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ABSTRACT: Synthetic biology relies on rapid and efficient
methods to stably integrate DNA payloads encoding for synthetic
biological systems into the genome of living cells. The size of
designed biological systems increases with their complexity, and
novel methods are needed that enable efficient and simultaneous
integration of multiple payloads into single cells. By assembling
natural and synthetic protein−protein dimerization domains, we
have engineered a set of multipartite transcription factors for
driving heterologous target gene expression. With the distribution
of single parts of multipartite transcription factors on piggyback
transposon-based donor plasmids, we have created a logic genome
integration control (LOGIC) system that allows for efficient one-
step selection of stable mammalian cell lines with up to three
plasmids. LOGIC significantly enhances the efficiency of multiplexed payload integration in mammalian cells compared to traditional
cotransfection and may advance cell line engineering in synthetic biology and biotechnology.

Synthetic biology provides new technologies for gene
expression control as well as genome editing and has

advanced the engineering of mammalian designer cells for
biomedicine and biotechnology.1 For example, human cells are
equipped with engineered receptors to detect and respond to
disease states according to a predefined logic to increase the
precision of cell-based therapy.2,3 In addition, gene circuits
with increasing computational capacity are designed4,5 that
have the ability of cell−cell communication and simultaneous
processing of multiple input signals.6 For the transition from
proof-of-concept experiments to real-world applications there
is a need for genome engineering technologies that ensure
long-term, reliable stability, expression, and functionality of
complex, multicomponent synthetic systems in mammalian
cells.7

Current methods for the generation of stable cell lines are
based on random integration vectors, viral vectors,8,9 trans-
posable elements,10 or targeted integration using genome-
editing technologies such as zinc finger nucleases, TALEN, or
CRISPR/Cas9.11 Recently, it has been shown that targeted
integration results in reduced heterogeneity of transgene
expression levels compared to random integration in CHO
cells.12

While the generation of stable cell lines, which express a
single transgene is a standard procedure, the integration of
multicomponent systems and their long-term functionality
remains challenging. Many of the existing technologies require
sequential assembly of gene expression cassettes to large,
multigene DNA plasmids, which are difficult to propagate in

bacteria and often contain repetitive sequences making them
unstable in bacterial hosts. Moreover, in order to reach high
integration efficiencies, these large plasmids are integrated with
site-specific recombinases, which first require the generation of
an engineered host cell line harboring landing pads within the
genome before the DNA payload can be implemented.13−15

Another approach is based on baculovirus-mediated trans-
duction of large DNA payloads into mammalian cells, which
enables multigene delivery with high efficiencies but lacks long-
term expression and functionality due to its transient nature.9

Multiple transgenes can also be integrated sequentially using
multiple antibiotic resistance markers, which is, however, a
time-consuming procedure because it includes multiple cycles
of cell selection, cells expansion, and genome analysis.16

Here, we present a novel technology that allows multiplexed
integration of DNA plasmids based on designed multipartite
transcription factors (TFs) that control the expression of a
single selection marker. The different parts of the TF are
distributed among different plasmids that are transfected into
mammalian cells. Only cells that have stably integrated all
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payloads are able to reconstitute a functional TF and thus
produce the selection marker.

■ RESULTS
Design of Multipartite Transcription Factors. Inspired

by the modular principles of the original yeast two-hybrid
system,17 we sought to assemble multiple protein−protein
interaction (PPI) modules into multipartite transcription
factors (TFs) (Figure 1a). The cohesin-dockerin interaction
from Clostridium thermocellum (Ct) was utilized for the design
of engineered, bipartite TFs consisting of the DNA-binding
domain Gal4 fused to the cohesin domain (Gal4-Coh(Ct))
and the viral transactivation domain VP16 fused to the
dockerin domain (VP16-Doc(Ct)).6,18−20 When both parts are
mutually expressed the cohesin-dockerin proteins dimerize and
reconstitute a functional TF that drives the expression of a
P5xUAS-driven engineered secreted-alkaline phosphatase
(SEAP) gene expression cassette harboring an sTRSV
ribozyme in the 3′UTR to reduce leakiness (Figure 1a). We
searched for other protein−protein interactions to expand the
set of functional bipartite TFs (Figure 1b). Three other PPIs
showed no leakiness in the absence of one of the interaction
partners, and at the same time showed a significant induction
of SEAP when both parts were expressed in the same cell to
reconstitute a functional TF (Figure 1c,d). These included (i)

cohesin-dockerin proteins from Acetivibrio cellulolyticus (Coh-
(Ac)/Doc(Ac)),21 (ii) antiparallel leucine zipper (Zip−/
Zip+)22 domains from an engineered, bipartite TF used for
gene control in Caenorhabditis elegans and (iii) the SunTag
system (scFv(G4)/G4)23 based on a single chain variable
fragment of an antibody that specifically binds a yeast-derived
19 amino acid peptide. We observed no crosstalk between the
different parts of the protein−protein interactions, which is
required for their further assembly to multipartite TFs (Figure
1e).
We used the three best-performing PPIs to engineer

tripartite TFs by integrating adaptor modules that bridge the
DNA-binding domain Gal4 and the viral transactivation
domain VP16 (Figure 2a). Five out of six TF designs resulted
in functional transcription factors that were able to induce
SEAP expression with different strengths. The best-performing
design was based on the Gal4-Coh(Ct) bridged to the VP16-
scFv(G4) by the adaptor module Doc(Ct)-G410x. The
integration of a second adaptor molecule resulted in
tetrapartite TFs, which we assembled from the three
dimerizing systems Coh(Ct)/Doc(Ct), Zip−/Zip+ and scFv-
(G4)/G4 in different architectures (Figure 2b). Three out of
six TF designs resulted in functional transcription factors that
were able to induce SEAP expression. The strongest induction
was measured for the design variant, which consists of Gal4-

Figure 1. Design of multipartite transcription factors. (a) Assembly of multipartite transcription factors based on protein−protein interaction
systems (indicated with X/Y) and the DNA-binding domain Gal4 as well as the viral transactivation domain VP16. Gal4 binds to its cognate
response element (UAS) and drives the expression of an mCherry-P2A-SEAP reporter gene with an ribozyme (HHR) in the 3′UTR to reduce
leakiness. (b) Assembly of bipartite transcription factors based on protein−protein interaction (PPI) systems (interaction partners are indicated
with X/Y) and the DNA-binding domain Gal4 as well as the viral transactivation domain VP16. Performance of the bipartite transcription factors in
HEK293T cells based on different protein−protein interaction measured by SEAP reporter activity in cell culture supernatant 48 h after
transfection. (c) Cartoons representing protein−protein interaction systems. (d) Performance of the bipartite transcription factors based on each of
the four protein−protein interaction measured by SEAP reporter activity in cell culture medium 48 h after transfection into HEK293T cells. (e)
Specificity of the protein−protein interactions measured by SEAP reporter gene induction. Error bars represent the means ± s.d. of n = 3 replicates.
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Zip− bridged by the adaptors Zip+-G4 and scFv(G4)-Coh(Ct)
to VP16-Doc(Ct). Since the individual parts of the TFs are
encoded on individual plasmids, the multipartite TFs execute a
Boolean AND logic function, which requires the mutual
expression of all parts for efficient SEAP reporter induction
(Figure 2a,b).
Multiplexed Logic Genome Engineering Using Trans-

posable Elements. With a set of multipartite TFs engineered
and validated in mammalian cells, we implemented the
individual parts into piggyBac transposon10 plasmids (PCAG-
driven expression cassettes) for the development of a
multiplexed logic genome integration control (LOGIC)
platform. To compare LOGIC with a conventional stable cell
line selection method, we cloned four different transposon
plasmids encoding a PCAG-driven Puromycin resistance gene
(Puromycin N-acetyl transferase (PAC)) as selection marker
followed by a T2A cleavage site and four different fluorescent
proteins, mTagBFP2, mVenus, mCherry, and iRFP720 (Figure
3a). Cotransfection of each plasmid with a transposase in
hMSC-TERT cells and selection for 5 days with Puromycin
resulted in >98% fluorescence-positive polyclonal cell pop-
ulations for each fluorescent protein measured by flow

cytometry (Figure 3b). To engineer the LOGIC, we replaced
the DNA-binding domain Gal4 with VanR, because we were
not able to generate transposon-based hMSC-TERT stable cell
lines that constitutively express Gal4-VP16 indicating potential
interference of Gal4 with endogenous cellular processes in the
hMSC-TERT cell line (Figure 3c,d).
Cotransfection of two fluorescent protein-encoding plasmids

resulted in a polyclonal cell population of which only 44%
expressed both fluorescent proteins after a 7-day selection
period (Figure 4a,b). In contrast, the engineered two-plasmid
LOGIC system (2-LOGIC), which consists of a PCAG-driven
VanR-VP16_T2A_mTagBFP2 and a PVanO2-driven Puromy-
cin_T2A_Citrine gene expression cassette resulted in a higher
percentage (>90%) of the double-positive fluorescent poly-
clonal cell population (Figure 4b). This validated the LOGIC
principle, which generates mutual dependencies of the
production of the selection marker PAC by distributing parts
of the transcription factor and the PAC gene expression
cassette onto different plasmids. We further increased the
complexity to build a 3-plasmid integration system (3-
LOGIC). Conventional selection of three plasmids each
encoding for a fluorescent protein and the PAC resistance

Figure 2. Performance of multipartite transcription factors with orthogonal protein−protein interaction domains. (a) Performance of different
variants of tripartite transcription factors based on two protein−protein interactions measured by SEAP reporter gene induction. (b) Performance
of different variants of tetrapartite transcription factors based on two protein−protein interactions measured by SEAP reporter gene induction.
SEAP reporter assay was performed 48 h after transfection. Error bars represent the means ± s.d. of n = 3 replicates.
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gene resulted in only 22% triple-fluorescent positive cells
(Figure 4c,d). However, when using a 3-LOGIC system based
on the bipartite VanR-Coh(Ct)/VP16-Doc(Ct) TF resulted in
stringent selection. More than 80% of the cells in the
polyclonal population were triple-fluorescent quantified by
the expression of the three fluorescent proteins Citrine,
mTagBFP2, and mCherry using flow cytometry (Figure 4d).
Thus, LOGIC selection systems enable efficient and rapid
selection of desired multicomponent polyclonal mammalian
cell populations with a single antibiotic selection marker.

■ DISCUSSION

Protein−protein interactions are valuable tools in synthetic
biology and have been used for the design of bipartite
transcription factors enabling cancer cell detection19,20 and
design of small molecule-programmable logic gates.6,18 We
demonstrate that multiple protein−protein interactions can be
assembled into higher-order transcription factors that control
gene expression in mammalian cells. Removal of one of the
parts results in impaired TFs and thus no target gene
expression. In the future, other protein−protein interactions

could be implemented to design new sets of multipartite TFs.
We found that some TF architectures were not functional and
assume that either the protein structure or expression levels of
some adaptor modules were disturbed. Thus, further
modifications in linker sequences or addition of stabilizing
domains could lead to improved versions of multipartite
transcription factors. We have recently shown that Gal4 and
VanR as well as TetR and TtgR DNA-binding domains can be
assembled to functional, bipartite transcription factors with
similar performance.6 Swapping DNA-binding domains could
therefore be standard practice to tune the performance of
multipartite transcription factors and/or adapt it for a
particular cell type.
Since these multipartite TFs strictly require all parts for

functionality, the system resembles AND Boolean logics. By
distributing the TF’s parts on different plasmids and
controlling the expression of a resistance marker, we developed
a technology for multiplexed genomic manipulations in
mammalian cells. While we used an antibiotic resistance gene
for the selection of cell populations, it may also be possible to
place a fluorescent protein or a cell surface marker under the

Figure 3. Transposon-based conventional selection for multiplexed plasmid integration in mammalian cells. (a) Transposon donor plasmids
encoding for four different fluorescent proteins and a Puromycin resistance marker. (b) Experimental outline of the generation of hMSC-TERT
stable cell lines. Transposon-based generation of stable cell lines harboring PCAG-driven gene expression cassettes that produce a PAC-T2A-
fluorescent protein transcript (the fluorescent proteins mTagBFP2, mCitrine, mCherry, and iRFP720 are encoded on pSA-TP26, pSA-TP25, pSA-
TP24, and pSA-TP29, respectively). Cells were selected with 6 μg/mL Puromycin for 7 days and analyzed using flow cytometry. (c) The 7-day
selection of a polyclonal hMSC-TERT stable cell population generated with two transposon-based plasmids where only one plasmid encodes for a
PAC selection marker; 0.7% of the polyclonal population contains both fluorescent proteins showing that Gal4-VP16-mTagBFP2 could not be
stably propagated in the cells. (d) The 7-day selection of a hMSC-TERT polyclonal stable cell population generated with two transposon-based
plasmids where only one plasmid encodes for a PAC selection marker; 40% of the polyclonal population contains both fluorescent proteins showing
that VanR-VP16-T2A-mTagBFP2 has been stably integrated into the cells.
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control of multipartite TFs enabling FACS or magnetic cell
enrichment of desired cell populations. In contrast to previous
efforts to develop one-step methods for manipulations of
multiple genomic regions, our work is based on the principle of
genetic circuit design and biocomputation. Recently, miRNA
patterns have been exploited for the detection of specific cell
populations, such as cancer cells24 or differentiated cell types,25

and may complement the LOGIC technology for additional
logic control options. In addition, other logic circuit design
strategies based on RNA elements26,27 or recombinases28,29

could also be adapted for LOGIC.
To fully unleash the potential of mammalian synthetic

biology in biomedicine and biotechnology, multiplexed and
precise genome editing will become key to deliver designer
cells that consist of synthetic systems and tailored genomes.
Recently, CRISPR/Cas9-facilitated genetrapping has been
used to insert a chimeric antigen receptor (CAR) into the
TCRα genomic locus, which resulted in simultaneous
knockout of the endogenous TCRα and targeted insertion of
the CAR driven by the endogenous promoter in primary T
cells.30 In theory, LOGIC could be used to introduce
additional genomic manipulations, for example, knockout of
immunoinhibitory receptors, such as PD-L1 or CTL4A, to
produce the next generation of engineered autologous T cells,
which require extensive genome engineering in a one-step
procedure. Especially in primary cells in which the expansion
of cell numbers is limited, LOGIC may prove to be a valuable
technology for the generation of engineered cells enabling
simultaneous DNA insertions and manipulation of endogenous
genes.

■ ONLINE METHODS

Vector Design. Comprehensive design and construction
details for all expression vectors are provided in Supplementary
Tables 1 and 2.
Mammalian Cell Culture and Transfection. Human

embryonic kidney cells (HEK293T/17, ATCC: 11268) or
hMSC-TERT cells31 were cultured in Dulbecco’s modified

Eagle’s medium (DMEM, Life Technologies, cat. no. 31966-
021) supplemented with 10% (v/v) fetal calf serum (FCS,
Sigma-Aldrich, lot no. 022M3395) in antibiotic-free conditions
at 37 °C in a humidified atmosphere containing 7.5% CO2.
Cell viability and number were quantified using an electric field
multichannel cell counting device (Casy Cell Counter and
Analyzer Model TT, Roche Diagnostics GmBH). For experi-
ments, 2.4 × 106 cells were seeded into a multiwell plate 1 day
before transfection in DMEM. After 16 h, plasmid DNA was
mixed with polyethylene imine (PEI, MW 40 000, stock
solution: 1 mg/mL in ddH2O, Polysciences, cat. no. 24765-2)
in a 1:6 ratio (w/w) and incubated in FCS-free DMEM for 30
min at 22 °C before it was added dropwise to the cells. After 7
h, the transfection medium was replaced with FCS-
supplemented DMEM. Transfection mixture recipes can be
found in Supplementary Table 3.

Generation of Stable Cell Lines. At 48 h after transient
transfection, the cells were trypsinized and centrifuged. One
quarter of the cells were reseeded in a multiwell plate of the
same layout in DMEM containing indicated Puromycin
concentrations. Part of the cells were used for flow cytometry
analysis. Puromycin-containing medium was replaced every
day for indicated days with fresh selection medium. After
selection, cells were trypsinized and used for flow cytometry
analysis. If indicated, polyclonal cell populations were further
cultivated in DMEM without Puromycin. For the generation of
monoclonal cell lines by limiting dilution, cell concentration
was adjusted to 0.7 cells/100 μL and seeded into 96-well
plates. Resulting colonies of cells were trypsinized, analyzed by
flow cytometry and further cultivated in DMEM.

Flow Cytometry. Cell populations were analyzed with a
LSRII Fortessa flow cytometer (Becton Dickinson) equipped
for mTagBFP2 (405 nm laser, 445/15 emission filter),
mCitrine (488 nm laser, 505 nm long-pass filter and 530/11
emission filter), mCherry (561 nm laser, 600 nm long-pass
filter and 610/20 emission filter), and iRFP720 (640 nm laser,
760/50 emission filter) detection and set to exclude cell debris
and cell doublets. A total of 10 000 single cells were recorded

Figure 4. Transposon-based LOGIC for multiplexed plasmid integration in mammalian cells. (a) 2-LOGIC based on the distribution of the
transcription factor VanR-VP16 and the corresponding inducible PAC resistance gene expression cassette on two different transposon donor
plasmids each encoding also for a specific fluorescent protein. (b) Comparison of 7-day selection of polyclonal stable cell populations generated
with either the conventional method (both plasmids encode for PAC resistance marker) or 2-LOGIC with Citrine and mTagBFP2 as DNA
payload. (c) 3-LOGIC based on the distribution of the transcription factor VanR-Coh(Ct), transactivation domain VP16-Doc(Ct), and the
corresponding inducible PAC resistance gene expression cassette on three different transposon donor plasmids each encoding also for a specific
fluorescent protein. (d) Comparison of 7-day selection of polyclonal stable cell populations generated with either the conventional method (three
plasmids encode for PAC resistance marker) or 3-LOGIC with Citrine, mCherry, and mTagBFP2 as DNA payload.
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per sample and were analyzed with FlowJo software (version
no. 10; FlowJo LLC, Oregon, USA).
SEAP Reporter Gene Assays. The production of human

placental secreted alkaline phosphatase was quantified in cell
culture supernatants (Schlatter et al., 2002) as described
before. In brief, absorbance of 4-nitrophenol at 405 nm was
monitored for 30 min using an Infinite M200 PRO multiwell
plate reader (Tecan Group Ltd., Man̈nedorf, Switzerland).
Statistics. No statistical methods were used to predeter-

mine sample size.
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Pascal Stücheli for generous advice. This work was financially
supported in part through the National Centre of Competence
in Research (NCCR) for Molecular Systems Engineering and
European Union through the BioRoboost Project, H2020-
NMBP-TR-IND-2018-2020/BIOTEC-01-2018 (CSA).

■ REFERENCES
(1) Auslan̈der, S., Auslan̈der, D., and Fussenegger, M. (2017)
Synthetic BiologyThe Synthesis of Biology. Angew. Chem., Int. Ed.
56, 6396−6419.
(2) Roybal, K. T., Rupp, L. J., Morsut, L., Walker, W. J., McNally, K.
A., Park, J. S., and Lim, W. A. (2016) Precision Tumor Recognition

by T Cells With Combinatorial Antigen-Sensing Circuits. Cell 164,
770−779.
(3) Schukur, L., Geering, B., Hamri, G. C.-E., and Fussenegger, M.
(2015) Implantable Synthetic Cytokine Converter Cells with AND-
Gate Logic Treat Experimental Psoriasis. Sci. Transl. Med. 7,
318ra201−318ra201.
(4) Gaber, R., Lebar, T., Majerle, A., Šter, B., Dobnikar, A., Bencǐna,
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