, the key

regulators of the Wnt pathway and the Notch pathway are activated at the wound [93]. There-

fore, it can be considered that the MACROD1 gene may promote the misdifferentiation of ten-

don cells by mediating the hypoxic microenvironment of the cells and ultimately lead to

tendinopathy.

Based on the above research, we speculate that the up-regulation of MACROD1 gene may

cause early tendinopathy hypoxia microenvironment and oxidative stress response through

tendinocyte mitochondrial dysfunction, and then activate multiple signal pathways under the

combined action of inflammatory cytokines and angiogenic factors Lead to apoptosis of ten-

don cells. These cascades ultimately lead to the development of chronic tendinopathy. On the

other hand, we used the online tool CIBERSORT algorithm to analyze the immune cell infil-

tration to get the difference in the content of immune cell infiltration in 22. This may have

important implications for tendinopathy in the study of immune cells. In short, we speculate

that the MACROD1 gene may be a potential hub gene for early tendinopathy. It is necessary

for us to study clearly the function of MACROD1 gene in mitochondria and the possible spe-

cific molecular mechanism of the early occurrence of tendinopathy. By exploring the mecha-

nism of MACROD1 gene in mitochondria and the characteristics of immune cell infiltration,

we can find new therapeutic targets in molecular pathways, which may be a promising treat-

ment method for tendinopathy.

In recent decades, computational models have become an important tool for the identifica-

tion of novel MicroRNAs, LncRNAs and CircRNAs in association with diseases. Meanwhile, a

large number of experimental methods and computational models have been designed and

implemented to identify novel MicroRNA, LncRNA, and CircRNA associations with complex

diseases, which contribute to the understanding of human complex disease mechanisms, bio-

marker detection, and disease diagnosis, treatment, prognosis, and prevention at the molecular

level [94–97]. And, there are also studies on LncRNA-MicroRNA interaction prediction by

network distance analysis model, which has an important role in the screening of therapeutic

targets and diagnostic biomarkers for a variety of human diseases [97–99]. On the other hand,
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logistic matrix factorization with neighborhood regularized (LMFNRLMI) is a new matrix fac-

torization model for predicting the interaction of lncRNA-miRNA. Research shows that

through comparison with several other network algorithms and various similarity tests, the

model is superior and has higher performance in predicting the association of lncRNA-

miRNA [100]. In the future, we can use LMFNRLMI to predict potential lncRNA-miRNA

association studies in tendinopathy. Unfortunately, association studies at the transcriptome

level with tendinopathies using bioinformatics approaches have been inadequate in recent

years. Therefore, more research is needed in the future on top of computational modeling

studies of tendinopathy gene biomarker identification and association studies at the transcrip-

tome level.

However, our research still has certain limitations. First of all, the data set we are studying

contains different populations of tendon tear patients and the control group, which may affect

the results of the study. In addition, there is a slight difference between the immune cell infil-

tration condition obtained by the whole genetic immunoassay and the immune cell infiltration

condition obtained from the experimental study, which may be caused by the difference in dif-

ferent stages of the disease. Finally, based on our research data comes from public databases, it

is necessary to conduct molecular cell and animal experiments to verify the results of this

research.

Conclusion

In conclusion, based on the comprehensive bioinformatics analysis method, we identified the

potential early hub genes, key regulatory pathways and immune infiltration characteristics of

tenopathy. This will help to provide new insights into the future drug and molecular mecha-

nism of tendon disease.
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42. Bravo-Sagua R, Parra V, López-Crisosto C, Dı́az P, Quest AF, Lavandero S. Calcium Transport and

Signaling in Mitochondria. Comprehensive Physiology. 2017; 7(2):623–34. Epub 2017/03/24. https://

doi.org/10.1002/cphy.c160013 PMID: 28333383

43. Paul BT, Manz DH, Torti FM, Torti SV. Mitochondria and Iron: current questions. Expert review of

hematology. 2017; 10(1):65–79. Epub 2016/12/03. https://doi.org/10.1080/17474086.2016.1268047

PMID: 27911100

44. Liu PS, Ho PC. Mitochondria: A master regulator in macrophage and T cell immunity. Mitochondrion.

2018; 41:45–50. Epub 2017/11/18. https://doi.org/10.1016/j.mito.2017.11.002 PMID: 29146487

45. Blajszczak C, Bonini MG. Mitochondria targeting by environmental stressors: Implications for redox

cellular signaling. Toxicology. 2017; 391:84–9. Epub 2017/07/29. https://doi.org/10.1016/j.tox.2017.

07.013 PMID: 28750850

46. Jeong SY, Seol DW. The role of mitochondria in apoptosis. BMB reports. 2008; 41(1):11–22. Epub

2008/02/29. https://doi.org/10.5483/bmbrep.2008.41.1.011 PMID: 18304445

47. Kolmychkova KI, Zhelankin AV, Karagodin VP, Orekhov AN. Mitochondria and inflammation. Patologi-

cheskaia fiziologiia i eksperimental’naia terapiia. 2016; 60(4):114–21. Epub 2016/10/01. PMID:

29244932
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