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Effect of the surface coverage 
of an alkyl carboxylic acid 
monolayer on waterborne 
and cellular uptake behaviors 
for silicon quantum dots
Naoto Shirahata

This article reports the development of highly waterborne silicon quantum dots (Si QDs) terminated 
with a reactive group for grafting of biomolecules. Hydrogen-terminated QDs were prepared by 
thermal disproportionation of amorphous hydrogen silsesquioxane derived from triethoxysilane 
followed by hydrofluoric etching. Next, the hydrogenated Si surfaces were exposed to 10-undecenoic 
acid at different temperatures in Ar atmosphere, yielding the termination of the QDs with a carboxyl 
group. The thermal hydrosilylation of 10-undecenoic acid yielded the termination of the QDs with a 
carboxyl group. An increase in molecular coverage of an undecanoic acid (UA) monolayer resulted in 
both the enhanced increase of zeta-potential in a negative direction for a greater water-dispersity 
and the increase of absolute quantum yield (QY) of photoluminescence (PL). PLQY improved for ~ 1% 
to 26% with increasing UA coverage. We assessed the molecular interaction between the UA-SiQDs 
and HeLa cells by means of cellular uptake experiments using the QDs with different UA coverages. 
Results showed that the QDs with the highest dispersity in water were not internalized in the cells 
under confocal fluorescence microscopic observation. In contrast, the QDs with lower coverage of 
UA monolayer were internalized by endocytosis when incubated with HeLa cells. This contrasting 
observation opens the possibility of successfully preparing carboxy-capped SiQDs that do not allow 
cellular uptake but are targeted to specific cells by appropriate conjugation with biomolecules.

Growing minimally invasive medicine have spurred explorations in fluorescent probes that could be excited 
with red-to-near-infrared (NIR) light for diagnostic and therapeutic  imaging1–5. Colloidal quantum dots (QDs) 
of semiconductors as one of the probes have attracted attention due to their unique optical properties including 
a spectral tunability of optical absorbance and emission bands, a high photostability, and a broad wavelength 
range for photoexcitation. The NIR spectral region used for biological imaging is segmented into the NIR-I 
(λ = 700–950 nm), NIR-IIa (λ = 1000–1350 nm) and NIR-IIb (λ = 1500–1800 nm) biological windows. There are 
four classes of Cd–, Pb– and Hg–free colloidal QDs emitting the red-to-NIR light that include Group IV (C, Si, 
Ge,  Ge1-xSnx alloy, and SiGeSn alloy)6–14, Group III-V (InN, InP, InSb, InAs and InAsSb alloy)15–22, Group I-VI 
 (Ag2S,  Ag2Se and  Ag2Te)23–28 and Group I-III-VI  (CuInS2,  CuInSe2,  AgInSe2 and ZnS-AgInS2)29–33 semicon-
ductors. Other way for emerging red-to-NIR emission is the use of rare-earth doped  nanocrystals34–36, or Pb-
free perovskite nanocrystals such as  CeSnI3, Sb-doped  Cs2SnCl4Br2, and lanthanide-doped  CsMnBr3

37–40. Most 
of these QDs and nanocrystals exhibit the downshifting luminescence, a single-photon process that converts 
absorbed high-energy photons to low-energy ones while those with excitation maxima in the short-wavelength 
region are efficiently photoexcited for red-to-NIR emission via upconversion  techniques41–44. Nevertheless, the 
red-to-NIR-light emitter used in the clinical spot for surgical medical treatments is limited to indocyanine green 
(ICG). In general, semiconductor QDs are chemically robust and more resistant to light fading than conventional 
organic  dyes45.
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Silicon (Si) QD has attracted attention since 2004 in which the conjugation process was reported for labeling 
of its nanoparticles to an  oligonucleotide46. SiQDs are known to have lower inherent toxicity than other ones, 
as evidenced by in-vitro studies in tissues and in-vivo studies in  mice47. Their superior photoluminescence (PL) 
properties include the narrow red-to-NIR PL spectra having no long emission  tails48, continuously tunable over 
the 650–1000 nm wavelength  range48,49, and decay times on the scale of 100 μsec48. Furthermore, by taking 
advantage of multiphoton absorption or fluorescence resonance energy transfer (FRET) processes, SiQDs emit 
the red-to-NIR light through the sequential absorption of photons from the red-to-NIR  light41,48,50,51.

Now, the surfaces of red-to-NIR light-emitting SiQDs that have been generated in hydrofluoric acid due to 
liberation from oxidized Si are terminated with hydrogen atoms. So, the resultant SiQDs are not dispersible in 
biological buffers without further modification. Generally, two methods have been used to make the hydrophobic 
QDs dispersible in the buffer: (1) coating of assemblies of the QDs with amphiphilic biocompatible polymers and 
(2) termination of the individual QDs with polar functional group. In the first approach, low hydrophilic QDs 
are encapsuled with an amphiphilic biocompatible  polymer47,48. For the second approach, the terminal hydrogen 
atoms are replaced by hydrocarbon chain with polar functional group at the end such as carboxylic acid or amine. 
Due to the terminal carboxyl or amino group, the water-dispersity is given to individual  QDs52. The QDs with 
those functional groups could be conjugated with biomolecules using traditional method. For example, SiQDs 
terminated with carboxyl groups, known to be lesser toxicity than  amine53, react with alkylamines functional-
ized with biomolecules using carbodiimide chemistry, giving a targetability for the specific cell to the QDs. In 
semiconductor QDs except for Si, the remaining carboxyl groups on the surface are passivated by reacting with 
amino alcohol to yield a hydroxyl group. However, fluorescence of the SiQD is known to quenched by addition 
of primary  amine54, preventing the use of amino alcohols. Thus, the challenging aspect of surface engineering 
is how to prepare carboxy-terminated SiQD that do not allow cellular uptake and high PLQY is preserved at 
the same time.

In the present study, the interaction between the waterborne SiQDs and the HeLa cell was investigated for 
difference in molecular coverage of 10-undecanoic acid (UA) monolayer covalently bonded onto the QD. The 
results shown provides a better understanding of surface chemistry to improve the dispersity of SiQD in water.

Experimental procedure
Reagents and chemicals. All reagents and chemicals were used as received. Triethoxysilane (TES) and 
10-undecenoic acid were purchased from Tokyo Chemical Industry (TCI) Co., Ltd. Hydrochloric acid (HCl, 
49% aqueous, electronic grade) and hydrofluoric acid (HF, 46–51% aqueous solution with metal impurity of less 
than 100 ppm) were purchased from Kanto Reagents. Milli-Q water was purified by Sartorius Arium 611UV 
water purification system. Other solvents such as ethanol, acetonitrile, and dichloromethane were purchased 
from Wako Chemicals, Japan. For bimodal imaging observations, HeLa cell lines were obtained from the Riken 
Bio-Resource Center (Tsukuba, Japan). Phosphate Buffered Saline (PBS) was purchased from Wako Chemicals, 
Japan. Minimum essential media (MEM) with phenol red, Penicilin Streptomycin, 0.05% Trypsin-EDTA, 4% 
Paraformaldehyde Phosphate Buffer Solution (PFA) and DAPI staining solution were purchased from Thermo 
Fisher Scientific, USA. Fatal Bovine Serum (FBS) was purchased from Sigma-Aldrich, USA.

Preparation of UA-terminated SiQDs. The UA-SiQDs were prepared by a four-step method which 
consists of hydrolysis and condensation of TES followed by heat treatment, HF-etching and hydrosilylation of 
10-undecanoic acid as shown in Fig. 1a. The first three-steps followed the previous  method55. In a typical, 16 mL 

Figure 1.  (a) Scheme of colloidal SiQD terminated with undecane monolayer. (b) XPS Si 2p spectra of 
the Products A, B and C. (c) Absolute values of PLQY of SiQD as a function of reaction temperature for 
hydrosilylation of 10-undecenoic acid. (d) A typical XRD pattern of undecanoic acid terminated SiQD. (e) ATR-
FTIR spectra of the Products C and D.
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of TES was hydrolyzed at room temperature in Ar atmosphere by dripping aqueous solution of HCl having a pH 
3. The resultant gel-like product was filtered followed by washed with Milli-Q water until the pH become 7. This 
precipitate was dried overnight under vacuum, yielding a white fine powder.

The white powder was subjected to heat treatment into a vacuum furnace in a quartz crucible. First, the inside 
of the crucible was evacuated by a vacuum pump until 5 Pa and then refilled with 5%-H2/95%-Ar gas. The gas 
purge was repeated three times. The powder was heated at 1050ºC for 2 h to yield a brown powder. 300 mg of 
brown powder was grinded in an agate mortar then subjected to HF etching by stirring in 8 mL of ethanol and 
16 mL of HF for 50 min. After stirring, solution was centrifuged at 15,000 rpm for 5 min at 10 °C in ethanol, 
acetonitrile, and dichloromethane in this order. The dichloromethane became turbid because HF-etched product 
was not dispersed in any solvents.

Prior to hydrosilylation, 10-undecanoic acid was degassed at the temperature of 70 °C and the pressure of 
30 Pa or lower. The dichloromethane solution of HF-etched powder was transferred to a two-neck round bot-
tom flask containing 15 mL of the degassed 10-undecanoic acid. The dichloromethane was completely removed 
by evacuation of the solution at room temperature using a vacuum pump. Then, the solution was heated in 
Ar atmosphere to the temperature of 160–200 °C within 3 min. The duration of time for reaction was varied 
between 0 and 3 h. After hydrosilylation, solution was split into four 30 mL centrifuge tubes and the rest of the 
tubes were filled with ethanol. Centrifugation was done at 15,000 rpm for 5 min at 10 °C. Precipitated product 
was dispersed in 4 mL of ethanol and hexane as an antisolvent. The centrifugation for washing the QDs was 
repeated at least five times. The washed QDs were dispersed in water of pH 8.3 or 7. The dispersity in water of 
pH 7 was obtained by gradual exchange of the solvent from ethanol to water. Specifically, the ethanol solution 
of UA-SiQDs was filled in a vial and same amount of water was added in. Then, this solution was subjected to 
vacuum drying until the volume becomes its half.

Characterization. Crystallinity and crystal structure of the sample were determined by X-ray powder dif-
fractometer (XRD, Miniflex 600, Rigaku, Japan) with Cu-Kα radiation (λ = 0.15406  nm). Ethanol solution of 
the QDs was drop-casted onto a reflection free sample holder of a single crystal Si. XRD pattern was obtained 
by scan with 0.2 step size and 2°/min scan speed. The oxidation sates of the samples were determined by X-ray 
photoelectron spectroscopic (XPS; Shimadzu, ESCA3400) study using MgKα (E = 1253.6  eV) radiation. The 
binding energy scale was calibrated to provide  Au4f7/2 = 83.9 eV and  Cu2p3/2 = 932.8 eV. The X-ray source was 
operated at 10 mA and 12 kV. The core-level signals were obtained at a photoelectron take-off angle of 90° (with 
respect to the sample surface). Data acquisition and processing were performed by a SUN Microsystems ULTRA 
5 computer, using the VISION 2.0 processing package. The BE scales were referenced to 285.0 eV as determined 
by the locations of the maximum peaks on the C1s spectra of hydrocarbon, associated with an adventitious con-
tamination. Attenuated Fourier Transform Infrared Spectroscopy (ATR-FTIR, Jasco FTIR-4100, Japan) was used 
to determine the chemical bonding states of the sample surface. Zeta potentials of the samples dispered in water 
of pH 7 were measured by Malvern Zetasizer Nano-Z equipment. The sample in powder form was analyzed 
under  N2 flow in the 800–3300  cm−1 range. Thermogravimetric (TG) analysis was performed for calculation of 
surface coverage of UA monolayers. 4.0 mg of the sample in powder form was heated up to 650 °C with 10 °C/
min heating rate under Ar atmosphere in alumina crucibles and mass loss was recorded. By using this data, 
surface coverage was calculated by the previously reported  method56.

Photoluminescence (PL) properties of the samples were measured by a modular double grating Czerny-
Turner monochromator with an iHR 320 emission monochromator (1200 lines/mm of gratings) coupled to a 
photodetector on a NanoLog Horiba Jobin Yvon spectrofluorometer with a 450 W Xenon arc lamp. The absolute 
PL quantum yields (QYs) of the samples in liquid form were measured at room temperature using the C9920-02 
QY measurement system from Hamamatsu Photonics Co., Ltd. with a 150 W xenon lamp coupled to a monochro-
mator for wavelength discrimination, an integrating sphere as a sample chamber, and a multichannel analyzer 
for signal detection. The sample in a liquid form was subjected to a UV–vis spectrophotometer (JASCO V-650, 
Japan) for optical absorption measurement.

In-vitro fluorescence imaging. A 500 µL of HeLa cells in MEM solution at a cell density of 35,000 cells/
mL were seeded into 4-chamber 35  mm glass bottom dishes. After 24  h incubation, cell culture media was 
changed to new culture medium containing 100 µg/mL of the SiQD-MEM solution. After 1 h incubation, cells 
were washed thrice with PBS and then fixed in 3.7% paraformaldehyde solution. Prepared dishes were examined 
under a confocal laser scanning fluorescence microscope (SP5, Leica Microsystems, Germany) under a 405 nm 
laser. Control cells without UA-SiQDs treatment were also observed to eliminate the errors by autofluorescence.

Results and discussion
Preparation of the waterborne SiQDs is represented schematically in Fig. 1a. First, the hydrolysis and condensa-
tion of TES molecules were performed at pH 3 to prepare the white-color powder (Product A). In Fig. 1b, the 
XPS Si2p spectrum of the product A shows a broad, single peak centered at 102.3 eV. The chemical shift of 3.0 eV 
with respect to that of the Si substrate (i.e., 99.3 eV for  Si0) corresponded to the  Si3+ chemical state which peaks 
at 101.8–102.7  eV57–59, indicating the formation of hydrogen silsesquioxane. On the other hand, the full width at 
half maximum (FWHM) of the peak was slightly broader than the ideal value for a single component of  Si3+ (i.e., 
660–760 meV), suggesting that other oxidation states such as  Si4+ might be contained as a minor constituent in 
the Product A. The white-color powder of  (HSiO1.5)n was thermally disproportionated into two oxidation chemi-
cal states of Si as  Si0 and  Si4+60, yielding a dark brown powder (Product B). As expected, the XPS Si2p spectrum 
was split to two peaks centered at 99.3 eV for  Si0 and 103.6 eV for  Si4+. This indicated that the Product B consists 
of SiQDs dispersed in  SiOx matrix. The SiQDs were liberated from the oxide matrix by HF etching as evidenced 
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in the XPS  Si2p spectrum (Product C). ATR-FTIR spectrum of the Product C is shown in Fig. 1e. The absorp-
tion peak centered at 897  cm−1 represented  SiH3 degenerate deformation and  SiH2 scissoring  modes61. A broad 
absorption peak centered at near 2100  cm−1 was the split in three vibration modes at 2075  cm−1 for monohydride 
(≡Si─H), 2100  cm−1 for dihydride (═SiH2) and 2130  cm−1 for trihydride (─SiH3) bonds on  SiQD62. A low 
intensity peak centered at 1050  cm−1 appeared possibly due to the remained intermediate oxidation state of Si 
 (Si1+), consistent with the XPS  Si2p spectrum of the Product C. Thermal hydrosilylation of 10-undecenoic acid 
was performed to prepare the SiQDs terminated with undecanoic acid monolayers (UA-SiQDs, Product D). The 
reaction temperature was varied between 160 and 200 °C. Figure 1c shows the changes in PLQY of UA-SiQDs 
prepared at different reaction times of 160–200 °C. The PLQY of H-SiQD was as low as 1% while increased with 
reaction time and became constant after 2 h. Furthermore, high PLQY was obtained at reaction temperatures 
above 175 °C. 26% of PLQY is the highest value ever obtained for carboxy-terminated SiQDs. The relationship 
between PLQY, reaction time and temperature was found to be independent of the diameter of the H-SiQDs. 
PLQY of the SiQD in solid form was close to that of the counterpart in liquid form (see Figure S1, supporting 
Information). Figure 1d shows a typical XRD pattern of the UA-SiQD prepared at 175 °C for 2 h. The diffraction 
peaks at 2θ = 28, 47 and 56° corresponded to (111), (220) and (311) planes, indicating the formation of a diamond 
cubic structure. A broad peak centered at ~ 20° appeared due to the presence of the UA monolayer; the absence 
of this peak in the H-SiQD supported this identification. The average diameter of UA-SiQDs estimated by Scher-
rer’s spectral width analysis was about 1.85 nm. In this study, the sample was not characterized with other size 
measurement techniques such as a small-angle X-ray scattering (SAXS) or a transmission electron microscopy 
(TEM) because the diameter estimated by XRD peak broadening analysis with Scherrer equation corresponds 
with the theoretical and experimental values obtained from the effective mass approximation model and SAXS 
under the limited conditions that diamond cubic SiQDs of d < 2 nm are prepared by thermal disproportiona-
tion of hydrogen  silsesquioxane55,63. Surface characteristics were investigated by ATR-FTIR for the UA-SiQDs as 
shown in Fig. 1e. It was seen that peaks at 1400–1450  cm−1, 2850 and 2920  cm−1, 1707  cm−1, and 1210–1320  cm−1 
belonging to Si–CH2 scissoring mode, the symmetric and asymmetric  CH2 vibrational modes, and the stretching 
C=O vibrational mode and C–O stretching mode, respectively, appeared after hydrosilylation. There were peaks 
at 2100  cm−1 and 897  cm−1 belonging to Si–H bondings while a tiny peak at 1050  cm−1 corresponding to oxidation 
state of Si was remained. It should be noted that peak at 2100  cm−1 could still be observed after hydrosilylation 
indicating that not all of the Si atoms on the surface could be terminated by UA monolayers (see the spectrum 
of Product D). Figure 2 shows UV–vis absorption, PLE and PL spectra of a typical sample of UA-SiQDs that are 
highly dispersed in Milli-Q water. The absorption spectrum exhibits a long absorption tail possibly reflecting 
the bulk band structure. The PL spectrum shows a peak at 685 nm, which corresponds to a SiQD with an aver-
age diameter of 1.8 nm based on the correlation between PL photon energy and QD size established in previous 
theoretical and experimetanl  studies55,63,64.

To date, surface fuctionalization of SiQD with various molecule ended with polar functional group has 
been investigated for giving a dispersity in water or biological  buffers64–69, but the relationship between the 
monomolecular coverage, dispersity in aqueous media, and PL performance has not yet been reported despite 
the fact that achieving both of these three parameters is an important for bioimaging agents that work without 
aggregation or nonspecific cellular adsorption. To reveal the relationship, some of the samples shown in Fig. 1c 
were subjected to thermogravimeter-differential thermal analyzer, zeta-potential analyzer and absolute PLQY 
spectrofluorometer. In the TG analysis, the UA molecular coverages were estimated on the assumption that the 

Figure 2.  A typical optical absorption, excitation and emission spectra of the Product E.
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lost of weight in Ar atmosphere belongs to all the UA molecules (see Figure S2, Supporting Information). Using 
the measured weight reduction and theoretical value of surface atom number belonging to 1.836 nm diameter 
with  Td symmetry, formulated as  Si147H100

70, the values of molecular coverage were calculated for each sample. 
The results are plotted in Fig. 3. The best value (~ 62 meV) of zeta-potential in Milli-Q water was obtained for the 
QD with UA coverage of 25% and this was the record value among the reported ones of the carboxy-terminated 
 nanoparticles71. The zeta-potential continued to decrease with decreasing UA coverage and was found to be 
almost saturated at − 10 meV when the molecular coverage was below 11%.

The carboxylated QDs were dispersible in borate buffer of pH 8.3 to become transparent pale-yellow solutions 
regardless of UA coverage because of deprotonation of terminal carboxylic acid under alkaline condition, whereas 
dispersity in milli-Q water (pH 7) was dependent of molecular coverage. For the concentration of 1.0 mg/mL, the 
aqueous solution of QDs with 25% UA coverage was transparent and pale-yellow, even when the concentration 
was doubled as evidenced in the digital photographs (see Fig. 3). However, aqueous solutions of 1.0 mg/mL QD 
with less than 15% molecular coverage were slightly turbid and became more turbid when the concentration was 
doubled (see the photos in Fig. 3). This difference in dispersity in milli-Q water was likely due to the difference in 
the amount of carboxyl group. As evidenced in Fig. 4, the transparency of the QD sample with 25% UA coverage 
did not change visually when the concentration in Milli-Q water was tripled and dropped slightly at quadrupling. 
The fluorescence images in the lower part of Fig. 4 were obtained under irradiation of a hand-held 365 nm light. 
The sample of 25% UA coverage shows a strong orange-red visible emissions, with PLQY of 26%, whereas the 
sample with 11% molecular coverage showed a PLQY of 16%, suggesting the improved PLQY with increasing 
molecular coverage. This increasing trend of PLQY with raise in UA monomolecular coverage was interesting 
observation result. Because the effective role of surface monolayer on improved PLQY has been reported for 
various semiconductor  QDs72–74, but the molecular coverage as one of the parameters is not yet reported. For the 
case of SiQD, alkyl monolayers behave as an anchor that suppresses the amorphization of the outermost layer 
of SiQD, resulting in decrease of nonradiative recombination channels to improve  PLQY75. According to this 
context, the 11% UA coverage might be too low to work as an anchor whereas the surface amorphization was 
possibly suppressed for the 26% UA-coveraged QD. A long-term PL stability test taken at 37 °C showed that no 
change in the spectral peak shape and PLQY for at least 15 days while PL photon energy increased by 35 meV 
(see Figure S3, Supporting Information). The small PL spectral shift to a longer wavelength side could be due to 
the decrease of QD size with time dependent oxidation, provoking an increase in the fundamental energy gap 
based on the quantum confinement effect.

Fluorescence detection of cells labeled with QDs is one of non-invasive techniques since the QDs are inter-
nalized based on the ability of cells to endocytose. The surface of QDs terminated with reactive groups such as 
carboxylic acid or amine can be further functionalized, followed by conjugation with biomolecules to provide 
targeting properties to cancer cells, but the endocytic uptake of QDs by normal cell should be blocked for specfic 
adsoption. Generally, the electronically neutral surface, which is realized by termination of hydroxyl group, is 
known to suppress the endocytosis. As a new strategy for the suppression, this paper reveals that a high coverage 
of carboxylic acid monolayer would prevent QDs from being internalized or nonspecifically adsorbed. To test, 
HeLa cell was incubated for 1 h at 37 °C with the 1.0 mg/mL QDs having 11%- or 25%-UA coverage and then 
washed to remove excess QDs. Figure 5 shows the typical conforcal fluorescence microscopic images of HeLa cells 
labelded with the QDs of 11%-UA coverage. The luminescence was slightly visible in the fluorescence images (see 
the nine photos on the left), but not enough to identify the QDs internalized in the cells. In contrast, the merged 
images clealry show the QDs internalized in the cells as preudocolored with red (see the nine photos on the right). 

Figure 3.  Changes in zeta-potential of SiQDs with increasing molecular coverage of 10-undecanoic acid 
monolayer. Digital photographs show the difference in transparency of SiQDs with different monolayer coverage 
dispersed in milli-Q water at 1.0 mg/mL and 2.0 mg/mL, respectively.
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Figure 4.  Digital photographs of milli-Q water containing 10-undecanoic-acid-terminated SiQDs at different 
concentrations under room light irradiation (upper line) and 365 nm UV light irradiation (lower line), 
respectively.

Figure 5.  HeLa cellular uptake of UA-SiQDs with 11%-UA-coverage under confocal microscopy (Left: 
fluorescence. Right: overlap images). Slice scan of HeLa cells under confocal microscopy. Bar shows 50 μm.
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A consecutive sectional scan of HeLa cells along the Z-direction confirmed the cellular uptake of the QDs. The 
QDs were distributed throughout the cytosol and did not enter the cell nucleus (see also Figures S4 and 5, Sup-
porting Information). Figure S6 shows the result of confocal microscopic observation of HeLa cells incubated at 
4 °C for 1 h together with 200 μg/mL SiQDs of 11%-UA coverage. Since a cellular uptake is dependent of energy, 
the endocytosis is negligible at 4 °C.In Figure S6, no fluorescence signals were obtained even in merged image, 
suggesting that the uptake of the QDs by HeLa cells observed in Fig. 5 is an energy-dependent process such as 
endocytic pathways although further study is needed to identificate the QD uptak pathway. Figure 6 shows the 
confocal fluorescence microscopic images of HeLa cells labeled with the QDs of 25%-UA coverage. There was no 
fluorescence signal originating from the QDs when the UA-SiQDs with the 25% coverage were incubated with the 
cells (see Fig. 5b). Even if there were, it would be in such small quantities that it would be impossible to visualize 
under the conventional fluorescence microscope. This contrasting observation results might be a result of the 
QDs aggregated due to low molecular coverage which are uptaken by the cell when QDs of 11%-UA coverage was 
incubated with the cells. This further indicates that the QDs were internalized by endocytosis and not as a result 
of compromised permeability of the plasma membrane, as evidenced by no fluorescence signals from the HeLa 
cells incubated with QDs of 25% UA-coverage. This confocal microscopic study opens the possibility of success-
ful preparation of SiQDs that are not internalized in normal cells but having a targetability to the specific cell.

Conclusion
Waterborne SiQD was synthesized by hydrosilylation of 10-undecenoic acid on the hydrogen-terminated SiQD 
derived from the hydrolysis product of triethoxysilane. High monolayer coverage was achieved by increasing 
the reaction temperature of the hydrosilylation above 170 °C. As expected, the zeta-potential of the carboxy-
lated SiQD surface was dependent of the monolayer coverage. SiQDs terminated with the monolayer coverage 
of more than 25% were dispersed highly in milli-Q water (pH 7) even at high SiQD concentration of 4.0 mg/
mL. In contrast, monolayer coverage of 15% was too low to disperse SiQDs at concentrations above 1.0 mg/mL. 
The SiQDs with 25% monolayer coverage maintained a water-dispersity and stong intensity of PL after 15 days 
of extension. Differences in water dispersity at pH 7 based on surface monolayer coverage were found to affect 
the cellular uptake of SiQDs. The SiQDs with low monolayer coverage were internalized by endocytosis when 
incubated with HeLa cells at 37 °C whereas the cells incubated at 4 °C with UA-SiQDs did not internalize the 
QDs, suggesting that the QDs of low UA coverage took the QDs through energy-dependent process. As expected, 
the SiQDs with high monolayer coverage were not observed in HeLa cells even after incuvation at 37 °C. It is 
noted that high monolayer coverage is an important parameter to prepare a waterborne fluorescent QD having 
specific cell adsorption ability.

Data availability
The raw data and material used and analyzed in this study are available from the corresponding author on 
reasonable request.

Figure 6.  HeLa cellular uptake of UA-SiQDs with 25%-UA-coverage under confocal microscopy (Left: 
fluorescence. Right: overlap images). Slice scan of HeLa cells under confocal microscopy. Bar shows 25 μm.
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