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Summary
Background The ability to accurately identify the absolute risk of neurosyphilis diagnosis for patients with syphilis
would allow preventative and therapeutic interventions to be delivered to patients at high-risk, sparing patients at low-
risk from unnecessary care. We aimed to develop, validate, and evaluate the clinical utility of simplified clinical
diagnostic models for neurosyphilis diagnosis in HIV-negative patients with syphilis.

Methods We searched PubMed, China National Knowledge Infrastructure and UpToDate for publications about
neurosyphilis diagnostic guidelines in English or Chinese from database inception until March 15, 2023. We
developed and validated machine learning models with a uniform set of predictors based on six authoritative diag-
nostic guidelines across four continents to predict neurosyphilis using routinely collected data from real-world
clinical practice in China and the United States (through the Dermatology Hospital of Southern Medical
University in Guangzhou [659 recruited between August 2012 and March 2022, treated as Development cohort],
the Beijing Youan Hospital of Capital Medical University in Beijng [480 recruited between December 2013 and
April 2021, treated as External cohort 1], the Zhongshan Hospital of Xiamen University in Xiamen [493 recruited
between November 2005 and November 2021, treated as External cohort 2] from China, and University of
Washington School of Medicine in Seattle [16 recruited between September 2002 and April 2014, treated as
External cohort 3] from United States). We included all these patients with syphilis into our analysis, and no
patients were further excluded. We trained eXtreme gradient boosting (XGBoost) models to predict the diagnostic
outcome of neurosyphilis according to each diagnostic guideline in two scenarios, respectively. Model
performance was measured through both internal and external validation in terms of discrimination and
calibration, and clinical utility was evaluated using decision curve analysis.

Findings The final simplified clinical diagnostic models included neurological symptoms, cerebrospinal fluid (CSF)
protein, CSF white blood cell, and CSF venereal disease research laboratory test/rapid plasma reagin. The models
showed good calibration with rescaled Brier score of 0.99 (95% CI 0.98–1.00) and excellent discrimination (the
minimum value of area under the receiver operating characteristic curve, 0.84; 95% CI 0.81–0.88) when externally
validated. Decision curve analysis demonstrated that the models were useful across a range of neurosyphilis
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probability thresholds between 0.33 and 0.66 compared to the alternatives of managing all patients with syphilis as if
they do or do not have neurosyphilis.

Interpretation The simplified clinical diagnostic models comprised of readily available data show good performance,
are generalisable across clinical settings, and have clinical utility over a broad range of probability thresholds. The
models with a uniform set of predictors can simplify the sophisticated clinical diagnosis of neurosyphilis, and guide
decisions on delivery of neurosyphilis health-care, ultimately, support accurate diagnosis and necessary treatment.

Funding The Natural Science Foundation of China General Program, Health Appropriate Technology Promotion
Project of Guangdong Medical Research Foundation, Department of Science and technology of Guangdong Province
Xinjiang Rural Science and Technology（Special Commissioner）Project, Southern Medical University Clinical
Research Nursery Garden Project, Beijing Municipal Administration of Hospitals Incubating Program.
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license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Evidence before this study
We searched PubMed, China National Knowledge
Infrastructure (CNKI) and UpToDate (available at: https://
www.uptodate.com/) for publications about neurosyphilis
diagnostic guidelines in English or Chinese from database
inception until March 15, 2023, using the following search
terms (“neurosyphilis” OR “syphilis”) AND (“syphilis and
treatment” OR “neurosyphilis and treatment”). Reference of
relevant articles and reviews were also screened for additional
publications. 26 publications in English or Chinese about
neurosyphilis diagnostic guidelines were identified, from
which six authoritative diagnostic guidelines worldwide were
selected. As there is no universal gold clinical standard
globally to diagnose neurosyphilis so far, current diagnostic
guidelines are replete with various distinct essential
prerequisites that may be not readily available across different
clinical settings and population from different regions in the
world, especially for those from resource-limited regions. In
addition, no prediction modelling studies on diagnosis of
neurosyphilis in HIV-negative patients with syphilis were
identified to April 21, 2023. Previous studies of neurosyphilis
risk primarily focused on significant predictors of
neurosyphilis diagnosis.

Added value of this study
The final simplified clinical diagnostic models developed in
this study accurately predict the individualised risk of

diagnostic outcome of neurosyphilis in HIV-negative patients
with syphilis, with good calibration and excellent
discrimination. The machine learning models were developed
and validated using routinely collected data from real-world
clinical practice in China and the United States, with a
uniform set of predictors based on six authoritative diagnostic
guidelines across four continents. Their performance was
maintained when internally and externally evaluated. The
models have clinical utility across a broad range of probability
thresholds, to assist in shared decision-making for
personalised and risk-differentiated care. We developed a free
online app to make these models widely available and easily
applicable in practical use.

Implications of all the available evidence
Our models with a uniform set of predictors can simplify the
sophisticated clinical diagnosis of neurosyphilis, and facilitate
shared decision-making at the individual level and risk-
differentiated care at a health service level, ultimately,
supporting more personalised care for patients with syphilis.
To promote translation into real-world clinical care, these
models have been translated into an online clinical risk app
allowing clinicians to calculate individualised risks of
neurosyphilis according to six authoritative diagnostic
guidelines, to guide decisions of risk-differentiated approaches
to care and treatment.
Introduction
Neurosyphilis is a clinically serious disease caused by
the infection of central nervous system (CNS) by Trep-
onema pallidum subspecies pallidum (hereafter,
T. pallidum).1 After initial infection, T. pallidum dis-
seminates within days2 and invades CNS in approxi-
mately 30% of patients with untreated primary and
secondary syphilis.3 If the organism is not cleared from
the CNS, complicated syphilis, including early or late
neurosyphilis, oucular or otic syphilis may ensue.4 Early
neurosyphilis includes asymptomatic neurosyphilis,
syphilitic meningitis, and meningovascular syphilis,1

which occurs weeks to month to the first few years af-
ter T. pallidum initial infection.5 Late neurosyphilis in-
cludes general paresis and tabes dorsalis,1 which occur
years to decades after initial infection.5
www.thelancet.com Vol 62 August, 2023
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There are few population based epidemiological data
on neurosyphilis. In the pre-antibiotic era, about 30% of
individuals with untreated syphilis developed neuro-
syphilis, of which 30% were asymptomatic neuro-
syphilis.6 In another study, 9.50% of untreated early
syphilis developed late neurosyphilis.7 More recent data
showed that the prevalence of confirmed or suspected
neurosyphilis among primary, secondary, and early
latent syphilis in the United States from 2009 to 2015
was 0.84%.8 The incidence rate of neurosyphilis in
Netherlands from 1999 to 2010 was 0.47 cases per
100,000 adults.9 In British Columbia, Canada, the re-
ported incidence of neurosyphilis increased 26.67-fold
from 0.03 cases per 100,000 adults in 1992 to 0.80
cases per 100,000 adults in 2012.10 In Guangdong
province of China, the reported incidence of late neu-
rosyphilis increased 1.48-fold from 0.21 cases per
100,000 adults in 2009 to 0.31 cases per 100,000 adults
in 2014.11 Between May 2013 and May 2020, neuro-
syphilis was found to have a prevalence of 3.10% in a
tertiary university hospital located in Southern Italy.12

Meanwhile, Dombrowski et al. reported 68 cases of
possible neurosyphilis among 573 syphilis cases in King
County, WA, from 3rd January 2012 to 30th September
2013.13 The true burden of neurosyphilis worldwide is
likely underestimated due to underreporting and lack of
recognition.14

There is no one test that can rule in or rule out the
diagnosis of neurosyphilis,15 but several diagnostic
guidelines are proposed.16–23 These guidelines may not
be applicable across different clinical settings and pop-
ulation from different regions in the world. For
example, a national cross-sectional study of 398 hospi-
tals located in 116 cities in China showed that only 154
(38.69%) hospitals could perform neurosyphilis diag-
nostic laboratory tests [i.e., venereal disease research
laboratory (VDRL)/rapid plasma reagin tests (RPR)/to-
luidine red unheated serum tests (TRUST), or
T. pallidum particle agglutination or haemagglutination
tests (TPPA or TPHA)].24 Moreover, although cerebro-
spinal fluid (CSF) VDRL is currently considered as the
definitive standard diagnosis test of confirming neuro-
syphilis, it requires specialized glass plates and a light
microscope in practice, which might be difficult to meet
in resource-limited hospitals, and its whole testing
process is time-consuming and cumbersome, which
restricts its availability further in real-world clinical
practice.

Ascertaining a diagnosis of neurosyphilis typically
necessitates a confluence of neurological or neuropsy-
chiatric symptoms and signs, laboratory assessments of
both blood and cerebrospinal fluid, and in some in-
stances, imaging evaluations. In light of the complexity
involved in arriving at a diagnosis, the involvement of
skilled clinicians as well as specialized testing equip-
ment and reagents is essential. The diagnostic chal-
lenges associated with neurosyphilis in various
www.thelancet.com Vol 62 August, 2023
countries or regions frequently result in a scarcity of
reliable epidemiological data. In this context, our
objective is to leverage the potential of machine learning
to fashion a suite of neurosyphilis diagnostic models
that are highly simplified and practical, thereby enabling
epidemiological inquiries employing extensive clinical
data drawn from the real world. These models have
been constructed based on six guidelines spanning four
continents, drawing upon multicentre clinical data
derived from patients who were clinically suspected of
neurosyphilis, and incorporating minimal predictors of
neurosyphilis that are applicable regardless of the spe-
cific diagnostic criteria employed. Our overarching aim
is to develop an accurate and user-friendly diagnostic
model and app for neurosyphilis that is suitable for
deployment in diverse geographical regions.
Methods
Identification of neurosyphilis diagnostic
guidelines
We searched PubMed, China National Knowledge
Infrastructure (CNKI) and UpToDate (available at:
https://www.uptodate.com/) for publications about
neurosyphilis diagnostic guidelines in English or Chi-
nese from database inception until March 15, 2023,
using the following search terms (“neurosyphilis” OR
“syphilis”) AND (“syphilis and treatment” OR “neuro-
syphilis and treatment”). Reference of relevant articles
and reviews were also screened for additional publica-
tions. 26 publications16–23,25–42 in English or Chinese
about neurosyphilis diagnostic guidelines were identi-
fied. The details for 26 publications are given in
Supplementary Table S4, from which six diagnostic
guidelines (China 2020,18 selected as a representative of
Asia; Europe 2020,23 selected as a representative of
Europe; Australia 2022,21 selected as a representative of
Oceania; and UpToDate 2020,19 US CDC 2018 (Case
Definitions),16 US 2021 (Treatment Guidelines)17

selected as representatives of America) were identified
(Supplementary Table S1); we were unable to identify a
guideline from Africa. The detailed considerations are
given in Supplementary Appendix S1.

Various guidelines have different number of diag-
nostic classifications of neurosyphilis (Supplementary
Table S1), which posed challenges for our modeling
analysis that aimed to simplify the real-world diagnosis
of neurosyphilis and were designed for binary classifi-
cation. However, we intended to use information of
differential risk indications from different number of
diagnostic classifications of the guidelines. In this re-
gard, we transformed six national and international
guidelines into binary diagnostic outcome variables for
considering two possible scenarios. Specifically, Sce-
nario 1 encoded non-neurosyphilis as “0” (i.e., non-
neurosyphilis) while verified/probable/possible neuro-
syphilis as “1” (i.e., neurosyphilis); Scenario 2 encoded
3
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non-neurosyphilis and probable/possible neurosyphilis
as “0” (i.e., non-neurosyphilis), while verified neuro-
syphilis as “1” (i.e., neurosyphilis). These rules were also
depicted in Supplementary Table S2. The detailed con-
siderations of these transformations are given in
Supplementary Appendix S1.

Choice of candidate predictors
Based on consensus of five syphilis experts from both
China and the US (CMM, TCY, LY, BY and WK) and
systematic review of published studies of neurosyphilis
diagnosis, the following candidate predictors were
evaluated for inclusion in machine learning models:
reactivity of serum non-treponemal test (TRUST and
RPR), CSF protein concentration, CSF white blood cell
concentration (WBC), CSF treponemal test reactivity
(CSF TPPA and CSF fluorescent treponemal antibody-
absorption [FTA-ABS]), CSF non-treponemal test reac-
tivity (CSF VDRL, CSF TRUST, and CSF RPR) and
neurological symptoms or signs (neurologic, otologic, or
ocular symptoms or signs consistent with neuro-
syphilis). The detailed considerations are given in
Supplementary Appendix S1. Notably, age and sex were
not selected for inclusion in the models, due to the
minor contributions to the clinical diagnosis of
neurosyphilis.

Development and validation patient cohorts
We obtained participant-level data of the confirmed
HIV-negative patients with syphilis, through the
Dermatology Hospital of Southern Medical University
in Guangzhou (recruited between August 2012 and
March 2022, treated as Development cohort), the Beijing
Youan Hospital of Capital Medical University in Beijng
(recruited between December 2013 and April 2021,
treated as External cohort 1), the Zhongshan Hospital of
Xiamen University in Xiamen (recruited between
November 2005 and November 2021, treated as External
cohort 2) from China, and University of Washington
School of Medicine in Seattle (recruited between
September 2002 and April 2014, treated as External
cohort 3) from United States. The deidentified patient
data were obtained from four hospitals to form a large,
multi-centre cohort. We included all these patients with
syphilis into our analysis, and no patients were further
excluded.

This study was a secondary analysis of the retro-
spective data. Our study is a retrospective, multicohort,
observational study. Consent and Research Ethics Board
approvals were not required for the use of deidentified
data. Further details for diagnosis of syphilis are given
in Supplementary Appendix S1.

Statistical analysis and modelling
Age, CSF protein and CSF WBC were treated as contin-
uous variables and described using medians with inter-
quartile ranges (IQR) due to non-normality of values,
while the remaining variables were treated as categorical
variables and described as counts and proportions.

We trained eXtreme gradient boosting (XGBoost)43,44

models (Supplementary Appendix S1) to predict the
diagnostic outcome of neurosyphilis using the full
available features in Development cohort according to
each diagnostic guideline in two scenarios, respectively.
The XGBoost algorithm is a scalable decision tree-based
boosting algorithm that is an ideal candidate for
nonlinear, sparse, and class-imbalanced classification
data.44 The XGBoost models output a continuous prob-
ability specifying the likelihood of classification to neu-
rosyphilis for each patient, which was assessed at the
class decision threshold of 0.50. Tenfold cross-validation
was used to evaluate performance of each model, avoid
any overfitting/underfitting, ensure robustness of
models and minimize bias. Specifically, an inner tenfold
cross-validation was applied to tune the hyper-
parameters with a random gird search, set to maximize
the area under the receiver operating characteristic
curve (AUROC). The two steps of tenfold cross-
validation constituted the double tenfold cross-
validation in our study to minimize bias in perfor-
mance evaluation (Fig. 1), which has been successfully
applied in the design of another study.45

To allow for interpretation of our models’ pre-
dictions, we assessed feature importance, respectively,
using the Shapley values46–48 to identify a feature’s rela-
tive contribution to uncover key features. Based on the
rankings of feature importance from the models in two
scenarios, respectively, we selected a panel of
consensus-based key features (i.e., a consensus reached
by comprehensive considerations on the rankings of
feature importance in all models developed from the
diagnostic guidelines and ready availability and acces-
sibility in real-world clinical practice) as a panel of key
drivers for clinical diagnosis of neurosyphilis. We
retrained our model using this subset of features (i.e.,
the panel of consensus-based key features), and arrived
at simplified clinical diagnostic models through three
external validation cohorts to identify patients with
neurosyphilis. An online browser-accessible version of
the final simplified clinical diagnostic models was also
made available for external use.

We report the model performance in terms of
discrimination and calibration. For the overall discrim-
inatory ability of models, we reported standard diag-
nostic accuracy estimates49,50 (AUROC along with 95%
confidence interval (CI), accuracy along with 95% CI,
precision, recall and F1 measures) to evaluate perfor-
mance of models in the presence of class imbalance.51

Calibration was assessed graphically using a flexible
calibration curve (Supplementary Appendix S1). To
avoid instability we stratified the calibration curve in
quintiles. In addition, to evaluate the calibration accu-
racy, the overall calibration performance of models was
also evaluated using Brier score.52 We used the 2.5 and
www.thelancet.com Vol 62 August, 2023
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Fig. 1: Schematic overview of the framework of this study. Tenfold cross-validation was used to evaluate performance of each model, avoid any
overfitting/underfitting, ensure robustness of models and minimize bias. Specifically, an inner tenfold cross-validation was applied to tune the
hyperparameters with a random gird search, set to maximize the area under the receiver operating characteristic curve (AUROC). The two steps of
tenfold cross-validation constituted the double tenfold cross-validation in our study to minimize bias in performance evaluation. We trained
XGBoost models to predict the diagnostic outcome of neurosyphilis using the full available features in Development cohort (Table 1) according to
each diagnostic guideline in two scenarios, respectively. To allow for interpretation of our models’ predictions, we assessed feature importance,
respectively, using the Shapley values to identify a feature’s relative contribution to uncover key features. Based on the rankings of feature
importance from the models in two scenarios, respectively, we selected a panel of consensus-based key features (i.e., a consensus reached by
comprehensive considerations on the rankings of feature importance in all models developed from the diagnostic guidelines and ready availability
and accessibility in real-world clinical practice) as a panel of key drivers for clinical diagnosis of neurosyphilis. We retrained our model using this
subset of features (i.e., the panel of consensus-based key features), and arrived at simplified clinical diagnostic models through three external
validation cohorts to identify patients with neurosyphilis. An online browser-accessible version of the final simplified clinical diagnostic models was
also made available for external use (https://zhen-lu.shinyapps.io/Machine-learning-based-diagnosis-for-neurosyphilis/).

Articles
97.5 percentiles from 200 bootstrap samples as the
limits of the 95% confidence intervals for the rescaled
Brier score. A glossary of terms of statistics and ma-
chine learning used in this study could be found in the
Supplementary Table S5, which defined all the metrics
and provided the calculation formula for each.

Decision curve analysis
In addition to evaluating the predictive performance in
terms of discrimination and calibration for the machine
learning models, we assessed the potential clinical utility
of the models (i.e., the net benefit of the models) by using
a decision curve analysis.53 The net benefit of the models
incorporating the trade-offs between true-positives and
false-positives for a wide range of clinical probability
thresholds is considered by the decision curve
www.thelancet.com Vol 62 August, 2023
analysis.53,54 Thus, the decision curve analysis could
consider the benefits and harms of using a model for
clinical decision making, which allows decisions on
management of patients with syphilis with variable neu-
rosyphilis risk probabilities.55 Further details for decision
curve analysis are given in Supplementary Appendix S1.

All statistical analyses and modelling were per-
formed using R software version 4.2.1 (R Core Team,
Vienna, Austria, available at: https://www.R-project.
org). We followed the Transparent Reporting of a
multivariable prediction model for Individual Prognosis
or Diagnosis (TRIPOD) statement.55

Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing
5
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of the report. All authors have directly accessed and
verified the underlying data in this study, and were
responsible for the decision to submit the manuscript.
Results
Characteristics of cohorts
Overall, we included 659, 480, 493 and 16 HIV-negative
patients with syphilis in Development cohort, External
cohort 1, 2, and 3 (Table 1). An overview of characteristics
of all four cohorts and diagnostic outcomes by guideline
are summarized in Table 1. In addition, the absolute
numbers with percentages of patients with and without
neurosyphilis in each cohort are also indicated in Table 1.

In Scenario 1, the transformed binary classifications
of all four cohorts by six diagnostic guidelines are shown
in Supplementary Figure S1. The class-imbalanced
classifications (i.e., the number of neurosyphilis versus
the number of patients without neurosyphilis) were
much more common in Development cohort, External
cohort 1 and 3 compared with External cohort 2.
Supplementary Figure S2 shows transformed classifi-
cations of all four cohorts by six diagnostic guidelines in
Scenario 2. The original classifications of all four co-
horts by six diagnostic guidelines are shown in Table 1
and Supplementary Figure S3.

Feature importance
Based on assessment of the rank order of variable
importance (Fig. 2) in all models developed from six
diagnostic guidelines and ready availability and accessi-
bility in real-world clinical practice, the final panel of three
key variables that distinguished patients with neuro-
syphilis from those without in Scenario 1 were neurolog-
ical symptoms, CSF protein, and CSF WBC. For Scenario
2, neurological symptoms, CSF VDRL, and CSF protein
were selected (Fig. 2). However, as shown in Table 1, in
External cohort 1 and 2 only CSF RPR was available.
Considering the lack of availability of CSF VDRL in
resource-limited regions, CSF RPR has similar perfor-
mance to CSF VDRL, and is easier to perform with readily
available commercial test kits, we made a new variable
named CSF VDRL/RPR, which was CSF VDRL or CSF
RPR. Hence, the final panel of variables in Scenario 2
were neurological symptoms, CSF VDRL/RPR, and CSF
protein. Detailed considerations of the final panel of fea-
tures are shown in Supplementary Appendix S1.

Performance of simplified models
In Scenario 1, overall predictive performance of the
simplified models in the internal and external validation
datasets are shown in Fig. 3. When internally validated,
the simplified US 2021 model had the best value of
AUROC (0.98, 95% CI 0.94–1.00), accuracy (0.96, 95% CI
0.88–0.99), precision (1.00), recall (0.79), and F1 measure
(0.88), among simplified models. The simplified NT
Australia 2022 model had the minimum value of AUROC
(0.94, 0.88–0.98). Furthermore, when externally validated,
the simplified US CDC 2018 model had the best value of
AUROC from 0.99 to 1.00, accuracy from 0.98 to 1.00,
recall all of 1.00, and F1 measure from 0.91 to 1.00,
among simplified models. All simplified models demon-
strated excellent predictive performance when validated
internally and externally. For calibration performance of
six simplified models, the calibration curves
(Supplementary Figure S5) and rescaled Brier scores
(Supplementary Table S3) showed good agreement be-
tween predicted and observed risks overall of diagnostic
performance, with the minimum value of 0.34 (0.22–0.79)
[the simplified NT Australia 2022 model in External
cohort 3], and the maximum value of 0.99 (0.98–1.00) [the
simplified Europe 2020 model in External cohort 3].

Overall predictive performance of six simplified
models in Scenario 2 are shown in Supplementary
Figure S4. When internally validated, the simplified
China 2020 model had the minimum value of AUROC
(0.91, 0.81–0.98), accuracy (0.91, 0.81–0.97), recall
(0.33), and F1 measure (0.50) among six simplified
models. When externally validated, the simplified
UpToDate 2020 model in External cohort 1 had the
minimum value of AUROC (0.84, 0.81–0.88) among six
simplified models in all three external validation data-
sets. All six simplified models illustrated excellent pre-
dictive performance and calibration (Supplementary
Figure S6) when validated internally and externally.

Clinical utility of models
For almost all six simplified models in both the internal
and external validation datasets, in Scenario 1, using the
models could yield net benefits for probability thresh-
olds between 0.14 and 0.66 (Fig. 4, Supplementary
Figures S7, S9, and S11), and it offered net benefits
for probability thresholds between 0.33 and 0.66 (Fig. 4,
Supplementary Figures S8, S10, and S12) in Scenario 2.

The overall decision curve analysis demonstrated the
net benefits of all simplified models in identifying pa-
tients with syphilis who actually have neurosyphilis,
compared with two reference strategies (i.e., manage all
as if those patients with syphilis will or will not have a
diagnostic outcome of neurosyphilis [‘treat all’ or ‘treat
none’]), for probability thresholds between 0.33 and 0.60.
Discussion
In this study, we used machine learning to develop and
externally validate six simplified neurosyphilis diagnostic
models based on six guidelines across four continents
using routinely collected data from real-world clinical
practice in China and the United States. All simplified
clinical diagnostic models accurately predicted the diag-
nosis of neurosyphilis in demographically diverse HIV-
negative patients with syphilis. They had good calibra-
tion and excellent discrimination over a broad range of
clinical probability thresholds.
www.thelancet.com Vol 62 August, 2023
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Features Development cohort (N = 659) External cohort 1 (N = 480) External cohort 2 (N = 493) External cohort 3 (N = 16)

Demographical information

Age 41 (29, 54) 40 (30, 52) 53 (44, 63) NC

Sex

Female 341 (51.70%) 277 (57.70%) 174 (35.30%) NC

Male 318 (48.30%) 203 (42.30%) 319 (64.70%) NC

Laboratory results

Serum non-treponemal testa

Negative 54 (8.19%) 174 (36.25%) 91 (18.46%) 0

Positive 605 (91.81%) 306 (63.75%) 402 (81.54%) 16 (100.00%)

CSF protein (g/L)b 25.96 (17.20, 38.35) 18.83 (13.42, 30.00) 45.80 (31.84, 69.80) 42.00 (36.75, 55.75)

CSF WBC (/mL)b 2.00 (1.00, 4.00) 5.00 (2.00, 9.00) 6.00 (2.00, 21.00) 3.00 (1.50, 24.80)

CSF treponemal test

CSF TPPA

Negative 391 (59.33%) 198 (41.25%) 254 (51.52%) 6 (37.50%)

Positive 268 (40.67%) 282 (58.75%) 239 (48.48%) 10 (62.50%)

CSF FTA-ABS-IgG

Negative 425 (64.49%) 221 (46.04%) NAd 8 (50.00%)

Positive 234 (35.51%) 259 (53.96%) NAd 8 (50.00%)

CSF non-treponemal test

CSF VDRL

Negative 546 (82.85%) NAd NAd 10 (62.50%)

Positive 113 (17.15%) NAd NAd 6 (37.50%)

CSF TRUST

Negative 562 (85.28%) NAd NAd NAd

Positive 97 (14.72%) NAd NAd NAd

CSF RPR

Negative NAd 407 (84.79%) 346 (70.18%) 13 (81.25%)

Positive NAd 73 (15.21%) 147 (29.82%) 3 (18.75%)

Vital sign

Neurological symptoms

Negative 366 (55.54%) 335 (69.79%) 180 (36.51%) 11 (68.75%)

Positive 293 (44.46%) 145 (30.21%) 313 (63.49%) 5 (31.25%)

Observed diagnostic outcomes by guidelinesc

China 2020

Verified neurosyphilis 94 (14.26%) 64 (13.33%) 168 (34.08%) 3 (18.75%)

Probable neurosyphilis 8 (1.21%) 6 (1.25%) 34 (6.90%) 1 (6.25%)

Non-neurosyphilis 557 (84.52%) 410 (85.42%) 291 (59.03%) 12 (75.00%)

Europe 2020

Verified neurosyphilis 136 (20.64%) 93 (19.38%) 239 (48.48%) 4 (25.00%)

Non-neurosyphilis 523 (79.36%) 387 (80.62%) 254 (51.52%) 12 (75.00%)

NT Australia 20,222

Verified neurosyphilis 92 (13.96%) 41 (8.54%) 141 (28.60%) 2 (12.50%)

Probable neurosyphilis 92 (13.96%) 60 (12.50%) 87 (17.65%) 3 (18.75%)

Non-neurosyphilis 475 (72.08%) 379 (78.96%) 265 (53.75%) 11 (68.75%)

UpToDate 2020

Verified neurosyphilis 376 (57.06%) 279 (58.12%) 413 (83.77%) 9 (56.25%)

Non-neurosyphilis 283 (42.94%) 201 (41.88%) 80 (16.23%) 7 (43.75%)

US CDC 2018

Verified neurosyphilis 92 (13.96%) 41 (8.54%) 141 (28.60%) 2 (12.50%)

Probable neurosyphilis 30 (4.55%) 32 (6.67%) 61 (12.37%) 2 (12.50%)

Possible neurosyphilis 140 (21.24%) 33 (6.88%) 61 (12.37%) 1 (6.25%)

Non-neurosyphilis 397 (60.24%) 374 (77.92%) 230 (46.65%) 11 (68.75%)

(Table 1 continues on next page)
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Features Development cohort (N = 659) External cohort 1 (N = 480) External cohort 2 (N = 493) External cohort 3 (N = 16)

(Continued from previous page)

US 2021

Verified neurosyphilis 92 (13.96%) 49 (10.21%) 141 (28.60%) 2 (12.50%)

Probable neurosyphilis 44 (6.68%) 44 (9.17%) 98 (19.88%) 2 (12.50%)

Non-neurosyphilis 523 (79.36%) 387 (80.62%) 254 (51.52%) 12 (75.00%)

Abbreviations: WBC, White blood cell; CSF, Cerebrospinal fluid; TPPA, Treponema pallidum particle agglutination; FTA-ABS-IgG, Fluorescent treponemal antibody-absorbed immunoglobulin G; VDRL,
Venereal disease research laboratory test; TRUST, Toluidine red unheated serum test; RPR, Rapid plasma reagin. aSerum non-treponemal test represents serum TRUST or serum RPR, instead of CSF TRUST
or CSF RPR. bCSF protein and CSF WBC were treated as continuous variables and described using medians with interquartile ranges (IQR) due to non-normality of values, while the remaining variables were
treated as categorical variables and described as counts and proportions. cThe count of diagnostic outcomes by guidelines corresponds to that in Supplementary Figure S3. NC represents not complete data
were available. dNA, no applicable data, which represents the whole patients in the specific cohort did not have the specific CSF variable in Table 1. For example, the whole patients (N = 659) in Development
cohort did not have available values of CSF RPR, while they all had the values of CSF protein, CSF WBC, CSF TPPA, CSF FTA-ABS-IgG, CSF VDRL, and CSF TRUST. Other cohorts followed this suit.

Table 1: Candidate features to be incorporated into the modeling analysis and diagnostic outcomes by guidelines.

0.1850 185

0.1630 163

0.0520 052

0.0000 000CSF TRUST

CSF VDRL

Serum non−treponemal test

CSF TPPA

CSF FTA−ABS−IgG

CSF protein

CSF WBC

Neurological symptoms

−2 0 2

  The China 2020 model in Scenario 1

0.2000 2000

0.1950 1950

0.0000 0000

0.0000 0000CSF TPPA

Serum non−treponemal test

CSF TRUST

CSF FTA−ABS−IgG

CSF VDRL

CSF WBC

CSF protein

Neurological symptoms

−4 −2 0 2 4

The Eupore 2020 model in Scenario 1

0.0870 087

0.0510 051

0.0000 000

0.0000 000CSF TRUST

CSF FTA−ABS−IgG

CSF VDRL

Serum non−treponemal test

CSF protein

CSF WBC

CSF TPPA

Neurological symptoms

−2 0 2

The NT Australia 2022 model in Scenario 1

3.5463 546

1.5251 525

1.2081 208

0.6840 684

0.2000 200

0.1370 137

0.0000 000

0.0000 000CSF TPPA

Serum non−treponemal test

CSF TRUST

CSF FTA−ABS−IgG

CSF VDRL

CSF WBC

CSF protein

Neurological symptoms

−4 0 4

The UpToDate 2020 model in Scenario 1

0.000

0.0000 000

0.0000 000

0.0000 000

0.0000 000

CSF VDRL

CSF TPPA

CSF TRUST

CSF WBC

CSF protein

CSF FTA−ABS−IgG

Serum non−treponemal test

Neurological symptoms

−0.5 0.0 0.5

 The US CDC 2018 model in Scenario 1

0.503

0.4870 487

0.2230 223

0.0760 076

0.0000 000

0.0000 000CSF TRUST

Serum non−treponemal test

CSF TPPA

CSF FTA−ABS−IgG

CSF WBC

CSF VDRL

CSF protein

Neurological symptoms

−2.5 0.0 2.5

 The US 2021 model in Scenario 1

0.4250 4254

0.4120 4124

0.3050 3053

0.2650 2652

0.1450 1451

0.0630 0630

0.0000 0000

0.0000 0000CSF TRUST

Serum non−treponemal test

CSF VDRL

CSF FTA−ABS−IgG

CSF TPPA

CSF protein

Neurological symptoms

CSF WBC

−3 −2 −1 0 1 2 3

The China 2020 model in Scenario 2

0.8880 8880

0.5120 5120

0.5030 5030

0.2000 2000

0.1950 1950

0.0000 0000

0.0000 0000CSF TPPA

Serum non−treponemal test

CSF TRUST

CSF FTA−ABS−IgG

CSF VDRL

CSF WBC

CSF protein

Neurological symptoms

−4 −2 0 2 4

 The Eupore 2020 model in Scenario 2

0.1270 127000

0.0520 0520

0.0000 0000

0.0000 0000

0.0000 0000

0.0000 0000

0.0000 0000

0.0000 0000CSF TPPA

CSF TRUST

CSF WBC

CSF protein

CSF FTA−ABS−IgG

Serum non−treponemal test

Neurological symptoms

CSF VDRL

−0.8 −0.4 0.0 0.4 0.8

 The NT Australia 2022 model in Scenario 2

3.5463 546

1.5251 525

1.2081 208

0.6840 684

0.2000 200

0.1370 137

0.0000 000

0.0000 000CSF TPPA

Serum non−treponemal test

CSF TRUST

CSF FTA−ABS−IgG

CSF VDRL

CSF WBC

CSF protein

Neurological symptoms

−4 0 4

 The UpToDate 2020 model in Scenario 2

0.2860 286

0.1420 142

0.0730 073

0.0190 019

0.0000 000

0.0000 000

0.0000 000

0.0000 000CSF TPPA

CSF protein

CSF FTA−ABS−IgG

Serum non−treponemal test

CSF WBC

CSF TRUST

Neurological symptoms

CSF VDRL

−1 0 1

 The US CDC 2018 model in Scenario 2

0.2890 289

0.1480 148

0.0690 069

0.0190 019

0.0000 000

0.0000 000

0.0000 000

0.0000 000CSF TPPA

CSF protein

CSF FTA−ABS−IgG

Serum non−treponemal test

CSF WBC

CSF TRUST

Neurological symptoms

CSF VDRL

−1 0 1

 The US 2021 model in Scenario 2

 Low HighFeature value  

A B C

D E F

D E F

A B C

Fig. 2: The Shapley values for each of candidate features in Scenario 1 and 2. To allow for interpretation of our models’ predictions, we assessed
feature importance, respectively, using the Shapley values to identify a feature’s relative contribution to uncover key features. Based on the rankings
of feature importance from the models in two scenarios, respectively, we selected a panel of consensus-based key features (i.e., a consensus reached
by comprehensive considerations on the rankings of feature importance in all models developed from the diagnostic guidelines and ready
availability and accessibility in real-world clinical practice) as a panel of key drivers for clinical diagnosis of neurosyphilis. Each point in the plots is a
Shapley (importance) value for a single patient. The color of each point represents the magnitude and direction of the value of that feature for that
patient. A feature for a patient with a Shapley value below zero decreases the probability specifying the likelihood of being diagnosed as neu-
rosyphilis, in addition, a higher probability indicates a higher likelihood of neurosyphilis. A in the figure indicates the results for the China 2020
model; B in the figure indicates the results for the Europe 2020 model; C in the figure indicates the results for the NT Australia 2022 model; D in the
figure indicates the results for the UpToDate 2020 model; E in the figure indicates the results for the US CDC 2018 model; F in the figure indicates
the results for the US 2021 model.
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Internal validation in Development cohort: 

  AUROC   = 0.98 (95% CI: 0.96−1.00)
  Accuracy = 0.94 (95% CI: 0.85−0.98)
  Precision = 0.88
  Recall      = 0.70
  F1            = 0.78

External validation in External cohort 1: 

  AUROC   = 0.97 (95% CI: 0.96−0.99)
  Accuracy = 0.94 (95% CI: 0.92−0.96)
  Precision = 0.78
  Recall      = 0.83
  F1            = 0.81

External validation in External cohort 2: 

  AUROC   = 0.97 (95% CI: 0.95−0.98)
  Accuracy = 0.91 (95% CI: 0.89−0.94)
  Precision = 0.90
  Recall      = 0.90
  F1            = 0.90

External validation in External cohort 3: 

  AUROC   = 1.00 (95% CI: 1.00−1.00)
  Accuracy = 0.94 (95% CI: 0.70−1.00)
  Precision = 1.00
  Recall      = 0.75
  F1            = 0.86

 The simplified China 2020 model in Scenario 1
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Internal validation in Development cohort: 

  AUROC   = 0.95 (95% CI: 0.86−1.00)
  Accuracy = 0.95 (95% CI: 0.87−0.99)
  Precision = 1.00
  Recall      = 0.79
  F1            = 0.88

External validation in External cohort 1: 

  AUROC   = 1.00 (95% CI: 0.99−1.00)
  Accuracy = 0.99 (95% CI: 0.98−1.00)
  Precision = 0.99
  Recall      = 0.97
  F1            = 0.98

External validation in External cohort 2: 

  AUROC   = 1.00 (95% CI: 1.00−1.00)
  Accuracy = 0.98 (95% CI: 0.97−0.99)
  Precision = 0.99
  Recall      = 0.97
  F1            = 0.98

External validation in External cohort 3: 

  AUROC   = 1.00 (95% CI: 1.00−1.00)
  Accuracy = 1.00 (95% CI: 0.79−1.00)
  Precision = 1.00
  Recall      = 1.00
  F1            = 1.00

The simplified Europe 2020 model in Scenario 1
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Internal validation in Development cohort: 

  AUROC   = 0.94 (95% CI: 0.88−0.98)
  Accuracy = 0.87 (95% CI: 0.76−0.94)
  Precision = 0.92
  Recall      = 0.58
  F1            = 0.71

External validation in External cohort 1: 

  AUROC   = 0.95 (95% CI: 0.93−0.96)
  Accuracy = 0.86 (95% CI: 0.83−0.89)
  Precision = 0.72
  Recall      = 0.55
  F1            = 0.63

External validation in External cohort 2: 

  AUROC   = 0.93 (95% CI: 0.91−0.95)
  Accuracy = 0.84 (95% CI: 0.81−0.87)
  Precision = 0.81
  Recall      = 0.86
  F1            = 0.83

External validation in External cohort 3: 

  AUROC   = 1.00 (95% CI: 1.00−1.00)
  Accuracy = 0.69 (95% CI: 0.41−0.89)
  Precision = NA
  Recall      = 0.00
  F1            = NA

The simplified NT Australia 2022 model in Scenario 1
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Internal validation in Development cohort: 

  AUROC   = 0.97 (95% CI: 0.93−1.00)
  Accuracy = 0.97 (95% CI: 0.90−1.00)
  Precision = 1.00
  Recall      = 0.95
  F1            = 0.97

External validation in External cohort 1: 

  AUROC   = 0.99 (95% CI: 0.99−1.00)
  Accuracy = 0.99 (95% CI: 0.98−1.00)
  Precision = 1.00
  Recall      = 0.99
  F1            = 0.99

External validation in External cohort 2: 

  AUROC   = 1.00 (95% CI: 1.00−1.00)
  Accuracy = 1.00 (95% CI: 0.99−1.00)
  Precision = 1.00
  Recall      = 1.00
  F1            = 1.00

External validation in External cohort 3: 

  AUROC   = 0.91 (95% CI: 0.71−1.00)
  Accuracy = 0.94 (95% CI: 0.70−1.00)
  Precision = 1.00
  Recall      = 0.89
  F1            = 0.94

The simplified UpToDate 2020 model in Scenario 1
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Internal validation in Development cohort: 

  AUROC   = 1.00 (95% CI: 0.98−1.00)
  Accuracy = 0.98 (95% CI: 0.92−1.00)
  Precision = 0.96
  Recall      = 1.00
  F1            = 0.98

External validation in External cohort 1: 

  AUROC   = 0.95 (95% CI: 0.94−0.97)
  Accuracy = 0.92 (95% CI: 0.89−0.94)
  Precision = 0.74
  Recall      = 1.00
  F1            = 0.85

External validation in External cohort 2: 

  AUROC   = 0.91 (95% CI: 0.88−0.94)
  Accuracy = 0.90 (95% CI: 0.87−0.92)
  Precision = 0.84
  Recall      = 0.99
  F1            = 0.91

External validation in External cohort 3: 

  AUROC   = 1.00 (95% CI: 1.00−1.00)
  Accuracy = 1.00 (95% CI: 0.79−1.00)
  Precision = 1.00
  Recall      = 1.00
  F1            = 1.00

The simplified US CDC 2018 model in Scenario 1
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Internal validation in Development cohort: 

  AUROC   = 0.98 (95% CI: 0.94−1.00)
  Accuracy = 0.96 (95% CI: 0.87−0.99)
  Precision = 1.00
  Recall      = 0.79
  F1            = 0.88

External validation in External cohort 1: 

  AUROC   = 1.00 (95% CI: 0.99−1.00)
  Accuracy = 0.99 (95% CI: 0.98−1.00)
  Precision = 1.00
  Recall      = 0.97
  F1            = 0.98

External validation in External cohort 2: 

  AUROC   = 1.00 (95% CI: 1.00−1.00)
  Accuracy = 0.98 (95% CI: 0.97−0.99)
  Precision = 1.00
  Recall      = 0.97
  F1            = 0.98

External validation in External cohort 3: 

  AUROC   = 1.00 (95% CI: 1.00−1.00)
  Accuracy = 1.00 (95% CI: 0.79−1.00)
  Precision = 1.00
  Recall      = 1.00
  F1            = 1.00

The simplified US 2021 model in Scenario 1

A B C

D E F

Fig. 3: Predictive performance of six simplified models in the internal and external validation datasets in Scenario 1. The lines with
different colors in the plots represented the values of area under the receiver operating characteristic curve for each model. Several receiver
operating characteristic curves overlapped completely due to the same values of area under the receiver operating characteristic curve. Predictive
performance of six simplified models in the internal and external validation datasets in Scenario 2 were shown in Supplementary Figure S4.
Abbreviations: AUROC, Area under the receiver operating characteristic curve; CI, Confidence interval; NA, Not applicable. A glossary of terms of
statistics and machine learning used in this study could be found in the Supplementary Table S5. A in the figure indicates the results for the
China 2020 model; B in the figure indicates the results for the Europe 2020 model; C in the figure indicates the results for the NT Australia 2022
model; D in the figure indicates the results for the UpToDate 2020 model; E in the figure indicates the results for the US CDC 2018 model; F in
the figure indicates the results for the US 2021 model.
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To the best of our knowledge, this is the first study
that applies machine learning techniques to aid in
simplifying the diagnosis of neurosyphilis. As there is
no universal gold clinical standard globally to diagnose
neurosyphilis so far,15 various distinct diagnostic
guidelines have been endorsed and subsequently rec-
ommended as silver standard diagnostic criteria world-
wide to answer such a medically important question
with reasonable accuracy. The societies acknowledge
that different diagnostic criteria exist and that the
optimal diagnostic criteria may vary depending on the
local condition, health resources, and preferences of
clinicians and patients. However, current diagnostic
guidelines are replete with various distinct essential
prerequisites that may be not readily available across
different clinical settings and population from different
regions in the world, especially for those from resource-
www.thelancet.com Vol 62 August, 2023
limited regions. The machine learning approach used in
this study succeeded in identifying a panel of the fewest
required key predictors to simplify the diagnosis of
neurosyphilis.

We strongly support the principle of seeking to vali-
date and, where possible, update existing models rather
than developing new models de novo.56 However, to date,
no prediction modelling studies on diagnosis of neuro-
syphilis were identified. Previous studies of neurosyphilis
risk primarily focused on significant predictors of neu-
rosyphilis diagnosis using logistic regression mainly.57–63

In the 2004 study of assessing CSF abnormalities,
Christina M. Marra and colleagues used logistic regres-
sion to define clinical and laboratory features that iden-
tified patients with neurosyphilis.58 Another study
assessing CSF abnormalities in HIV-negative patients
with neurosyphilis applied a multiple regression with a
9
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The simplified UpToDate 2020 models in Scenario 1
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 The simplified US CDC 2018 models in Scenario 1
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The simplified US 2021 models in Scenario 1
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The simplified China 2020 models in Scenario 2
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The simplified Europe 2020 models in Scenario 2
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 The simplified NT Australia 2022 models in Scenario 2
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The simplified UpToDate 2020 models in Scenario 2
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 The simplified US CDC 2018 models in Scenario 2
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The simplified US 2021 models in Scenario 2

Manage all syphilis patients as if they will have
 a diagnostic outcome of neurosyphilis

Manage all syphilis patients as if they will not have
 a diagnostic outcome of neurosyphilis

Stratified management of syphilis patients by risk of
 diagnostic outcome of neurosyphilis using the model

A B C

D FE

A B C

D FE

Fig. 4: Decision curve analysis using the simplified models in the internal validation dataset from Development cohort in Scenario 1 and
2 to guide decisions at health-care systems and individual shared decision-making levels. We assessed the potential clinical utility of the
models (i.e., the net benefit of the models) by using a decision curve analysis. The net benefit of the models incorporating the trade-offs
between true-positives and false-positives for a wide range of clinical probability thresholds is considered by the decision curve analysis.
Thus, the decision curve analysis could consider the benefits and harms of using a model for clinical decision making, which allows decisions on
management of patients with syphilis with variable neurosyphilis risk probabilities. A in the figure indicates the results for the China 2020
model; B in the figure indicates the results for the Europe 2020 model; C in the figure indicates the results for the NT Australia 2022 model; D in
the figure indicates the results for the UpToDate 2020 model; E in the figure indicates the results for the US CDC 2018 model; F in the figure
indicates the results for the US 2021 model.
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backward elimination selection procedure to identify
contribution of variables to the prediction of neuro-
syphilis.59 A study by Jeannot Dumaresq et al. on clinical
prediction and diagnosis of neurosyphilis in HIV-positive
patients with early syphilis used multivariable logistic
regression to derive odds ratios and respective 95% CI as
estimates of the relative risks of the putative predictors.60

In an observational study in 2017, Yao Xiao et al. also
implemented logistic regression model to identify novel
predictors of neurosyphilis among HIV-negative patients
with syphilis.61 Similarly, in 2019, Yong Lu et al. con-
ducted a case–control study using multivariable logistic
regression to explore diagnostic indictors for the clinical
diagnosis of neurosyphilis in HIV-negative patients.62 In
a latest single-centre, retrospective cohort study in 2022
in China, researchers used logistic regression to investi-
gate and evaluate predictors of neurosyphilis among
patients with syphilis with different HIV status.63 In these
studies, the striking gaps between the evaluation of risk
factors and the development and validation of diagnostic
models were clear.

In our study, the overall performance of the simpli-
fied models based on discrimination and calibration was
compelling, and this was reflected in the decision curve
analyses which demonstrated clinical utility across a
range of probabilities to support decision-making of
health-care provision for various model generated risk
probabilities.55,64 In the previous seven relevant studies,
those logistic regression models have not been evaluated
formally regarding clinical utility, which might limit
their clinical application. However, acceptability by cli-
nicians and patients as well as shared decision making
of clinical diagnostic models are essential prerequisites
for translation into clinical application and the models
www.thelancet.com Vol 62 August, 2023
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must align with real-world clinical understanding. Here,
in our decision curve analysis, the clinical utility of the
simplified models was explored in comparisons to two
reference strategies, i.e., manage all as if those patients
with syphilis will or will not have an a diagnostic
outcome of neurosyphilis (‘treat all’ or ‘treat none’). The
overall decision curve analysis demonstrated the net
benefits of all simplified models in identifying patients
with syphilis who are likely to develop a diagnostic
outcome of neurosyphilis, over a range of probability
thresholds.

As health resources and clinical practice vary in
different settings worldwide, we avoided recommending
a universal optimal probability threshold for which pa-
tients with syphilis should undergo investigations for
neurosyphilis. Instead, we reported the range of proba-
bility thresholds ranging from 0.33 to 0.66, showing that
the models work well within this range of disease
probability.65 In our case, a lower threshold may be
preferred to avoid missing potential cases of neuro-
syphilis, while a higher threshold may be preferred in
situations where false positives could lead to unnec-
essary treatments or interventions.

To maximize generalizability and promote translation
into real-world clinical practice, we developed the neuro-
syphilis diagnosis Shiny app (Supplementary Figure S13),
available at: https://zhen-lu.shinyapps.io/Machine-learn
ing-based-diagnosis-for-neurosyphilis/, allowing clini-
cians to calculate individualized risks of neurosyphilis
according to six authoritative diagnostic guidelines. It is
worth noting that, in real-world clinical practice, the
models should be treated as a whole, rather than making a
diagnosis prediction based on a single feature without
considering the rest key features, which means the
models need the inputs of the panel of features to run for
the discrimination between non-neurosyphilis and
neurosyphilis.

Strengths of our study include external validation in
independent cohorts from three distinct settings
(including External cohort 1 and 2 in China, and
External cohort 3 in the United States), and a large
number of participants with and without neurosyphilis.
At the same time, we acknowledged the issue of not
enough samples for External cohort 3 fromWashington,
due to the difficulty in collecting external data.
Regarding the collection of participant-level data of HIV-
negative patients with neurosyphilis, however, the
diagnostic challenges associated with neurosyphilis in
various countries or regions frequently result in a scar-
city of reliable epidemiological data. In this study, in
light of the real-word complexity of the diagnosis of
neurosyphilis, we tried our best to find enough clinical
collaborators outside of China to support data for con-
ducting this research, but could not access much more
data for our modeling analysis at that time. In this re-
gard, the samples in External cohort 3 from Washington
could not be representative of the population outside of
www.thelancet.com Vol 62 August, 2023
China, but we do believe it might be indicative of
possibly excellent generalizability of the models in
population outside of China, which awaits further vali-
dation with much larger sample size of population
outside of China in our future study. The generaliz-
ability of the models to worldwide population of patients
with syphilis still awaits further investigation in the
future study with much more data from various source
in the world. And in this regard, the diagnostic pre-
dictions of the models should be interpreted and treated
with cautious when applicable to population of US and
countries other than China.

Our simplified models were well calibrated, and
require only three variables. The negligible decrease in
discrimination from the internal validation to external
validation suggests negligible overfitting and provides
confidence in the overall robustness of the simplified
models. In addition, judging from the results of our
modeling analysis in both scenarios, this indeed help
improve our capability to simplify the complexity of real-
word clinical practice of neurosyphilis diagnosis, but
also considering differential risk indications by two
possible scenarios to be much more adaptive to the
clinical practice worldwide. Hence, the excellent per-
formance of the models in both scenarios supports the
robust and unbiased transformation method we applied.
Furthermore, regarding the selection and review of the
guidelines, within our capabilities, the clinical experts
we selected for our study possess significant clinical
experience in diagnosing neurosyphilis, and also pub-
lished high-impact original articles about the neuro-
syphilis. The clinical experts are from China and US,
which could not be representative of the four continents,
however, we do believe they represent a high level of
expertise on this topic globally. Considering the
consensus of five experts from both China and the US
(CMM, TCY, LY, BY and WK) and systematic review of
the related publications of diagnosis of neurosyphilis, in
addition to several statisticians (ZL, HZ, JW, YL), we
have sufficient reasons and confidence to believe that
the process of selection and review of the guidelines and
incorporated features was unbiased and robust. And we
followed the Transparent Reporting of a multivariable
prediction model for Individual Prognosis or Diagnosis
(TRIPOD) statement,55 which could increase the confi-
dence in the process of selection and review of the
guidelines and features.

Limitations of this study are worth acknowledging.
We acknowledged that we initially overlooked well-
known databases such as Cochrane reviews and Med-
line when conducting our literature search for neuro-
syphilis diagnostic guidelines. However, we have since
performed an additional search specifically in these
databases and found no additional relevant articles
beyond what was already included in our review
(Supplementary Table S4), which means the search of
literatures for available guidelines may be
11
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comprehensive till now. Although our study involved
totally 1648 confirmed patients with syphilis from four
settings in China and the United States, the size of
population in External cohort 3 was small. Thus, our
findings are most generalizable to individuals with
syphilis in China. We considered CSF VDRL and CSF
RPR as equivalent for the final panel of variables in
Scenario 2. The use of CSF RPR as a surrogate for CSF
VDRL in the simplified models need further research
and would benefit from complete data of the two vari-
ables if available.

We did not model neurosyphilis diagnosis in people
living with HIV. Actually, constructing neurosyphilis-
diagnostic models that could be applicable to the entire
population of patients with syphilis (including HIV-
negative and HIV-positive patients) was our original
intention. However, the diagnostic challenges associated
with neurosyphilis in various countries or regions
frequently result in a scarcity of reliable epidemiological
data, and the true burden of neurosyphilis worldwide is
likely underestimated due to underreporting and lack of
recognition.14 In light of the real-word complexity of the
diagnosis of neurosyphilis, we tried our best but could
not access enough data from HIV-positive patients with
neurosyphilis for our modeling analysis. In this regard,
we had to turn to developing models for neurosyphilis
diagnosis in HIV-negative patients with syphilis, which
resulted in that the models are not adapted to HIV-
positive patients. Finally, our models could not be used
to differentiate types of neurosyphilis (including early or
late neurosyphilis). The logic of our modeling analysis
follows the chronological order of clinical diagnosis.56

Subdivided diagnostic outcomes of different types of
neurosyphilis may compromise the diagnostic perfor-
mance of the models. In this study, we did not categorize
the diagnostic outcome of diagnosed neurosyphilis into
too detailed classifications, which is one of the limitations
of our study and awaits future modeling study to target
diagnostic outcomes of different types and/or stages of
neurosyphilis. In this regard, the models of this study
could not be applicable to discrimination among different
types and/or stages of neurosyphilis.

In conclusion, we developed simplified, validated,
diagnostic models that accurately diagnosed neuro-
syphilis in HIV-negative patients with syphilis. Both
internal and external validation demonstrated the
models are transportable across clinical settings. Strati-
fying patients with syphilis for risk-differentiated deci-
sion on the health-care by using the models offers net
benefits over a broad range of probability thresholds.
Future studies should validate our models in PLWH and
individuals with syphilis outside China.
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