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Abstract

Measures of nonlinearity and complexity, and in particular the study of Lyapunov exponents, have been increasingly used to
characterize dynamical properties of a wide range of biological nonlinear systems, including cardiovascular control. In this
work, we present a novel methodology able to effectively estimate the Lyapunov spectrum of a series of stochastic events
in an instantaneous fashion. The paradigm relies on a novel point-process high-order nonlinear model of the event series
dynamics. The long-term information is taken into account by expanding the linear, quadratic, and cubic Wiener-Volterra
kernels with the orthonormal Laguerre basis functions. Applications to synthetic data such as the Hénon map and Rössler
attractor, as well as two experimental heartbeat interval datasets (i.e., healthy subjects undergoing postural changes and
patients with severe cardiac heart failure), focus on estimation and tracking of the Instantaneous Dominant Lyapunov
Exponent (IDLE). The novel cardiovascular assessment demonstrates that our method is able to effectively and
instantaneously track the nonlinear autonomic control dynamics, allowing for complexity variability estimations.
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Introduction

Hearth contractions are regarded by many scientists as the

foremost example of a physiological system showing predomi-

nantly nonlinear behavior, mainly generated through integration

of multiple neural signaling at the level of the sinoatrial node [1].

Accordingly, the fluctuations in the interval between consecutive

heartbeats have been widely investigated as output of a nonlinear

system revealing and quantifying the complexity of cardiovascular

control [2–27].

Among all nonlinearity and complexity measures, Lyapunov

exponents (LEs) have been proven to provide an important

mathematical tool in characterizing dynamical properties of a

nonlinear system [28]. LEs were first defined by Lyapunov [29] in

order to study the stability of non-stationary solutions of ordinary

differential equations and for more than fifty years they have been

extensively studied in many disciplines [30–33]. Specifically, they

refer to the average exponential rates of divergence or conver-

gence of neighboring trajectories in the system phase space. In

fact, for a system whose characteristic equations are known, there

is a straightforward technique for computing the whole Lyapunov

spectrum [28]. Several methods for a reliable data-driven LEs

estimation, even in short time data records, have been also

proposed [34,35]. In a deterministic nonlinear system with no

stochastic inputs, a positive LE reflects sensitive dependence to

initial conditions and can be taken as a definition of a chaotic

system [36]. Nevertheless, a small amount of noise in a limit cycle

oscillation could yield a positive LE if the trajectory has regions

with large slopes. In chaotic systems [37], stochasticity does not

play a crucial role and their dynamics are highly dependent on the

initial condition. Although it is straightforward to consider chaotic

mathematical systems in which stochastic inputs are suppressed, in

actual applications especially related to physiological systems, it is

not possible to eliminate such inputs making the chaos assessment

simply unreliable [3]. Stationary aperiodic behavior, in fact, can

also arise in linear or nonlinear stochastic systems. In light of these

considerations, as this work deals with (instantaneous) LEs

estimation with applications on heartbeat dynamics, we do not

address the issue related to the chaotic behavior of heart rate

variability (HRV).

Relying on the approach suggested by Chon et al. [38] and,

later, by Armoundas et al. [39], we consider the cardiovascular

system both chaotic and stochastic. This concept is in agreement

with current physiological knowledge, since healthy HRV

dynamics can be considered/modeled as the output of a nonlinear

deterministic system (the pacemaker cells of sinus node) being

forced by a high-dimensional input (the activity in the nerves

innervating the sinus node). Accordingly, we model the heartbeat

nonlinear dynamics as a third-order Nonlinear Autoregressive

(NAR) model embedded in a point process probabilistic frame-

work. Such statistical approach allows us to estimate the LEs in an

instantaneous fashion by fitting the model to the observed data

and applying the Fast Orthogonal Search (FOS) algorithm [40].

Point-process theory has been widely recognized as an excellent

PLOS ONE | www.plosone.org 1 August 2014 | Volume 9 | Issue 8 | e105622

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0105622&domain=pdf


mathematical tool to characterize the probabilistic generative

mechanism of the heartbeat at each moment in time [41]. In the

considered model, the intrinsically discrete, unevenly spaced

heartbeat intervals are represented by a physiologically-plausible

inverse-gaussian (IG) distribution. Defining the first and second-

order moments of the IG distribution as function of the past

heartbeat intervals (i.e., the RR intervals), it is possible to obtain an

effective prediction of the next heartbeat event together with an

accurate assessment of instantaneous indices of cardiovascular

control. In previous studies [19,41,42], we demonstrated how to

estimate heartbeat dynamics even in short recordings under

nonlinear and non-stationary conditions using Wiener-Volterra

theory for nonlinear systems identification.

Introduction to the Instantaneous Dominant Lyapunov
Exponent

In this work, the IG mean is modeled as a third-order nonlinear

function of the past RR intervals. In order to perform an effective

parameter estimation and retain all the historical information of

events, the cubic NAR kernels of the Wiener-Volterra series are

expanded using the Laguerre bases [43] leading to the definition of

cubic Nonlinear Autoregressive Laguerre (NARL) model. Of note,

the NARL definition includes an infinite regression of the past

events with a parsimonious use of model parameters. From the

NARL point-process model and Fast Orthogonal Search algo-

rithm, we are able to estimate the complete LE spectrum at each

moment in time, providing novel information concerning the

complexity dynamics and its variability. Of note, to the best of our

knowledge, complexity variability measures have never been

estimated from instantaneous indices of complexity and could

open novel perspectives on the assessment of discrete stochastic

physiological systems. We present two applications on synthetic

datasets (the Hénon map and Rössler attractor) and two

experimental applications portraying the crucial role of the

instantaneous Lyapunov Exponents in assessing autonomic

changes in humans (ten heathy subjects undergoing postural

changes, and fourteen patients with severe heart failure), focusing

our attention on the Instantaneous Dominant Lyapunov Exponent

(IDLE, l), which is the first exponent of the Lyapunov spectrum.

Preliminary results of these analyses have been presented in [44–

46]. We start with a detailed, exhaustive presentation of our

methodological framework through the following ‘‘Materials and

Methods’’ section.

Materials and Methods

Point-Process Models of Heartbeat Dynamics
A random point process is a stochastic process whose elements

are point patterns specified as a locally finite counting measure

[47]. Considering the R-waves detected from the Electrocardio-

gram (ECG) as such events, point process theory can be used to

characterize their probability of occurrence [41,42,48]. Mathe-

matically, in the time domain, a simple 1-dimension point process

consists of series of timestamps marking the occurrence times

t [ ½0,?) of the random events. Given a set of R-wave events

fujgJ
j~1, let RRj~uj{uj{1w0 denote the jth R–R interval, or

equivalently, the waiting time until the next R-wave event.

Assuming history dependence, the probability distribution of the

waiting time t{uj until the next R-wave event, where uj denotes

the previous R-wave event occurred before time t, follows an

inverse Gaussian (IG) model:

f (tjHt,j(t))~
j0(t)

2p (t{uj)
3

" #1
2

exp {
1

2

j0(t) t{uj{mRR(t,Ht,j(t))
� �2

mRR(t,Ht,j(t))2 (t{uj)

( ) ð1Þ

where Ht~(uj ,RRj ,RRj{1,:::,RRj{Mz 1) is the history of the

point process, j(t) is the vector of the time-varying parameters,

mRR(t,Ht,j(t)) represents the first-moment statistic (mean) of the

distribution, and j0(t)~hw0 denotes the shape parameter of the

IG distribution (as h=m??, the IG distribution becomes more like

a Gaussian distribution). As f (tDHt,j(t)) indicates the probability

of having a beat at time t given that a previous beat has occurred

at uj , mRR(t,Ht,j(t)) can be interpreted as signifying the average

(or expected) waiting time before the next beat. We can also

estimate the second-moment statistic (variance) of the IG

distribution as s2
RR(t)~m3

RR(t)=h. The use of an IG distribution

to characterize the R-R intervals occurrences is motivated by the

fact that if the rise of the membrane potential to a threshold

initiating the cardiac contraction is modeled as a Wiener process

with drift, then the probability density of the times between

threshold crossings (the RR intervals) is indeed the inverse

Gaussian distribution [41,49]. As a matter of fact, when compared

with other distributions, the IG model achieves the overall best fit

in terms of smaller KS distance [42]. The instantaneous RR mean,

mRR(t,Ht,j(t)), can be modeled as a generic function of the past

RR values mRR(t,Ht,j(t))~g(RRj{1,RRj{2,:::,RRj{h), where

RRj{k denotes the previous kth R–R interval occurred prior to

the present time t.

Nonlinear Modeling of History Dependence
The general Nonlinear Autoregressive (NAR) formulation can

be written as:

y(n)~F(y(n{1),y(n{2),:::,y(n{M))zE(n) ð2Þ

where E(n) are independent, identically distributed (i.i.d.) Gaussian

random variables. The expected value of y(n) can be written as a

Taylor expansion under the hypothesis of being infinitely

differentiable in a neighborhood of the working point:

E½y(n)�~c0 z
XM
i~1

c1(i)y(n{i)

z
X?
K~2

XM
i 1~1

. . .
XM

iK ~1

cK (i1, . . . ,iK )P
K

j~1
y(n{ij)

ð3Þ

Due to the autoregressive structure of eq. 3, the system can be

identified with only exact knowledge of the output data and with

only few assumptions on the input data. In practice, this series will

obviously be truncated at some small, finite value. Here, we

represent the nonlinear cardiovascular system by taking into

account up to the cubic nonlinear terms, i.e. c0, c1(i), c2(i,j), and

c3(i,j,k). Thus, the model can be written as:

Estimating the Instantaneous Lyapunov Spectra
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E½y(n)�~c0 z
XM
i~1

c1(i)y(n{i) z

XM
i~1

XM
j~1

c2(i,j)y(n{i)y(n{j)z

XM
i~1

XM
j~1

XM
k~1

c3(i,j,k)y(n{i)y(n{j)y(n{k)

ð4Þ

where the quadratic and the cubic terms, c2(i,j) and c3(i,j,k), are

assumed to be permutation invariant. This choice of a third order

NAR system further gives robustness against the presence of

measurement noise in the data [38].

Laguerre Expansion of the cK terms. An important

practical limitation in modeling high-order nonlinearities using

the model in eq. 4 is the high number of parameters needed to

sufficiently fit the observed data. An advocated approach to solve

such a limitation has been proposed by using the Laguerre

functions [43,50,51]. Let us define the jth-order discrete time

orthonormal Laguerre function:

wj(n)~a
n{j

2 (1{a)
1
2

Xj

i~0

({1)i n

i

� �
j

i

� �
aj{i(1{a)i,

where a is the discrete-time Laguerre parameter (0vav1) which

determines the rate of exponential asymptotic decline of these

functions, and n§0. Given the Laguerre function, wj(n), and the

signal, y(n), the jth-order Laguerre filter output is:

lj(n)~
X?
i~0

wj(i)y(n{i{1) ð5Þ

The computation of the Laguerre Filter output can be simplified

by using the following recursive relation [43]:

l0(n)~
ffiffiffi
a
p

l0(n{1)z
ffiffiffiffiffiffiffiffiffiffi
1{a
p

y(n{1) ð6Þ

lj(n)~
ffiffiffi
a
p

lj(n{1)z
ffiffiffi
a
p

lj{1(n)z ð7Þ

ffiffiffi
a
p

lj{1(n{1), j§1 ð8Þ

Since the fwi(t)g form a complete orthonormal set in functional

space L2, we can write [52]:

c0~g0 ð9Þ

c1(i)~
XP

r~0

g1(r)wr(i) ð10Þ

c2(i,j)~
XQ

r~0

XQ

s~0

g2(r,s)wr(i)ws (j) if

i=j ho dimenticato perche avevamo qst

ð11Þ

c3(i,j,k)~
XK

r~0

XK

s~0

XK

t~0

g3(r,s,t)wr(i)ws(j)wt(k) if i=j : ð12Þ

Here g0, g1(r), g3(r,s) and g3(r,s,t) are the Laguerre

coefficients. Using eq. 5 and eqs. 9–12, the model in eq. 4 for

the instantaneous RR mean becomes:

mRR(t,Ht,j(t))~g0(t)z
XP

i~0

g1(i,t) li(t)z

XQ

i~0

XQ

j~0

g2(i,j,t) li(t) lj(t)z

XK

i~0

XK

j~0

XK

k~0

g3(i,j,k,t) li(t) lj(t) lk(t) :

ð13Þ

hereinafter called Nonlinear Autoregressive with Laguerre expan-

sion (NARL) model. Here, the Laguerre filter outputs are:

li(t)~
X~NN(t)

n~1

wi(n)(RR ~NN(t){n{RR ~NN(t){n{1) ð14Þ

with ~NN(t)~ limt? t{ N(t)~ maxfk : ukvtg as a left continuous

function.

The coefficients g0,fg1(i)g, fg2(i,j)g, and fg3(i,j,k)g corre-

spond to the time-varying zero-, first-, second-, and third-order

NARL coefficients, respectively. When a~0 the filter output

becomes lj(n)~({1)jy(n{j{1) and the NARL model corre-

sponds, apart for the sign, to the finite NAR model in eq. 4,

whereas for a=0 the instantaneous RR mean in terms of NAR

equations is theoretically defined as follows:

mRR(t,Ht,j(t))~RR ~NN(t){1zc0z
X?
i~1

c1(i,t) DRRiz

X?
i~1

X?
j~1

c2(i,j,t) DRRi DRRjz

z
X?
i~1

X?
j~1

X?
k~1

c3(i,j,k,t) DRRi DRRjDRRk

ð15Þ

where DRRh~(RR ~NN(t){h{RR ~NN(t){h{1). The autoregressive

model is expressed in terms of the derivative RR series, rather

than the original RR series, in order to allow the model to cope

with highly non-stationary regimes [53].

Moreover, as mRR(t,Ht,j(t)) is defined in a continuous-time

fashion, we can obtain an instantaneous R–R mean estimate at a very

fine timescale (with an arbitrarily small bin size D), which requires no

Estimating the Instantaneous Lyapunov Spectra
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interpolation between the arrival times of two beats. Given the

proposed parametric model, the nonlinear indices of the HR and

HRV will be defined as a time-varying function of the parameters

j(t)~ ½h (t),g0 ( t ) ,g1 (0,t) , :::,g1 (P, t ),g2 (0,0, t ), :::,g2 (Q,Q, t ),

g3(0,0,0,t),:::,g3(K ,K ,K ,t)� :
Parameter Estimation and Model Goodness-of-fit

measures. A local maximum likelihood method [41] is used

to estimate the time-varying parameter set j(t). Given a local

observation interval (t{l,t� of duration l, we consider a subset

Um : n of the R-wave events, where m~ minfk : ukwt{lg and

n~ maxfk : ukƒtg. At each time t, we find the parameter vector

j(t) that maximizes the local log-likelihood, given the R-wave

events recorded in the local observation interval:

L(j(t) jUm:n)~
Xn{1

k~mzP{1

w(t{ukz1)

log f ukz1 j mRR(ukz1,Hukz1
,j(t)),h(j(t))

� �h i ð16Þ

where w(t)~ exp (ŵwt) with ŵw~0:02 s{1, is an exponential

weighting function for the local likelihood. This value has been

empirically chosen by considering a range of discrete values

(ŵw~f0:005,0:01,0:015,0:02,0:025,0:030g), and by choosing the

optimum according to KS plots goodness-of-fit analysis, as

described in [41]. We use a Newton-Raphson procedure to

maximize the local log likelihood in eq. 16 and compute the local

maximum-likelihood estimate of j(t). Because there is significant

overlap between adjacent local likelihood intervals, we start the

Newton-Raphson procedure at t with the previous local

maximum-likelihood estimate at time t{D in which D define

how much the local likelihood time interval is shifted to compute

the next parameter update. We determined the optimal orders

fP,Q,Kg using the Akaike Information Criterion (AIC) by fitting a

subset of the data using local likelihood method [41]) as well as the

Kolmogorov-Smirnov (KS) statistic in the post hoc analysis. More

in detail, we can compare the AIC scores and choose the

parameter setup with the minimum AIC value of

AIC~{2Lz2 dim (j) where L is the maximized value of the

likelihood function for the estimated model, and dim (j) is the

number of parameters in the statistical model.

It is known from point process theory [41] that the Conditional

Intensity Function (CIF) b(t) is related to the inter-event

probability p(t) with a one-to-one relationship:

b(t)~
p(t)

1{
Ð

t
uj

p(t)dt
ð17Þ

The estimated CIF is used to evaluate the goodness-of-fit of the

proposed heartbeat interval point process probability model,

which is based on the KS test [41].

Instantaneous Lyapunov Exponents Estimation
The Lyapunov Exponent (LE) of a real valued function f (t)

defined for tw0 is:

l~ lim sup
t??

1

t
log Df (t)Dð Þ ð18Þ

More generally, let us consider an n-dimensional linear system

in the form yi~Y (t)pi, where Y (t) is a fundamental solution

matrix with Y (0) orthogonal, and fpig is an orthonormal basis of

Rn. Then, the sum of the corresponding n Lyapunov Exponents

(li) is minimized, and the orthonormal basis fpig is called

‘‘normal’’ [54]. One of the key theoretical tools for determining

LEs is the continuous QR factorization: Y (t)~Q (t) R(t) [55,56]

where Q(t) is orthogonal and R(t) is upper triangular with positive

diagonal elements Rii, i~1 : n. Therefore we obtain [54–56]:

li ~ lim
t??

1

t
log EY (t)piE ~ lim

t??

1

t
log ER(t)piE

~ lim
t??

1

t
log ERii(t)E, 1 ƒ i ƒ n

ð19Þ

In our case, the matrix Y (t) corresponds to the Jacobian of the

M-dimensional system of the NARL model parameters, where M

is the value of the largest model order [39]. Therefore, given the

NARL model reported in eq. 13 and using eqs. 9 to 12 bringing

back to the NAR framework, it is possible to obtain an M-

dimensional state space canonical representation.

Using the Einstein notation, we obtain:

mRR(t,Ht,j(t)) ~ c1(i) DRRizc2(i,j) DRRi DRRj

z c3(i,j,k) DRRi DRRjDRRk

ð20Þ

Therefore, the elements of the Jacobian can be computed as

follows:

LmRR(t,Ht,j(t))

LDRRp

~c1(i)dpz c2(j,i)DRRidjp z

c2(i,j)DRRidipzc3(i,j,k)dipDRRjDRRk

z c3(i,j,k)djpDRRiDRRk

z c3(i,j,k)dkpDRRiDRRj

ð21Þ

and considering the symmetry properties of the NAR kernels, we

finally obtain:

LmRR(t,Ht,j(t))

LDRRp

~c1(p)z2
X

i

c2(i,p)DRRi

z 3
X

i

X
j

c3(i,j,p)DRRiDRRj

ð22Þ

Considering N data samples, we evaluate the Jacobian over the

time series, and determine the LE by means of the QR

decomposition:

Estimating the Instantaneous Lyapunov Spectra
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J(n)Q(n{1)~Q(n)R(n) with n~1,2:::,N:

The matrix Y (t) corresponds to the Jacobian of this system [39]:

This decomposition is unique except in the case of zero diagonal

elements. Then, the LEs li are given by

li~
1

tN

XN{1

j~0

ln R(j)ii ð23Þ

where t is the sampling time step. The estimation of the LEs is

performed at each time t from the corresponding time-varying

vector of parameters, j(t). We define the first LE (l1(t)) as the

instantaneous dominant Lyapunov exponent (IDLE). In particu-

lar, the median IDLE (lRR) and its median absolute deviation

(slRR
) were considered as group features.

Standard and Nonlinear Measures of Heartbeat Dynamics
In order to perform a comparison analysis with standard and

nonlinear estimates of heartbeat dynamics, we also calculated the

standard mean of the RR intervals (Mean RR), the root mean

square of successive differences of intervals (RMSSD) and the

number of successive differences of intervals which differ by more

than 50 ms (pNN50% expressed as a percentage of the total

number of heartbeats analyzed) [57]. Referring to morphological

patterns of HRV, the triangular index is obtained as the integral of

the histogram (i.e. total number of RR intervals) divided by the

height of the histogram which depends on the selected bin width

[57]. Moreover, we performed the estimation of the dominant

Lyapunov exponent according to the algorithm described by Wolf

et al. [34] (LD1
) and Rosenstein et al. [58] (LD2

). Both algorithms

are suitably applied to experimental noisy data. Finally, other

nonlinear measures such as the approximate entropy (ApEn) [59],

Sample Entropy [60], and the Detrended Fluctuation Analysis

(DFA) [61] were evaluated.

Figure 1. Simulation results using the Hénon equations. (Top) Synthetic interval series from the Hénon map, (Middle) the a stepping, and
(Bottom) IDLE averaged estimate from 100 realizations using NARL model with noise level of k~0:001.
doi:10.1371/journal.pone.0105622.g001

J(n)~

0 1 0 0 � � � 0

0 0 1 0 � � � 0
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.

0 0 0 0 � � � 1
LmRR(t,Ht,j(t))

LDRR1

LmRR(t,Ht,j(t))
LDRR2

LmRR(t,Ht,j(t))
LDRR3

LmRR(t,Ht,j(t))
LDRR4

� � � LmRR(t,Ht,j(t))
LDRRM

0
BBBBBBB@

1
CCCCCCCA
:
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Experimental Data

Synthetic Data
Before reporting the implementation of the synthetic datasets, it

is important to clarify some important differences from standard

definitions that are introduced by our methodology. In fact,

standard nonlinear systems such as the Hénon Map and Rössler

Attractor are intrinsically defined in the continuos time domain,

whereas our methodology deals with stochastic point processes

which are a sequence of events. Moreover, additive noise terms

have to be considered as well. Therefore, starting from the

canonical equations of each nonlinear system, we slightly modify

the system equations by adding a noise term. Then, the output of

the system is taken as an input of an integrate-and-fire system. The

output of such an integrate-and-fire system constitutes the series

modeled by the proposed cubic NARL model within the point-

process framework.

Hénon Map. In order to test the efficiency of the proposed

cubic NARL model in tracking the complexity of a synthetic

stochastic series through the IDLE index, we simulated a modified

version of the well-known chaotic Hénon Map as suggested in

[39]. Such a complex system, in which stochastic terms are also

considered, is governed by the following differential equations:

ynz1 ~ bxn z kE(t);

xnz1 ~ 1 { ax2
n z yn z kE(t);

ð24Þ

The time series yn were taken into account fixing b~0:3. The

term E(t) is an independent identically distributed Gaussian

random variable with zero mean and standard deviation of 1,

which is modulated by the coefficient k. The coefficient a is taken

as a time-varying variable from a~1 to a~1:09 with step size

0:03. Note that the value a~1:07, in a purely deterministic

domain, corresponds to the transition between the non-chaotic

and chaotic regime. A total of 100 realizations the Hénon Map

series were simulated, each of which was comprised of 4000 data

Figure 2. Simulation results using the Rössler equations. (Top) Synthetic interval series from the Rössler system, (Middle) the a stepping, and
(Bottom) IDLE estimates using NARL model. The dotted vertical line indicates the transition between the non-chaotic and chaotic regime.
doi:10.1371/journal.pone.0105622.g002
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points with 1000 samples for each of the four a-values. A

realization of the simulated time series is illustrated in Fig. 1 along

with the a-values and the corresponding IDLE results.

Rössler Attractor. As a further validation, we simulated a

modified version of the well-known chaotic Rössler time series (see

previous work [19]). Such a complex system, in which stochastic

terms are also considered, is governed by the following differential

equations:

dx

dt
~ {z { y z kE(t);

dy

dt
~ xzayzkE(t);

dz

dt
~ b z z(x{c) z kE(t);

ð25Þ

The time series were implemented with sampling time of 0.01

using the Runge-Kutta integration and fixing b~2, and c~4. The

term E(t) is an independent identically distributed Gaussian

random variable with zero mean and standard deviation of 0.01.

The coefficient a is taken as a time-varying variable from a~0:35
to a~0:45 with step size 0:025. Note that the value a~0:432, in a

purely deterministic domain, corresponds to the transition

between the non-chaotic and chaotic regime. A total of 75000

data points were generated with 15000 samples for each of the five

a-values. The simulated time series is illustrated in Fig. 2 along

with the a-values and the corresponding results on the IDLE. The

IDLE transitions to positive values reflect the simulated switch to

chaotic behavior.

Experimental Data
In order to validate the proposed algorithms performance as

related to actual cardiovascular dynamics, we have considered two

experimental datasets. Since the experimental protocols are fully

described in [19,41] in this paragraph we provide only briefly

descriptions of the two datasets.

Postural Changes. In order to validate the proposed

algorithms performance as related to actual cardiovascular

dynamics, we studied the complexity of RR interval series

recorded from 10 healthy subjects for the study of cardiovascular

and autonomic regulation undergoing a tilt-table protocol. This

choice is motivated by the high presence of nonlinearity and non-

stationarity in such time series. In this study, a subject lying

horizontally in a supine position is then actively or passively tilted

to the vertical position. The rest (supine) and upright sessions

alternated six times with three possible modality of transition:

active stand-up, slow and fast passive tilt. A single-lead ECG was

Figure 3. Box plots of standard and proposed Lyapunov estimations performed on the Hénon map among the a2stepping with
noise level of k = 0.001.
doi:10.1371/journal.pone.0105622.g003
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continuously recorded for each subject during the study, and the

RR intervals were extracted using a curve length-based QRS

detection algorithm [62]. Further details on the experimental

protocol can be found in [19,41]. The study was conducted at the

Massachusetts Institute of Technology (MIT) General Clinical

Research Center (GCRC) and was approved by the MIT

Institutional Review Board and the GCRC Scientific Advisory

Committee. Patient records/information was anonymized and de-

identified prior to analysis.

Congestive Heart Failure. The second heartbeat dataset

was constituted from data gathered from Congestive Heart Failure

(CHF) and reference healthy subjects on a public source: Physionet

(http://www.physionet.org/) [63]. The RR time series were

recorded from 14 CHF patients (from BIDMC{CHF Database)

as well as 16 healthy subjects (from MIT{BIH Normal Sinus

Rhythm Database). Each RR time series was artifact-free (upon

human’s visual inspection and artifact rejection) and lasted about

50 min (small segments of the original over longer recordings).

These recordings have been taken as landmark for studying

complex heartbeat interval dynamics [3,8].

Results

Instantaneous Complex Dynamics on Synthetic Data
Hénon Map. We performed the IDLE estimation by fitting

the NARL model on y series from the modified stochastic Hénon

Map time series (see eq. 24). The series were generated a hundred

times for each of the four considered noise levels

k~f 0:001, 0:01, 0:1, 1g. For kw0:001, a further constrain of

xn~0:1E(t) was imposed as xnv~{0:1 or xnw~{0:5 in order

to prevent the system to become unstable. The model orders were

set as P~3, Q~1, K~1, and a~0:4 were chosen by preliminary

KS plots goodness-of-fit analysis, according to [41]. The simulated

time series along with the resulted IDLE series are shown in Fig. 1,

whereas the corresponding box plots are shown in Fig. 3 in terms

of IDLE median (lRR) and its median absolute deviation slRR
. The

proposed IDLE is able to track the complexity variation at each

moment in time. As a matter of fact, the IDLE goes increasingly

high from the non-chaotic behavior to the chaotic one.

Remarkably, the non-chaos–chaos transition is instantaneously

detected, although a significant oscillatory dynamics is present in

the chaotic region. The related IDLE values are reported in

Table 1 along with standard estimates of the dominant Lyapunov

exponents. A non-parametric statistical analysis has been per-

formed in order to quantify the differences between the considered

a-values for each of the considered noise level.

Considering the noise level k~0:001, the Kruskal-Wallis test

reveals significant differences (pv10{12) for both the standard

Lyapunov estimates and the proposed lRR and complexity

variability index slRR
. In this case, the Dunn test for multiple

comparison, which considers a Tukey-Kramer correction, shows

that each group of standard estimates of LD1
and LD2

having

coherent a parameter are different with all the other groups

(pv10{3), whereas coherent a-values of lRR are different with all

the other groups (pv10{3) except for a~f1{1:03g (pw0:05).

Considering the noise level k~0:01, the Kruskal-Wallis test

reveals significant differences (p,5*1024) only for the proposed

lRR and complexity variability index slRR
. In this case, the Dunn

test for multiple comparison, which considers a Tukey-Kramer

correction, shows that coherent a~1 values are different with all

the other groups (pv10{3), with a~f1:03,1:06,1:09g equal

between each other (pw0:05). For noise level k~0:1 and k~1,

Table 1. IDLE Results from the Hénon map Synthetic Dataset.

a-values 1 1.03 1.06 1.09

Noise k = 0.001 p-value

LD1
0.1424+0.0035 0.1598+0.0041 0.1814+0.0040 0.1960+0.0030 v10{12

LD2
0.0004+0.0002 0.0064+0.0009 0.0377+0.0019 0.1772+0.0030 v10{12

lRR 0.3679+0.0195 0.3530+0.0179 0.4410+0.0268 0.6885+0.0349 v10{12

slRR
0.0407+0.0151 0.0379+0.0112 0.0636+0.0130 0.0747+0.0170 v10{12

Noise k = 0.01 p-value

LD1
2.5488+0.0251 2.5552+0.0387 2.5537+0.0280 2.5573+0.0238 w0:05

LD2
0.3038+0.0070 0.3049+0.0077 0.3037+0.0085 0.3033+0.0083 w0:05

lRR 1.2240+0.3232 1.5006+0.4380 1.4822+0.5034 1.4962+0.5237 ,5*1024

slRR
0.4511+0.1559 0.6884+0.2008 0.5780+0.2476 0.7137+0.2830 2v10{5

Noise k = 0.1 p-value

LD1
2.6704+0.0265 2.6710+0.0283 2.6756+0.0306 2.6719+0.0350 w0:05

LD2
0.2069+0.0997 0.2161+0.1221 0.2320+0.1334 0.2334+0.1459 w0:05

lRR 0.1180+0.0517 0.1383+0.0565 0.1319+0.0487 0.1566+0.0468 w0:05

slRR
0.1348+0.0376 0.1398+0.0314 0.1360+0.0378 0.1369+0.0247 w0:05

Noise k = 1 p-value

LD1
0.2949+0.0033 0.2953+0.0031 0.2949+0.0031 0.2947+0.0023 w0:05

LD2
0.0023+0.0022 0.0015+0.0015 0.0011+0.0011 0.0017+0.0016 w0:05

lRR 20.1032+0.0104 20.1018+0.0107 20.0998+0.0098 20.0993+0.0119 w0:05

slRR
0.0318+0.0056 0.0311+0.0071 0.0337+0.0066 0.0319+0.0071 w0:05

doi:10.1371/journal.pone.0105622.t001
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the difference between the a-values are not revealed by standard

and proposed dominant Lyapunov estimates.

Rössler System. We performed the IDLE estimation by

fitting the NARL model on the x series from the modified

stochastic Rössler time series (see eq. 25). The model orders were

set as P~3, Q~1, K~1, and a~0:2 were chosen by preliminary

KS plots goodness-of-fit analysis, according to [41]. The simulated

time series along with the resulted IDLE series are shown in Fig. 2.

Clearly, the proposed IDLE is able to track the complexity

variation at each moment in time. As a matter of fact, the IDLE

goes increasingly high from the non-chaotic behavior to the

chaotic one. Remarkably, the non-chaos–chaos transition is

instantaneously detected, although a significant oscillatory dynam-

ics is present in the chaotic region. Intervals expressed as median

+ M.A.D. are as follows: {0:0973+0:0044 for a~0:350,

{0:0813 + 0:0065 for a~0:375, {0:0850 + 0:0077 for

a~0:400, {0:0375 + 0:0075 for a~0:425, 0:0033 + 0:0092
for a~0:450. A non-parametric statistical analysis has been

performed in order to quantify the differences between the

considered a-values. The Kruskal-Wallis test reveals significant

differences (pv10{6) and the Dunn test for multiple comparison,

which considers a Tukey-Kramer correction, shows that each

IDLE group having coherent a-values is different with all the other

group (pv10{5) except for a~f0:375{0:4g (pw0:05).

Instantaneous Complex Dynamics on Postural Changes
Before estimating the IDLE from the experimental datasets, we

first considered a specific time-domain method [64] for testing the

presence of nonlinearity in the heartbeat intervals. The null

hypothesis of the test states that the given time series is linear. In

the considered recordings, we restricted the test to short-term

dependence by setting the number of laps M~8, and a total of

500 bootstrap replications. Concerning the RR series gathered

during postural changes, the nonlinearity test shows that the level

of nonlinearity of the considered RR intervals is statistically

significant for all the considered subjects but one (see Table 2. As

also shown in Table 2, the NARL modeling always gives a good

model fit, with KS distance v0:0604 in all cases. Specifically,

concerning the three experimental sessions, i.e. stand-up, slow-tilt,

and fast-tilt, a decrease of the IDLE with respect to the relative rest

condition is shown in 25 out of 30 epochs. In particular, in the fast-

tilt condition the decrease happens for all subjects, and is more

significant than stand-up and slow-tilt. Group statistics of standard

and proposed instantaneous measures are shown in Table 3,

whose inter-subject analysis was performed using a non-paramet-

ric rank-sum test. Results on the proposed IDLE show a non-

significant statistical difference between the stand-up epochs and

their relative rest epochs (pw0:05) and a significant difference for

the slow-tilt epochs (pv0:05). The highest significance was found

comparing the fast-tilt epochs with their relative rest (pv0:001).

These trends are confirmed by the standard DLE estimation

according to the Rosenstein et al. [58] technique, whereas the one

suggested by Wolf et al. [34] did not show such significant

differences. IDLE dynamics for one representative subject are

shown in Fig. 4, whereas the averaged IDLEs for all 10 subjects

are shown in Fig. 5, providing a clear portrayal of how different

postural stimuli elicit different changes in the dynamic signatures

of complexity. Concerning other standard and instantaneous

indices, we report significant differences on three session on mRR,

ApEn, and SampEn, whereas RMSSD and pNN50% showed

significant differences during the slow and fast tilt sessions.

Using this dataset, we further evaluate the effect of the Laguerre

parameter a on the IDLE estimates. Tracking for values

a~f0:1,0:2,0:3,:::,0:8g from a representative subject undergoing
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postural changes are shown in Fig. 6. Indeed, the IDLE estimates

are affected by the choice of the Laguerre parameter a. However,

such a variability is significantly less than the variability of the

IDLE dynamics within session. As a matter of fact, quantitative

results reported in Table 4 show that these differences are

associated to a p-value less than 2e{4 for each experimental

session.

Finally, we report further results on the nonlinearity test

separately performed for each of the experimental session, instead

of the whole recordings (see Table 2). As a result, under the null

hypothesis of linearity according to the time-domain method

described in [64] for testing the presence of nonlinearity in the

heartbeat intervals, the 49.12% of the resting state (28/57 sessions)

were associated to a significant p-value v0:05, along with the

44.4% of the stand-up (8/18 sessions) protocol, the 20% of the

slow-tilt (4/20 sessions) protocol, the 10.53% of the fast-tilt (2/19

sessions) protocol.

Instantaneous Complex Dynamics on CHF patients
The results of the second experimental dataset (on CHF) are

shown in Table 5. According to the nonlinearity test, 15 out of 16

RR time series from the healthy subjects showed significant

nonlinearity (pv0:05), whereas in the CHF group, 6 out of 14 RR

time series failed to reach significance (pw0:05). The fact that a

lower degree of nonlinearity was found in the CHF patients

suggests that pathological conditions might reduce the nonlinearity

in the heartbeat interval series, which is also consistent with

previous finding that a healthy heartbeat presents more pro-

nounced nonlinear dynamics [3,6,8,65]. Table 5 also demon-

strates that the NARL model well fit both pathological and healthy

heartbeat series with KS distance v0:082 in all cases. Results

averaged among groups are reported in Table 6. We report that

standard and instantaneous time domain measures are able to

discern the two groups with high statistical significance

(p v 5e{4). On the other hand, comparing the standard and

proposed instantaneous complexity measures, only the DFA-a2

and the complexity variability slRR
are able to provide significant

Figure 4. Instantaneous heartbeat statistics computed from a representative subject (subject 1) from the tilt-table protocol. In the
top panel, the estimated mRR(t) is superimposed on the recorded RR series. In the bottom panel, the instantaneous averaged IDLE is superimposed
on the original IDLE.
doi:10.1371/journal.pone.0105622.g004
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discrimination capability between the two populations with

pv0:05.

Discussion and Conclusion

Novelties and Impact of the proposed Methodology
We presented a novel methodology able to instantaneously

characterize the complex nonlinear dynamics of a stochastic series

of events by using the LEs. The proposed approach relies on the

previous literature for the LEs mathematical definition [38,39] and

is embedded in a novel IG-based point-process nonlinear

framework defined through a third-order Wiener-Volterra repre-

sentation, thus advancing on the previous models [19]. As a

consequence, the novel instantaneous LEs definition is able to

provide a reliable complexity measure tool to examine the

unevenly spaced events at very high temporal resolutions, without

resorting to any interpolation method. Moreover, goodness of fit

measures such as KS distance and autocorrelation plots quanti-

tatively allow to verify the model fit as well as to choose the proper

model order, which represents another open issue of current

parametric approaches.

The effective procedure for the time-varying parameter

identification is ensured by the combined use of the discrete-time

Laguerre expansions for the Wiener-Volterra terms and local

maximum likelihood method. In particular, expanding the

Volterra terms with the orthonormal Laguerre bases requires a

reduced number of parameters to retain the information of all the

past events. The nonlinear regression is further performed on the

derivative series to better account for nonstationarity [53].

Importantly, unlike other methods that might require large sample

size, our method is potentially useful to perform complexity

measures in short recordings of the signals of interest.

Importantly, the proposed measures also allows for the study of

the complexity variability, i.e., the analysis of complex systems

referring to the fluctuations in complexity instead of analysis of

central tendency. Within the proposed framework, it is always

possible to incorporate physiological covariates (such as respiration

or blood pressure measures) and produce further instantaneous

indices from their dynamic cross spectrum and cross bispectrum

[48]. Unlike other paradigms for estimating nonlinearity indices

developed in the literature [7,59,66,67], our method is formulated

within a probabilistic framework specifically developed for point-

Figure 5. IDLE dynamics averaged for all 10 subjects. The vertical red lines indicate the transition from the supine to the upright position after
stand up (top panel), after slow tilt (middle panel), and after fast tilt (bottom panel).
doi:10.1371/journal.pone.0105622.g005
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process observations (e.g. RR intervals), which already produced

important nonlinear quantifiers for autonomic assessment, based

on second- and third-order statistics (instantaneous spectrum and

bispectrum) [19]. Most other nonlinearity indices are derived from

non-parametric models, whereas our model is purely parametric

and the analytically derived indices can be evaluated in a dynamic

and instantaneous fashion. We believe these strengths enable our

method as a useful tool for assessing nonlinear dynamics of

heartbeat intervals in a non-stationary environment.

Study of the Instantaneous Cardiovascular Complex
Dynamics

The novel IDLE index was evaluated in both synthetic and

experimental heartbeat series. Estimations on the synthetic dataset

were performed on a stochastic version of the well-known chaotic

Hénon Map and Rössler attractor. The use of such a modified

version of the Hénon Map and Rössler system alongside the

obtained IDLE results need to be discussed. We are aware that in

purely deterministic Rössler equations the first LE should be zero

in the non-chaotic region, whereas it should be increasingly

positive in the chaotic region. However, the IDLE results show

slightly negative values in the non-chaotic region. Such a behavior

may be ascribed to the stochastic input and to the additional

integrate-and-fire step which affect the estimation of all complexity

measures, including LEs. To this extent, in order to further

investigate the effect of noise, results from the Hénon Map

equations were gathered as a function of the noise level. We

demonstrate that, for small amount of noise (k~0:001), standard

and instantaneous estimates of the dominant Lyapunov exponent

achieve similar results. However, considering Hénon Map

dynamics with k~0:01, the IDLE is exclusively able to discern

the different behavior of the nonlinear system. Of note, for k§0:1,

Table 4. IDLE Variability evaluated through a~f0:1,0:2,0:3,:::,0:8g and within each session of the postural changes protocol.

Session Through a-values Within Session p-Value

Resting State 0.0117+0.0044 0.0585+0.0213 v5e{6

Stand-Up 0.0125+0.0082 0.0652+0.0178 2e{5

Resting State 0.0170+0.0240 0.0693+0.0098 7e{5

Slow Tilt 0.0119+0.0128 0.0582+0.0113 v2e{6

Resting State 0.0167+0.0192 0.0617+0.0131 2e{4

Fast Tilt 0.0119+0.0128 0.0500+0.0144 2e{6

P-values are obtained from the Mann-Whitney test with null hypothesis of equal medians between the two groups. Values are expressed as X~Median(X )+MAD(X ).
doi:10.1371/journal.pone.0105622.t004

Figure 6. IDLE dynamics averaged for a~f0:1,0:2,0:3,:::,0:8g from a representative subject undergoing postural changes. Resting state
(R) sessions during supine position alternate with upright session after tilt (T). The bold line and gray area indicate the IDLE median and MAD,
respectively. Averaged values for all subjects are shown in Table 4.
doi:10.1371/journal.pone.0105622.g006
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the noise has an amplitude comparable with the output of the

system, thus destroying the different behaviors among the a-values.

The use of the Laguerre expansion of the Wiener-Volterra

kernels was also investigated through experimental analysis. As the

zero-order Laguerre basis is an exponential function, the IDLE

estimates present a mild dependence on the a value of the

Laguerre functions. Nevertheless, we demonstrated that the actual

information needed to characterize the experimental sessions, i.e.,

the variability within each session, is significantly higher than the

variability among all the a values. Anyway, using the hereby

proposed approach we clearly demonstrate the ability of the IDLE

in tracking the system complexity in an instantaneous fashion. The

IDLE, in fact, becomes higher when the simulated system switches

from non-chaotic to chaotic behavior (see Fig. 2). In all

applications, an IG probability model was used as a stochastic

version of the widely-applied deterministic integrate-and-fire

models used to simulate heartbeats. Regarding the experimental

datasets, we demonstrated that our approach is useful in

characterizing the inherent nonlinearity of the cardiovascular

system. For the first time, tracking complexity by instantaneous

Lyapunov Exponents was performed and evaluated during

postural changes. During the resting condition the cardiovascular

and autonomic nervous system are more sensitive to the initial

conditions (positive IDLE), whereas a more regular dynamics

(negative IDLE values) appear during the tilt phases (see Fig. 4).

These results are in agreement with previous findings that complex

vagally-driven dynamics are blunted under sympathetic drive [68]

and with more recent reports on loss of complexity during states of

arousal [20]). Our instantaneous measures also confirm that the

instantaneous complexity reflects instantaneous autonomic ner-

vous system (ANS) control on the cardiovascular dynamics. We

have shown that tracking ANS complexity on healthy subjects

undergoing postural changes not only confirms previous results

[69,70], but further improves sympathovagal assessment as elicited

by different dynamic gravitational stimuli.

Our experimental findings on the nonlinearity test performed

on each experimental session (resting state, stand-up, slow tilt, and

fast tilt) suggest that loss of instantaneous heartbeat complexity as a

function of velocity of the postural changes is reasonably due to

changes in the nonlinearity of the cardiovascular system (instead

Table 5. Results from the CHF-Healthy Experimental Dataset.

Subject Group mRR(ms) p-value KS dist. lRR slRR

01 CHF 995.4+26.4 w0:05 0.0445 0.2268 0.1123

03 CHF 910.25+28.9 w0:05 0.0552 0.2165 0.1257

04 CHF 603.09+22.7 v0:02 0.0456 0.0676 0.0896

05 CHF 655.6+13.3 w0:05 0.0297 20.0114 0.0507

06 CHF 637.4+15.9 v0:001 0.0802 0.0757 0.0659

07 CHF 778.0+7.3 w0:05 0.0363 0.0762 0.0793

08 CHF 800.1+14.1 v0:01 0.0357 20.0965 0.0327

09 CHF 602.5+5.4 w0:05 0.0305 20.0121 0.0555

10 CHF 486.9+6.9 v0:001 0.0329 20.0622 0.0444

11 CHF 685.1+16.0 v0:02 0.0354 20.0014 0.0578

12 CHF 722.8+27.2 v0:001 0.0326 20.0798 0.0380

13 CHF 619.7+5.1 v0:001 0.0386 0.0550 0.0655

14 CHF 837.7+23.4 w0:05 0.0367 0.0041 0.0613

15 CHF 652.15+20.6 v0:005 0.0265 20.0322 0.0550

16265 healthy 1023.9+38.9 v0:001 0.0527 0.0162 0.0438

16272 healthy 924.7+30.6 v0:001 0.0539 20.0304 0.0557

16273 healthy 1046.2+68.7 v0:001 0.0764 0.0998 0.0543

16420 healthy 849.9+39.2 v0:001 0.0394 0.0107 0.0410

16483 healthy 818.5+24.9 v0:001 0.0336 20.0254 0.0396

16539 healthy 831.5+47.9 v0:001 0.0592 0.0736 0.0485

16773 healthy 1238.9+74.7 v0:001 0.0819 0.0842 0.0613

16786 healthy 945.1+37.0 v0:001 0.0503 0.0226 0.0527

16795 healthy 889.4+61.8 v0:001 0.0442 20.0214 0.0462

17052 healthy 939.8+33.3 w0:05 0.0487 0.0682 0.0819

17453 healthy 816.6+31.9 v0:001 0.0416 0.0310 0.0466

18177 healthy 639.3+25.7 v0:001 0.0267 0.0058 0.0608

18184 healthy 831.2+31.7 v0:001 0.0392 20.0373 0.0438

19090 healthy 993.54+41.0 v0:001 0.0565 20.0101 0.0393

19140 healthy 849.1+49.9 v0:001 0.0353 0.0459 0.0513

19830 healthy 821.2+29.4 v0:001 0.0452 20.0795 0.0332

P-values are obtained from the nonlinearity test.
doi:10.1371/journal.pone.0105622.t005

Estimating the Instantaneous Lyapunov Spectra

PLOS ONE | www.plosone.org 14 August 2014 | Volume 9 | Issue 8 | e105622



of, for example, changes on the noise properties). Of note, we have

previously reported that the standard HRV indices defined in the

time and frequency domain are unable to distinguish the three

possible modality of transition through different p-values [19].

Moreover, the novel complexity features {lRR; slRR
} give

important information in the complexity evaluation, also useful in

distinguishing heartbeat dynamics coming from patients with CHF

and healthy subjects. We found that pathological heartbeat

dynamics are associated with increased complexity variability,

providing an unique measure of complexity able to discern the

CHF and healthy populations. Of note, some of the standard

measures defined in the time domain have similar p-value than the

point-process measures, as well as DFA-a2 shows similar

performances than the IDLE median absolute deviation. Never-

theless, we point out that we aimed at showing the performances of

novel instantaneous measures of complexity based on Lyapunov

exponents, providing novel insights on the complexity character-

ization of stochastic time-varying discrete point-process systems. In

other words, although other HRV-based measures are able to

discern CHF from healthy subjects, no other measures have been

proposed to characterize the time-varying complexity behavior

occurring in pathological vs. a healthy cardiovascular system. In

particular, while confirming the results reported in the current

literature (i.e., several measures of complexity are not able to

characterize the CHF and healthy subjects groups), we show a

novel key complexity behavior through the proposed complexity

variability framework. These findings can be linked to the current

literature whereby cardiovascular disorders affect complexity and

variability, and may lead to serious pathological events such as

heart failure [71].

Concerning other preliminary applications, the proposed IDLE

methodology has been revealed as a powerful tool also in tracking

the instantaneous complexity during loss of consciousness induced

by anesthetic drugs [46]. Looking at the overall results shown

using actual heartbeat dynamics data, it seems that the median

IDLE is sensitive to changes in ANS regulation induced by

orthostatic stress, while IDLE median absolute deviation is

sensitive to changes in ANS regulation induced by CHF.

However, this conclusion cannot be made without speculation at

this time as the data used for the comparison between CHF

patients and healthy subjects is related to long-term ECG

monitoring during unstructured activity, whereas the data from

the tilt-table experimental dataset is structured. Therefore, the

observed sensitivity of the IDLE measures could be due to

different physiological behavior occurring in CHF subjects or to

differences related to the kind of experimental protocol. Future

works are related to pursue this direction in further investigating

the potential of these high-order nonlinear models in producing

new real-time measures for the underlying complexity of

physiological systems, and to the investigation of the instantaneous

complexity, along with the baroreflex sensitivity and respiratory

sinus arrhythmia, during postural changes in CHF subjects, thus

allowing some conclusions on the complex physiological behavior

of the cardiovascular system in CHF subjects.
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Table 6. Group Statistics of Standard and Instantaneous Heartbeat Dynamics Measures from CHF-Healthy Experimental Dataset.

CHF (n = 14) Healthy (n = 16) p-value

Standard and Instantaneous Time Domain Measures of HRV

Mean RR (ms) 669.73+68.66 855.74+56.14 v0:002

RMSSD 0.0121+0.0036 0.0432+0.0145 ,4e{4

pNN50% 0.2357+0.2246 21.5406+15.4908 ,1e{4

HRV Triangular Index 2.9551+0.5769 2.5628+0.3593 w0:05

mRR(ms) 671.55+69.6 864.7+53.3 ,4e{3

sRR(ms) 8.31+2.2 24.7+7.0 ,5e{4

Standard and Instantaneous Nonlinear Measures of HRV

ApEn 1.2130+0.1032 1.2177+0.1066 .0.05

SampEn 1.5670+0.2690 1.4092+0.1522 .0.05

DFA-a1 0.8498+0.2191 1.0820+0.1467 .0.05

DFA-a2 1.1552+0.1335 0.9286+0.0544 ,0.05

LD1
0.0167+0.0025 0.0165+0.0012 w0:05

LD2
0.0029+0.0008 0.0033+0.0005 w0:05

lRR 0.0014+0.0649 0.0135+0.0368 w0:05

slRR
0.0595+0.0120 0.0476+0.0066 v0:05

P-values are obtained from the Mann-Whitney test with null hypothesis of equal medians between the CHF and healthy subject groups. Values are expressed as
X~Median(X )+MAD(X ).
doi:10.1371/journal.pone.0105622.t006
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