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Abstract

Melanoma is among the most virulent cancers, owing to its propensity to metastasize and its 

resistance to current therapies. The treatment failure is largely attributed to tumor heterogeneity, 

particularly subpopulations possessing stem cell-like properties, i.e., melanoma stem-like cells 

(MSLCs). Evidence indicates that the MSLC phenotype is malleable and may be acquired by non-

MSLCs through phenotypic switching upon appropriate stimuli, the so–called “dynamic 

stemness”. Since the phenotypic characteristics and functional integrity of MSLCs depend on their 

vascular niche, using a two dimensional (2D) melanoma-endothelium co-culture model, where the 

MSLC niche is recapitulated in vitro, we identified Notch3 signaling pathway as a micro-

environmental cue governing MSLC phenotypic plasticity via pathway-specific gene expression 

arrays. Accordingly, lentiviral shRNA-mediated Notch3 knockdown (KD) in melanoma cell lines 

exhibiting high levels of endogenous Notch3 led to retarded/abolished tumorigenicity in vivo 
through both depleting MSLC fractions, evinced by MSLC marker down-regulation (e.g., CD133 

and CD271); and impeding the MSLC niche, corroborated by the attenuated tumor angiogenesis 

as well as vasculogenic mimicry. In contrast, Notch3 KD affected neither tumor growth nor MSLC 

subsets in a melanoma cell line with relatively low endogenous Notch3 expression. Thus, Notch3 

signaling may facilitate MSLC plasticity and niche morphogenesis in a cell context-dependent 

fashion. Our findings illustrate Notch3 as a molecular switch driving melanoma heterogeneity, and 

provide the biological rationale for Notch inhibition as a promising therapeutic option.
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Despite improved public education and increased awareness of the danger of sun exposure, 

the incidence of cutaneous melanoma continues to be on the rise for the past 30 years. 
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Although successful public health campaigns have resulted in early detection and treatment, 

a significant portion of patients still succumb to metastatic disease, for which no current 

clinical regimen has proven significant long-term benefits. Melanoma cells are 

phenotypically and functionally heterogeneous, which is attributed to subpopulations of cells 

with stem cell-like properties, also known as melanoma stem-like cells (MSLCs) (1). Recent 

studies have identified and characterized various MSLC subpopulations (including the 

CD133+, ABCB5+, CD271+, ALDH1A+, CD20+, and JARID1B+ subsets) (2). MSLCs 

exhibit increased resistance to conventional as well as state-of-the-art pathway-specific 

targeted therapies (3), and are responsible for clinical relapses, partly owing to their 

quiescence, upregulated efflux transporters, and heightened ability for DNA damage repair 

(4). Effective targeting of MSLCs, therefore, represents a crucial step to achieve a cure for 

melanoma. However, given the diverse MSLC subsets and the notion of a modified 

“hierarchical”/stochastic model of CSCs, which postulates that several different 

subpopulations of CSCs co-exist in a given tumor, yet a subset of these may be better suited 

to survive and proliferate in a given microenvironment, the development of successful all-

inclusive targeting strategies may require detailed understanding of the potential lineage and 

functional relationships among various MSLC fractions. At present, whether the various 

MSLC markers label the same, similar, or distinct population(s), and whether the various 

MSLC fractions are hierarchically, spatially, or functionally related remain unclear. Adding 

to the complexity is the growing awareness of cancer stem-like cell (CSC) plasticity, 

connoting that progenitor marker-negative cells can evolve into CSCs through proper 

environment cues or accumulating genetic alterations (5–9). Such “dynamic stemness” is 

further supported by recent reports where stem-like phenotype can be induced in non-CSCs 

in response to ectopic expression or up-regulation of stem cell-associated transcription 

factors (10, 11). Thus, targeting a specific class of cell surface markers may have limited 

benefit, as the CSCs are heterogeneous and genetically unstable. Ultimately, the success of 

CSC-targeted therapy may rely on niche-dependent strategies, since the phenotypic 

characteristics and functional integrity of CSCs depend on their existence within their niche 

(12–16).

We have recently demonstrated that various MSLCs, i.e., CD133+, CD271+, and ABCB5+ 

reside in a complex vascular niche, encompassing CD144/VE-cadherin+ melanoma-lined 

vasculogenic mimicry (VM) channels, mosaic vessels, and authentic endothelial cell (EC)-

lined blood vessels (17, 18). VM, originally observed in uveal melanoma (and later in 

cutaneous melanoma and a myriad of human solid cancers) (19), connotes the periodic acid-

Schiff (PAS)-positive, perfusable patterned networks and channels lined by aggressive tumor 

cells with endothelial phenotype, such as CD144 (VE-cadherin), Tie-1, and Eph2 expression 

(20–22). Expression gene profiling using microarray analyses reveals that tumor cells 

capable of VM exhibit a pluripotent, primitive phenotype, suggesting that the VM-engaging 

tumor cells possess stem cell-like properties with phenotypic plasticity to serve a stromal 

function (22).

Given the functional co-dependence between the CSCs and their niche, we hypothesize that 

reciprocal signaling between MSLCs and their vascular niche may govern niche 

morphogenesis and stem cell homeostasis. However, the underpinning of such a crosstalk 

remains, by and large, unknown because of the lack of easily manipulable in vitro models 
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that take into account the relevant and pivotal role of the niche environment. To elucidate the 

critical signaling pathways governing niche micro-environment support of tumor 

heterogeneity, we developed a simple 2D co-culture system of melanoma cells and ECs that 

simulates the MSLC niche, where the MSLC phenotypic switch as well as vascular/VM 

niche morphogenesis are recapitulated in vitro (Fig. 1). Using pathway-specific expression 

analyses, we identified Notch3 as a candidate that directs “dynamic stemness” and niche 

morphogenesis. Targeting common niche signals controlling “stemness”, such as Nocth3, 

represents a novel strategy to eliminate the diverse subsets of pre-existing MSLCs, as well 

as, the dynamically induced MSLC fractions that may evolve over time. The availability of 

existing Notch inhibitors currently used for Alzheimer’s disease and many others emerging 

in the pharmaceutical market makes Notch inhibition a promising, fast-tracked therapeutic 

option for melanoma.

In human, the Notch pathway consists of 4 different transmembrane receptors, Notch1–4, 

and their membrane-bound ligands, Jagged (Jag1/2) and Delta (Dll1/3/4). Upon ligand 

binding, sequential proteolytic events, including cleavage by γ-secretase, release the active 

Notch intracellular domains (NICDs), which then translocate to the nucleus leading to 

transcriptional activation of the downstream Hes and Hey gene families (23). 

Overexpression of all 4 Notch receptors during melanoma progression has been reported 

(23). While the oncogenic functions of Notch1 have been well documented (23), the roles of 

the other Notch paralogs remain largely unexplored. Only recently Hardy et al. reported that 

Notch 4 promotes melanoma aggressiveness, including VM and anchorage-independent 

growth, through Nodal, an embryonic morphogen of the TGF-β superfamily implicated in 

the maintenance of stem cells (24).

Consistent with this, global γ-secretase inhibitors (GSIs) resulted in melanoma regression 

through Noxa-mediated apoptosis (25, 26). In another study, Howard et al. identified Notch3 

as one of the key mediators of melanoma-EC communication in a co-culture system, whose 

expression correlates with tumor progression (27). These findings corroborate with our 

hypothesis that Notch3-mediated melanoma-EC crosstalk regulates MSLC homeostasis and 

niche morphogenesis. To test our hypothesis, we employed a lentiviral shRNA-mediated 

loss-of-function approach using 3 independent melanoma cell lines with varying endogenous 

Notch3 levels in the context of MSLC niche in vitro and in vivo.

Materials and Methods

Cell culture

Isogenic melanoma cell lines derived from different disease stages of tumor progression 

(obtained from Dr. M. Herlyn at the Wistar Institute, Philadelphia, PA) were cultured as 

previously described (28). These were comprised of primary vertical growth phase (VGP) 

melanoma cell lines as well as their metastatic isogenic counterparts, isolated from the same 

patient as the disease progressed. Red fluorescence protein (RFP)-labeled human umbilical 

vein endothelial cells (HUVEC) (27) were obtained as a generous gift from Dr. Rhoda Alani 

(Boston University, Boston, MA) and cultured in EGM-2 (Lonza, Basel, Switzerland).
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In vitro 2D melanoma-endothelium co-culture system, recapitulating MSLC niche

Green fluorescence protein (GFP)-labeled 1205Lu melanoma cells (5) were depleted of 

CD133+ MSLCs using magnetic cell sorting (MACS) technology according to the 

manufacturer’s protocol (Miltenyi Biotec Inc., Bergisch Gladbach, Germany). CD133− GFP-

labeled 1205Lu melanoma cells and RFP-labeled HUVEC cells were plated at ~30% 

confluence at 1:1 or 1:4 ratios in EGM-2 culture medium. Cells were incubated for five days 

before segregating into pure populations (GFP vs. RFP), using fluorescence activated cell 

sorting (FACS). Control mono-cultures were grown under identical conditions. RNA 

samples were prepared and subjected to the Stem Cell and Notch Signaling PCR Arrays 

based on the RT2 Profiler PCR Array User Manual (SA Biosciences/Qiagen, Valencia, CA).

Lentiviral constructs and infection

To generate stable Notch3 knockdown (KD) cell lines using lentiviral vector, Notch3 shRNA 

and control lentiviral particles were generated in HEK293T cells by co-transfecting Notch3 

shRNA or scrambled shRNA plasmids (Mission® shRNA, Sigma-Aldrich, St. Louis, MO) 

and lentiviral packaging mix (Sigma-Aldrich) using Lipofectamine 2000 (Invitrogen, 

Waltham, MA) according to manufacturer’s instruction. Notch3 stable KD cell lines were 

achieved by infecting cells with lentiviral particles and followed by selection in puromycin-

containing medium (1 μg/ml for 1205Lu; 2 μg/ml for A375 and WM852).

Western blotting

Cells lysates or xenograft tissue homogenates were extracted in RIPA buffer (ThermoFisher 

Scientific) containing protease inhibitors cocktail (Roche, Basel, Switzerland) and quantified 

using a BCA protein assay kit (Pierce/ThermoFisher Scientific). Equal amount of proteins 

were subjected to electrophoresis in 4–12% SDS-PAGE gel (Invitrogen) and transferred onto 

nitrocellulose membranes. Blots were probed with anti-Notch3 (Cell Signaling Technology, 

D1118 rabbit mAb, Danvers, MA), anti-CD133 (Miltenyi Biotech Inc., clone W6B3C1), 

anti-CD271 (Alomone Labs, Jerusalem, Israel), anti-CD144 (Cell Signaling Technology) 

Abs. Beta-actin or tubulin (Abcam, Cambridge, UK) were used as a loading control. 

Densitometry analysis was performed using Image J software (http://rsb.info.nih.gov/ij/

download.html).

Quantitative real-time polymerase chain reaction (PCR)

RNA from melanoma cells or frozen tumor xenografts was extracted using an RNAeasy kit 

(Qiagen) and reversely transcribed using the SuperScript III® RT cDNA Synthesis kit 

(Invitrogen) according to the manufacturer’s protocol. Real-time quantitative PCR (qRT-

PCR) was performed subsequently on a StepOnePlus™ Real-Time PCR System (Applied 

Biosystems/ThermoFisher) using SYBR select master mix (Applied Biosystems/

ThermoFisher) and specific primers for CD133, CD144, CD271 and GAPDH. The primer 

sequences were as follows:

CD133: forward 5′-TTCTTGACCGACTGAGAC-3′
reverse 5′-CCAAGCACAGAGGGTCAT-3′

CD144: forward 5′-ATATGTCAGTGATGACTA-3′
reverse 5′-CTTACCAGGGCGTTCAGG-3′
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CD271: forward 5′-ACTCACTGCACAGACTCT-3′
reverse 5′-GAAGCTTCTCAACGGCTC-3′

GAPDH: forward 5′-CGACAGTCAGCCGCATCTT-3′
reverse 5′-ACCTTCCCCATGGTGTCTCA-3′

All samples were run in triplicate and normalized to the housekeeping gene, GAPDH. Data 

was analyzed using the 2−ΔΔCt method.

Anchorage-dependent (growth curve) and -independent (soft agar) growth assays

For growth curve assay, cells were plated at 1 × 104/well in 6-well plates and counted after 

3, 7 and 10 days using hemocytometer. Soft agar assay was performed as previously 

described (Hsu et al., 2008). Briefly, cells were suspended in MCDB153/L15 medium (v/v: 

4/1) supplemented with 25 μg/ml bovine pituitary extract, 2 ng/ml epidermal growth factor 

(EGF), 2 μg/ml insulin, 4% fetal bovine serum, and 0.25% agar and plated in triplicate at 1 × 

104 cells per well in six-well plates. After 2 weeks, colonies with more than five cells were 

counted in 20 randomly chosen fields (×100) using an inverted microscope and the 

percentage of colony formation was calculated. Each experiment was repeated twice with 

consistency. The represented data was compiled from the independent repeats, and data were 

analyzed using the Student t test.

In vitro tube forming assay

50 μ Matrigel™ (BD Biosciences, San Jose, CA) was plated in 96-well culture dishes and 

allowed to polymerize at 37°C for 30 min. 4 × 104 cells per well were then seeded on the 

Matrigel™ layer and grown for 24 hours. Randomized fields were captured using inverted 

microscope (Nikon, Tokyo, Japan). For quantitative analysis of tube formation and length, 

three randomly selected microscopy fields (x 200) were photographed per experimental 

condition. Tube formation was analyzed by ImageJ software, and data were analyzed using 

the Student t test.

Immunofluorescence

Frozen melanoma xenograft sections were subjected to double immunofluorescence using 

standard procedures (29). The primary antibodies used in this study are rabbit anti-hCD144 

(human-specific; Cell Signaling Technology), rabbit anti-hCD133 (human-specific; Miltenyi 

Biotech Inc.), rabbit anti-hCD271 (human-specific; Alomone Labs) and rat anti-mCD31 

(mouse-specific; BD Biosciences). The secondary antibodies employed are FITC-conjugated 

donkey anti-rabbit IgG, AlexaFluor 594-conjugated donkey anti-rat IgG, and AlexaFluor 

488-conjugated goat anti-mouse IgG1 (Invitrogen) antibodies. Isotype-matched rabbit, 

mouse or rat immunoglobulin was used in place of the primary antibody for control. 

Sections were mounted with VectaShield containing DAPI (Vector Laboratories, 

Burlingame, CA) and examined under a Nikon Eclipse E400 microscope equipped with 

FITC and TRITC filters (Nikon) and a Mercury-100W lamp (Chiu Technical Corporation). 

Host angiogenesis (mCD31+) was quantified by measuring luminal area or number of 

tubules per field (40 ×) using ImageJ software, and data were analyzed using the Student t 
test. Quantification of human melanoma–derived VM channels was performed by measuring 

the hCD144+ area per field (100 ×) using ImageJ software, and data were analyzed using the 

Student t test.
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In vivo tumorigenicity

Mice are maintained under pathogen-free conditions in an American Association for 

Accreditation of Laboratory Animal Care-accredited facility at the Boston University 

Medical Center, under the supervision of the Laboratory Animal Science Center and its staff 

of veterinarians and support personnel. For the effect of Notch3 silencing on tumorigenicity, 

2 ×106 1205Lu, A375, or 4 ×106 WM852 cells infected by control and Notch3 shRNA 

lentiviral constructs were injected subcutaneously in the dorsal skin of each severe combined 

immune deficient (SCID) mouse (CB17; Taconic Laboratory; 4–5 mice per condition). 

Tumor growth was monitored twice per week after implantation. Tumor dimensions were 

measured using calipers and tumor volume was calculated as previously described (29). 

Melanoma xenografts were harvested when the tumors reached approximately 1 cm3, and 

subjected to further analyses, including immunofluorescence, qRT-PCR and Western 

blotting.

Statistical analysis

Differences between two groups were analyzed using the Student t test. Differences between 

more than two groups were analyzed by one-way ANOVA. Two-sided P values of less than 

0.05 were considered significant.

Results

Up-regulation of Notch3 expression in the 2D MSLC niche model in vitro

To study MSLC biology in a tissue context, we developed a simple 2D co-culture system, 

stimulating the MSLC niche. In this model, GFP-labeled, CD133-depleted, non-MSLC 1205 

Lu melanoma cells and RFP-labeled human umbilical vein endothelial cells (HUVECs) 

were mixed at two different ratios (1:1 vs. 1:4), and co-cultured for 5 days (Fig. 1A). Over 

time, the endothelial cells aligned themselves to form interconnecting channels/networks 

around melanoma cells, mimicking the MSLC vascular niche (Fig. 1B). As a consequence, 

the expression of stem-like cell markers, CD133 and CD271, as well as VM maker, CD144, 

increased dramatically in sorted melanoma cells from the 2D co-culture system compared to 

their mono-cultured counterparts (Fig. 1C). These findings demonstrate that the 2D co-

culture system recapitulates MSLC niche morphogenesis in vitro. To determine whether 

MSLC niche induction in vitro is mediated by direct cell-cell contact, extracellular matrix 

(ECM) or soluble factors secreted by HUVECs in our 2D MSLC model, we examined stem-

like cell (i.e., CD133 and CD271) and VM (i.e., CD144) marker expression by qRT-PCR 

additionally in melanoma cells conditioned by HUVEC ECM and melanoma cells harvested 

from transwell co-culture with HUVECs. We found that the expression of CD133, CD271 

and CD144 was most consistently induced when melanoma-HUVEC contact was permitted 

(Fig. 1D).

To identify molecular signals driving niche morphogenesis and MSLC induction, flow 

cytometry-segregated 1205Lu melanoma cells and HUVECs from the 2D MSLC model 

(mono-cultured counterparts as control; Fig. 2A) were subjected to gene expression profiling 

using Stem Cell and Notch Signaling Pathway-Specific PCR arrays (SA Biosciences/

Qiagen). We found that Notch3 is concurrently up-regulated in both co-cultured melanoma 
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cells and HUVECs from the 2D MSLC model (Fig. 2A). Interestingly, Notch downstream 

signaling mediators, Hes1 and Hey1, were concomitantly elevated in co-cultured melanoma 

cells, suggesting the activation of the Notch pathway (Fig. 2A). These results were verified 

using qRT-PCR (Fig. 2B and data not shown). Similar to MSLC and VM markers induction, 

Notch3 expression was highly increased when melanoma-HUVEC contact was permitted, 

while HUVEC ECM and secretory soluble factors conveyed partial effects (Fig. 2C). In 

addition, Notch4 and Jag1, and Dll1 were also increased in co-cultured melanoma cells, and 

ECs, respectively. Taking together, our findings corroborate with the hypothesis that the 

Notch (particularly Notch3)-mediated cell-cell contact between melanoma cells and 

endothelial cells may contribute to the induction of MSLC phenotype and niche 

morphogenesis.

Specific and functional Notch3 silencing in melanoma using the lentiviral shRNA approach

To examine the role of Notch3 in MSLC niche biology, we screened endogenous Notch3 

expression in a panel of 11 melanoma cell lines from different stages of tumor progression 

using Western blotting (Fig. 3A). Based on this screening, most cell lines exhibited low 

endogenous level of Notch3. Two metastatic melanoma cell lines 1205Lu and WM852 show 

high endogenous expression of both full-length Notch3 and the active intracellular domain 

forms (Fig. 3A). Among these cell lines, we chose high Notch3-expressing cell lines, 

1205Lu and WM852, as well as one relatively low Notch3-expressing cell line, A375, to 

explore the functional role of Notch3 with regard to tumor growth, and niche 

morphogenesis/homeostasis. We generated stable Notch3 KD cells using lentivirus-based 

shRNAs (Mission® shRNA, Sigma-Aldrich). Western blot analyses confirmed Notch3 KD 

at the protein level in vitro compared to control cells expressing non-target shRNA (Fig. 

3B). Quantitative RT-PCR verified down-regulation of Notch3 message levels in vitro (Fig. 

S1A). Since members of the Notch gene family are highly homologous, to determine 

whether Notch3 silencing is specific and functional, we examined the expression of other 

Notch genes and well-known Notch3 targets, Hes1 and Hes2, using qRT-PCR. Despite 

slight, statistically non-significant reduction of Notch1 and 4 in WM852 Notch3 shRNA2 

cells, no significant non-specific change in other Notch paralogs was noted in all three 

Notch3 KD cells (Fig. S1B). Notch3 targets, Hes1 and Hes2, were both down-regulated in 

1205Lu and WM852 Notch3 KD cells, but in A375 Notch3 KD cells, only Hes2, but not 

Hes1, was down-regulated (Fig. S1C). These data demonstrated the achievement of specific 

and functional silencing of Notch3 in melanoma cells.

Biological consequences of Notch3 KD in vitro, including cell growth, colony-forming 
ability, VM/tube formation on Matrigel™, and MSLC niche induction in 2D niche model

To explore the effect of Notch3 KD on cell proliferation in vitro, we performed conventional 

as well as anchorage-independent growth assays, using non-target shRNA transduced cells 

as controls. Notch3 KD in 1205Lu and A375 cells did not modulate cell growth or colony-

forming ability (Fig. 4A and B, left and middle panels). In contrast, Notch3 KD led to a 

significant inhibition in WM852 cell growth as well as colony-forming ability (Fig. 4A and 

B, right panel). In addition, Notch3 KD in 1205Lu cells resulted in a significant attenuation 

in VM tubule formation on Matrigel™, as measured by the number of branch point/field 

(200 ×; Fig. 4C). Both non-target control and Notch3 KD A375 or WM852 cells were 
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unable to form VM tubules in the Matrigel™ tube formation assays (data not shown). These 

results demonstrated that Notch3 KD exhibits variable cell line-specific inhibitory effects on 

growth, colony formation, and VM/tubule formation in vitro.

To determine whether Notch3 KD affects niche morphogenesis in vitro, we incorporated 

GFP-labeled 1205Lu Notch3 KD cells and RFP-labeled HUVEC cells in our 2D co-culture 

niche model, and then measured CD133, CD271 and CD144 message levels using qRT-PCR 

following flow cytometry-sorting (Fig. 4D). Consistent with our hypothesis that Notch3 

mediates stem cell phenotype and vascular niche formation, co-culture with HUVECs failed 

to induce stem cell (e.g., CD133 and CD271), as well as VM (e.g., CD144) marker 

expression in Notch3 KD 1205Lu cells, while significant up-regulation of these markers was 

observed in co-cultured non-target control cells. These results highlight a pivotal role of 

Notch3 in MSLC niche induction and homeostasis.

Notch3 KD retards tumor growth by depleting MSLCs and compromising vascular niche in 
vivo

Given that 1205Lu Notch3 KD shRNA #2, A375 Notch3 KD shRNA #1, and WM852 

Notch3 KD shRNA#2 cells exhibited greater Notch3 KD efficiencies (Fig. 3B), we chose to 

use these cells for tumorigenicity studies. In 1205Lu and WM852 cells, which have high 

endogenous Notch3 expression, Notch3 KD significantly retarded xenograft growth 

compared to the non-target control (Fig. 5A and C). Although growth was delayed, 1205Lu 

Notch3 KD xenografts did eventually develop tumors. On the other hand, Notch3 KD 

completely abolished tumor growth in WM852 cells as no tumor was observed 14 weeks 

post inoculation despite high numbers of cells (4 × 106 cells) injected. In contrast, tumor 

growth of A375, a cell line that exhibits relatively low endogenous Notch3 expression, was 

not significantly affected by Notch3 KD (Fig. 5B). These findings suggest that Notch3 KD 

attenuates tumor growth in vivo and the growth regulatory effect of Notch3 depends on the 

cellular context relevant to its level of endogenous expression. Effective Notch3 KD in 1205 

Lu and A375 melanoma xenografts was confirmed both at the mRNA (data not shown) and 

protein (Fig. 6A and C) levels. Because no tumor xenografts developed from Notch3 KD 

WM852 cells following 14 weeks of extended observation despite injection of high numbers 

of cells (4 × 106 cells/mouse), at which time the control tumors grew larger than 1 cm3 and 

the experiment had to be terminated, further analyses of WM852 xenografts could not be 

performed.

To explore the biological significance of Notch3 on niche morphogenesis in vivo, we 

analyzed tumor vasculatures in human melanoma xenografts using multi-label 

immunofluorescence (IF; Fig. 5D). Parallel to the data obtained from in vitro tubule/VM 

formation analyses, CD144+ VM-like melanoma channel formation was significantly 

hindered in Notch3 KD 1205Lu xenografts compared to their control counterparts (Fig. 5D), 

quantified by the area of CD144+ channels (Fig. 5F). Consistent with these, CD144 and 

Tie-1 (a VM-associated gene) expression was significantly down-regulated in Notch3 KD 

1205Lu xenografts compared to the control tumors (Fig. 6A and B). Since VM formation in 

the xenografts is intimately associated with authentic host vessels in keeping with 

perivascular niche (5, 30), we examined the impact of Notch3 KD on in-grown mouse 
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vessels within the melanoma xenografts. Accordingly, we found that host angiogenesis, 

characterized by mCD31+ blood vessels, was significantly reduced in Notch3 KD 1205Lu 

xenografts as measured by the mCD31+ luminal area and number of mCD31+ tubules (Fig. 

5E). These results demonstrate that Notch3 KD inhibits tumor angiogenesis as well as VM 

formation in vivo, both of which are integral components of the MSLC niche. To further 

analyze Notch3 KD on MSLC homeostasis, we examined expression of stem cell markers, 

CD133 and CD271, in xenografts by Western blot analysis. We found that protein 

expression of CD133 and CD271 was reduced in Notch3 KD 1205Lu xenografts compared 

to their non-target control counterparts (Fig. 6A), suggesting that Notch3 KD in 1205Lu 

melanoma cells leads to loss of stem-like cell phenotype in vivo. Consistent with the 

observed differential effect of Notch3 KD on tumorigenicity in A375 melanoma cells, the 

expression of stem-like cell marker, CD271, was not affected in Notch3 KD A375 

xenografts (Fig. 6C). Attempts to further validate CD133 and CD144 in Notch3 KD A375 

xenografts using Western blot analysis (C8161 lysate included as a positive control) were 

unsuccessful due to sensitivity issue (Fig. 6C; note that CD133 and CD144 signals were 

undetectable both in the control and KD xenografts despite maximal loading and prolonged 

overnight exposure). Collectively, these data suggest that Notch3 KD may inhibit 

perivascular niche morphogenesis and MSLC homeostasis through impeding tumor 

angiogenesis and VM. However, such effects are cell context-dependent.

Discussion

A major gap in MSLC research (or CSC research in general) is the lack of simple and easily 

reproducible in vitro models that takes into account the relevant and pivotal role of the niche 

microenvironment. Since the existence in a supportive “niche” (5, 30) is integral to the 

functional integrity of CSCs, studies on isolated CSCs without the “niche” context are 

inherently suboptimal. Despite significant advances in mouse xenograft models that provide 

accessible platforms to study MSLC biology in the mouse host “niche” environment, time 

and financial constraints as well as the individual host variability negatively impact on their 

routine use. To facilitate dissecting the niche signals responsible for MSLC “stemness” as a 

gateway to develop all-encompassing targeting strategies for MSLCs, whether pre-existing 

or dynamically induced, we developed a robust and easily reproducible 2D in vitro co-

culture model system that is simple enough to be manipulated yet sophisticated enough to 

reflect the complexities inherent to the niche environment. This melanoma-endothelium co-

culture niche model simulates MSLC niche, where the vascular/VM niche and “dynamic 

stemness” are recapitulated. In this model, stem cell (CD133 and CD271) and VM 

(CD144/VE-cadherin) markers are induced in non-MSLCs upon co-culture with ECs (Fig. 

1). Using flow cytometry, various MSLC subsets can be isolated, permitting subsequent 

expression profiling to identify differentially expressed genes comparing to the non-MSLCs. 

In addition, this model allows manipulation of single or multiple variables sequentially or 

simultaneously (with the use of conventional and inducible vectors) in one or both cellular 

constituents, maximizing the ability to elucidate gene interactions in a defined system that 

preserves tissue context. More importantly, such a model can be easily adapted for other 

solid cancers, providing a robust and well-defined experimental system to study CSC-

stromal interplay.
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Given that Notch signaling mediated cell-cell communication is known to play major roles 

in cell fate decisions, lineage specification, as well as stem cell homeostasis in multiple 

organ systems not only during embryonic development but also in adult life (31), it is not 

surprising that we identified Notch3 as one of the key differentially expressed genes by the 

dynamically induced CD133+ MSLCs in the 2D niche co-culture model using pathway-

specific PCR arrays following segregation by flow cytometry. Accordingly, Notch3 KD in 

1205 Lu melanoma cell lines expressing high levels of endogenous Notch3 resulted in 

retarded/abolished tumorigenicity (Fig. 5A), as well as, attenuated MSLC subsets both in the 

2D niche co-culture system in vitro (Fig. 4D) and in the xenograft model in vivo (Fig. 6A). 

These data support a pivotal role of Notch3 in MSLC induction, maintenance and 

homeostasis at least in a subset of melanomas. Parallel to our findings, a novel γ-secretase 

inhibitor (GSI), RO4929097, was shown to inhibit melanoma cell proliferation, colony-

forming ability, and 3D spheroid growth in vitro and to suppress tumor-initiating potential in 

a serial xenotransplantation model (32). In addition, Notch3-signaling enriches CSCs of the 

lung (33), colorectal (34), hepatocellular (35), and breast (36) cancers, and Notch2/Notch3 

antagonists/dominant-negative receptors inhibit tumor growth and decreases tumor-initiating 

cell frequency in a broad spectrum of epithelial tumors, including breast, lung, ovarian, and 

pancreatic cancer (37).

Derangements of Notch pathways are commonly observed in human cancers, including 

melanoma, ovarian, endothelial, cervical, lung, breast, renal, head and neck, prostate, 

mesothelioma, and various hematological malignancies (38). While the oncogenic functions 

of Notch1 in melanoma have been well established (39, 40), the roles of the other Notch 

receptors in melanoma remain substantially uncharted. Only recently, Hardy et al. (24), 

reported that Notch4 promotes melanoma aggressiveness, including VM and anchorage-

independent growth through Nodal, an embryonic morphogen of the TGF-β superfamily 

implicated in the maintenance of embryonic stem cells. Consistent with this, global Notch 

inhibition by γ-secretase inhibitors (GSIs) results in reduced tumor initiating potential of 

melanoma in vitro in soft agar and spheroid formation assays, as well as in vivo in a serial 

xenotransplantation model (32). In another study, GSI treatment leads to melanoma 

regression through Noxa-mediated apoptosis in mice (25). Recently, Howard et al.(27, 41), 

in a co-culture system, identified Notch3 as one of the key mediators of melanoma-EC 

communication, whose expression correlates with tumor progression, and activated Notch3 

signaling results in accelerated melanoma cell migration without affecting tumor cell 

growth. These findings are in line with our observations that Notch3 KD in melanoma cell 

lines expressing high endogenous levels of Notch3 abolished VM both in vitro in Matrigel™ 

tube formation assays (Fig. 4C) and our 2D co-culture niche model (Fig. 4D), and in vivo in 

tumorigenicity xenograft model (Fig. 5D, 5F, and 6A). Contrarily, Virtanen et al, 2013 

reported that blockage of Notch signaling with GSIs, DAPT and dibenzazeoine, or Jag1 

neutralizing Ab stabilizes VM in Mel Cher, Mel Kor, and Mel P melanoma cells in mono-

culture and in mouse xenografts (42), indicating that Notch signaling attenuates VM. 

Moreover, Cui et al. (43) showed that Notch3 is down-regulated during melanoma 

progression and ectopic expression of NICD3 in A375P melanoma cell line leads to growth 

inhibition through senescence in conventional 2D culture. Correspondingly, our data also 

demonstrated that Notch3 KD in A375 melanoma cells, exhibiting relatively low 
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endogenous Notch3 expression, failed to affect tumor growth (Fig. 5A), MSLC frequencies 

(Fig. 6C), and vascular/VM niche in vivo (data not shown). These discrepancies highlight 

the complexity and the importance of biological/cellular context of Notch signaling in 

melanoma. Indeed, a plethora of studies have concluded that the biological responses to 

Notch not only are cell type-, disease stage-, and context-specific, but also depend on the 

different receptor/ligand pairing. Divergent activities, both oncogenic and tumor suppressor 

function, have been described (44–46). Aside from the contextual diversity of Notch 

signaling, other possible explanations for the lack of response to Notch3 KD in A375 

melanoma cells are the potential functional redundancy of different Notch receptors, and the 

possible involvement of signaling pathways other than Notch. In particular, a potential role 

for Notch4 warrants further investigation as concurrent Notch4 upregulation was observed in 

co-cultured melanoma cells in our in vitro niche model (Fig. 2A) and Notch4 has been 

shown previously to control melanoma VM (24).

Notch3 KD abolishes the MSLC niche morphogenesis not only by blocking VM phenotypic 

switch in 1205Lu melanoma cells, but also by inhibiting tumor angiogenesis as measured by 

the number and size of CD31+ murine vascular networks (Fig. 5D and E), indicating Notch 

juxtacrine signaling between melanoma cells and stromal endothelium may mediate tumor 

angiogenesis. In concordance, Zeng et al. (47) showed that elevated Jag1 in head and neck 

squamous cell carcinoma triggers Notch activation in neighboring ECs and thereby promotes 

tumor angiogenesis. Of particular interest, similar Notch3-mediated tumor-stromal crosstalk 

is recently illuminated in the regulation of tumor dormancy and bone metastasis. 

Specifically, EC Dll4, induced by angiogenic factors in the tumor mircoenvironment, 

triggers Notch3 activation in neighboring tumor cells, which then promotes a tumorigenic 

phenotype permitting escape from dormancy (48, 49). In human breast cancer, interaction 

with osteoblasts in the bone marrow environment enhances Notch3 expression in the tumor 

cells, which accelerates bone metastasis (50). In accordance with these, upregulation of Dll1 

in ECs in our in vitro niche model (Fig. 2A) suggests similar reciprocal melanoma-EC 

signaling may be in play.

In summary, we have identified Notch3 as a molecular switch controlling MSLC 

homeostasis and niche morphogenesis at least in a subset of melanomas. This is especially 

critical as effective targeting of MSLCs is compounded by their heterogeneous nature and 

genetic instability. Since Notch3 signaling promotes vascular niche, which in turn drives 

“dynamic stemness”, Notch3-targeted approaches not only address the diverse pre-existing 

MSLC subsets by abolishing their vascular niche, but also prevent induction of new MSLCs 

by blocking “dynamic stemness”. With the availability of existing Notch signaling inhibitors 

currently available in the clinic for Alzheimer’s disease and many others under development 

in the pharmaceutical industry, Notch signaling represents a novel and compelling target in 

melanoma. Of note, a phase 2 clinical trial using a GSI, RO4929097, showed minimal 

effects against metastatic melanoma likely due to inadequate drug levels since no significant 

inhibition of interleukin-2 (IL-2), a surrogate pharmacodynamic marker of Notch inhibition, 

was achieved in the peripheral blood T-cell assays (51). Nevertheless, considering the 

heterogeneity of melanoma both at clinico-pathologic and molecular/genetic levels, the 

expectation that a single agent will deliver significant treatment outcome in patients across 

the board is unrealistic. Nair et al. (52) recently showed that melanoma sensitivity to GSIs is 
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dependent on functional Phosphatase and Tension Homolog (PTEN). Furthermore, it is now 

appreciated that clinical response to GSIs also relies on endogenous Notch activities of the 

tumors (53, 54). These studies, like ours, underline the contextual complexity of Notch 

signaling and may inform prospective genotyping or screening criteria for future patient 

selection. Combinatorial use of Notch-targeted strategies with cytotoxic agents has shown 

encouraging clinical efficacies in ovarian cancers (54–57) and nasopharyngeal carcinoma 

(58). Hence, Notch-targeted approaches in combination with conventional or current state-

of-the-art pathway-specific targeting strategies poise tremendous potentials as new 

therapeutic regimens in treating melanoma.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Two dimensional (2D) melanoma-EC co-culture model recapitulates MSLC niche in vitro. 

A. Schematic representation of the 2D MSLC niche model in vitro. GFP-labeled CD133− 

non-MSLCs were co-cultured with RFP-labeled human umbilical vein endothelial cells 

(HUVECs) at 1:1 or 1:4 ratios for 5 days. B. In this model, ECs aligned to form branching 

tubular networks, reminiscent of the vascular niche in vivo (Magnification, ×100; scale bar, 

200 μm). Co-cultured melanoma cells were then segregated from ECs by flow cytometry. C. 

MSLC (e.g., CD133 and CD271) and VM (e.g., CD144) markers were up-regulated in co-

cultured melanoma cells compared to their mono-culture counter parts using qRT-PCR, 

simulating “dynamic stemness” and VM morphogenesis in vitro. D. Such a niche-inducing 

phenomenon was most pronounced when melanoma-EC contact is permitted, while EC 

extracellular matrix (ECM) or soluble factors in transwell cultures alone exhibited limited/

partial effects. *, P < 0.05.
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Figure 2. 
Notch3 up-regulation in co-cultured melanoma cells and ECs in the 2D niche model. Flow 

cytometry segregated melanoma cells and ECs from the 2D niche model were subjected to 

Stem cell and Notch signaling pathway-specific PCR arrays (SA Biosciences) using their 

mono-culture counterparts as control. Notch3 was consistently up-regulated both in co-

cultured melanoma cells and ECs. The concomitant up-regulation of Notch downstream 

effectors, Hes1 and Hey1, further confirmed activated Notch signaling in co-cultured 

melanoma cells. B. qRT-PCR validated Notch3 induction in co-cultured melanoma cells 

following sorting by flow cytometry. Data was expressed as fold change of the ratio between 

Notch3 and GAPDH mRNA in co-cultured melanoma cells, normalized to that of their 

mono-culture counterpart. C. The magnitude of Notch3 induction in co-cultured melanoma 

cells was most evident when direct cell-cell contact is allowed, while EC ECM or soluble 

factors in transwell co-cultures produced only limited/partial result. *, P < 0.05.
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Figure 3. 
Notch3 silencing in melanoma cells using lentiviral shRNA. A. Multiple melanoma cell 

lines of different stages of tumor progression (i.e., vertical growth phase (VGP) and 

metastasis (Met) expressed endogenous Notch3 by Western blotting. Tubulin was used as a 

loading control. B. Using lentiviral shRNA (non-target shRNA as control), significant KD 

efficiency was achieved in 1205Lu, A375 and WM852 melanoma cell lines as shown by 

Western blotting.
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Figure 4. 
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In vitro consequences of Notch3 KD in melanoma. In 1205Lu melanoma cells, exhibiting 

high endogenous Notch3 (Fig. 3A), Notch3 KD resulted in no effects on conventional 2D 

growth (A, left panel) or colony-forming ability in soft agar (B, left panels; Magnification, 

×100; scale bar, 500 μm), but significantly inhibited VM in Matrigel™ tube formation 

assays (C; 200 ×, bar: 100 μm). When incorporated into the 2D niche co-culture model, 

Notch3 KD hindered EC-mediated MSLC induction and VM phenotypic switch in 1205Lu 

cells (D). Similarly, Notch3 KD in A375 cells, which demonstrated relatively low 

endogenous Notch3 expression (Fig. 3A), showed no effect on conventional 2D growth (A, 

middle panel) or colony-forming efficiency (B, middle panels). In contrast, in another cell 

lines displaying high baseline Notch3 expression, WM852, Notch3 KD led to significant 

growth inhibition under conventional culture condition (A, right panel), as well as 3D 

anchorage-independent growth in soft agar assays (B, right panels). The effect of Notch3 

KD in A375 and WM852 cells on VM in in Matrigel™ tube formation assays was assessed; 

however, both non-target control and Notch3 KD counterparts failed to undergo VM (data 

not shown). *, P < 0.05.
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Figure 5. 
In vivo consequences of Notch3 KD in a melanoma xenograft model. In 1205Lu and 

WM852 melanoma cells, displaying high levels of endogenous Notch3, Notch3 KD 

retarded/abolished tumorigenicity (A and C). In contrast, in A375 cells, harboring relatively 

low endogenous Notch3 expression, Notch3 KD failed to affect tumor growth (B). Analyses 

of the tumor samples using double immunofluorescence coupled with quantification using 

ImageJ software revealed that Notch3 KD inhibited tumor angiogenesis as well as 

melanoma-derived VM. Immunofluorescence analysis of 1205Lu xenograft sections double 

labeled for mCD31+ host blood vessels (red) and hCD144+ VM (green) showed that Notch3 

KD xenografts displayed smaller and much less prominent mCD31+ host vessels and 

abolished VM (D, left panels) compared with non-target control xenografts (D, right panels); 

magnification, ×400; scale bar, 50 μm. Human melanoma–derived VM vessels (hCD144+) 

and host angiogenesis (mCD31+) were quantified as measured by the average luminal area 

or number of tubules per 40 × or 100 × field and revealed a significant reduction in the size 

and number of mCD31+ host blood vessels (E), as well as hCD144+ VM area (F) in 1205Lu 

Notch3 KD xenografts compared with controls. Analyses of A375 xenografts failed to show 

significant difference in tumor angiogenesis and VM between Notch3 KD and control (data 

not shown). As tumor growth in WM852 cells was completely abolished, no KD xenografts 

were available for further analyses. *, P < 0.05.
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Figure 6. 
Effective and functional Notch3 KD depletes MSLCs and VM-engaging melanoma cells in 

1205 Lu xenografts. A. Western blot analyses demonstrated that stem cell markers (e.g., 

CD133 and CD271) as well as VM maker, CD144, were down-regulated in Notch3 KD 

1205 Lu tumors, compared to non-target control (A). Consistent with the observed VM 

inhibition by Notch3 KD above, the expression of Tie-1, a VM-associated gene, was also 

down-regulated in Nocth3 KD 1205Lu xenografts by qRT-PCR (B). Of note, the efficacy of 

Notch3 KD was maintained in the tumor xenografts as shown by Western blotting (A). On 

the other hand, in A375 melanoma cells where no change in tumorigenicity was appreciated 

following Notch3 KD, the expression of stem-like cell marker, CD271, was not affected (C). 

Attempts to further validate CD133 and CD144 in Notch3 KD A375 xenografts using 

Western blot analysis (C8161 lysate included as a positive control) were unsuccessful due to 

sensitivity issue (Fig. 6C; note that CD133 and CD144 signals were undetectable both in the 

control and KD xenografts despite maximal loading and prolonged overnight exposure). *, P 
< 0.05.
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