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Abstract

Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host
chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each
subgroup of retrovirus is distinguished from the others by attraction to particular features on chromosomes. Despite
extensive efforts to identify host factors that interact with retrovirion components or chromosome features predictive of
integration, little is known about how integration sites are selected. We attempted to identify markers predictive of
retroviral integration by exploiting Precision-Recall methods for extracting information from highly skewed datasets to
derive robust and discriminating measures of association. ChIPSeq datasets for more than 60 factors were compared with 14
retroviral integration datasets. When compared with MLV, PERV or XMRV integration sites, strong association was observed
with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. By combining peaks from
ChIPSeq datasets, a supermarker was identified that localized within 2 kB of 75% of MLV proviruses and detected
differences in integration preferences among different cell types. The supermarker predicted the likelihood of integration
within specific chromosomal regions in a cell-type specific manner, yielding probabilities for integration into proto-
oncogene LMO2 identical to experimentally determined values. The supermarker thus identifies chromosomal features
highly favored for retroviral integration, provides clues to the mechanism by which retrovirus integration sites are selected,
and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses.
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Introduction

Retroviruses and retrotransposons are of profound importance

to eukaryotic biology, evolution, and medicine. These retro-

elements constitute at least 40% of the mass of mammalian

genomes [1] and 75% of the maize genome [2]. When

retroelements are transcribed they remodel eukaryotic genomes

by generating a cDNA and integrating it into locations scattered

throughout the host cell genome [3,4]. By doing so, retroelements

have the potential to influence local gene expression or to promote

recombination and generate deletion mutations [5–7]. In some

cases they act in trans to catalyze retrotransposition of cellular

RNAs, generating pseudogenes or new exons within existing genes

[8,9]. Since retrotransposon enhancer elements influence local

gene expression, and retrotransposon silencing can vary from cell

to cell, it has been proposed that retrotransposons contribute to the

phenotypic variation that distinguishes genetically identical

individuals [10]. Additionally, it has been suggested that

programmed release from retroelement silencing accompanies

metazoan development and leads to hypermutation in complex

somatic tissues like the brain [11,12].

Among retroelements, retroviruses have received much atten-

tion, in part due to their association with human disease. Basic

studies concerning retroviral replication have greatly advanced

understanding of the biochemistry of retrotransposition [4,13]. A

tetramer of the viral integrase protein (IN) [14] cleaves the ends of

the viral cDNA to produce recessed 39OH and free CA

dinucleotides at the terminus of each long terminal repeat (LTR)

[15]. IN catalyzes nucleophilic attack of host chromosomal DNA

by the two free 39-OH viral DNA ends, resulting in covalent

attachment of the retroviral DNA strands to the host DNA [16–

18]. The remaining free ends of the viral DNA are then repaired

by host enzymes [19–21].

Study of HIV-1, the retrovirus that causes AIDS, has led to the

development of drugs that block retrotransposition and alter

progression to AIDS [22,23]. Attempts to develop better therapies

for HIV-1 would benefit from a deeper understanding of the

integration mechanism. Gene therapy vectors based on another

retrovirus, MLV, dramatically rescued children from a life-

threatening illness, but a large percentage of the patients suffered

from insertional activation of proto-oncogenes [24–28]. This lethal

complication further emphasizes the need to better understand

retroviral integration site selection in host chromosomal DNA.

Retroviruses establish proviruses at sites throughout the host cell

genome, but integration is not random. Some regions are favored

hundreds of times over others [29,30]. For some retroviruses,
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transcribed regions are preferred [31,32], though high-level,

concurrent transcription at a given target gene inhibits integration

[33]. Nucleosome-bearing DNA is targeted more efficiently than

free DNA in vitro [34–37] perhaps because the integration

machinery preferentially targets bent DNA [38]. Indeed, high-

throughput sequencing experiments analyzing over 40,000 HIV-1

integration sites in cells show periodic distribution on predicted

nucleosome positions, consistent with favored integration into

outward-facing DNA major grooves in chromatin [39].

The retrotransposition mechanism, and integration site selec-

tion on a genomic scale, differs considerably from one class of

retrovirus to another. HIV-1 infects non-dividing cells [40,41] and

integrates preferentially into transcriptionally active genes, all

along the length of the gene [32,42,43]. In contrast, MLV

integration requires mitosis [41,44] and has a tendency to localize

near promoters, 20% of the time within 2 kB of transcriptional

start sites [31,42]. Retroviral capsid (CA) is sufficient to determine

whether a given virus infects non-dividing cells [45,46] but both

CA and IN contribute to integration site selection: an HIV-1

vector in which IN-coding sequences and a fragment of gag

encompassing CA were replaced by the homologous MLV

sequences exhibits the retrotransposition behavior of MLV [43].

Of the many host factors reported to interact with retroviral CA

or IN [47–52], the lentiviral IN-interacting protein PSIP1/

LEDGF/p75 [53–55] is the most informative regarding integra-

tion site selection. LEDGF promotes the infectivity of HIV-1 and

related lentiviruses and influences integration site selection [56–

59] perhaps by acting as a physical tether directing integration to

the chromosomal sites this protein naturally occupies. In support

of this model, fusion of heterogeneous chromatin binding domains

to the part of LEDGF that binds IN redirected the site of HIV-1

integration [60–62]. The mechanism by which gammaretroviruses

such as MLV preferentially target promoter regions is unknown.

We attempted to identify chromatin features predictive of

retroviral integration site selection by exploiting ChIPSeq datasets.

Compared to previous methods, this technology has brought

profiles of human DNA binding factors and histone epigenetic

modifications closer to genome-wide saturation [63–68]. Over 60

ChIPSeq datasets were compared with 14 retroviral integration

data sets in order to develop tools for predicting viral integration

sites throughout the genome with maximal predictive power.

Results

Development of methods for detection and display of
associations between retroviral integration sites and
chromatin features

To identify markers predictive of retroviral integration site

selection, stringent associations were sought between ChIPSeq

profiles for more than 60 chromatin-associated factors (Table 1)

[63–69] and 14 retroviral integration site datasets (Table 2)

[31,43,70–77]. Following a common convention in the retrovirus

integration literature [78], association with a given marker was

defined as integration within 2 kB (wi2kB) of the nearest marker

on the linear sequence of the chromosome.

The proviruses in the datasets used here (Table 2) were cloned

from host genomic DNA using restriction enzymes, each of which

has the potential to introduce a bias [79]. Therefore, as described

in the literature [42,43,78,80], each integration site was matched

to ten control sites designed to exhibit the same bias as the

experimental set: control sites were placed the equivalent distance

from randomly chosen recognition sites of the restriction enzyme

that was used to clone the provirus (see Methods). No distortion of

the results by the control datasets was evident, in that identical

values for provirus association with a given chromatin feature were

obtained using 10 different randomly-generated control datasets.

Integration datasets are generally compared with control

datasets using Fisher’s exact test and reported as the p-value

[42,43,77,80]. Since significance determination is dependent upon

dataset size, these measures can be easily conflated, generating

Table 1. ChIPSeq datasets from human cells used in this
paper.

Cell type ChIP Target Reference

HeLa STAT1 [63]

h3k4m1 [63]

h3k4m3 [63]

CD4+ T aHistone methylations [64]

CD4+ T bHistone acetylations [69]

HeLa POLR2 [66]

HeLa CTCF [67]

CD4+ T CBP [65]

MOF [65]

P300 [65]

TIP60 [65]

PCAF [65]

HDAC1 [65]

HDAC2 [65]

HDAC3 [65]

HDAC6 [65]

HeLa h3k9ac [65]

h3k16ac [65]

a25 different ChIPSeq profiles have been reported in this paper.
b18 different ChIPSeq profiles have been reported in this paper.
doi:10.1371/journal.pcbi.1001008.t001

Author Summary

When HIV-1, murine leukemia virus (MLV), or other
retroviruses infect a cell, the virus generates a DNA copy
of the viral RNA genome and ligates the cDNA within host
chromosomal DNA. This integration reaction occurs at sites
throughout the host cell genome, but little is known about
how integration sites are selected. We attempted to
identify markers predictive of retroviral integration by
comparing the genome-wide binding sites for more than
60 factors with 14 retroviral integration datasets. We
borrowed Precision-Recall methods from the Information
Retrieval field for extracting information from highly
skewed datasets such as these. For MLV and other
gammaretroviruses, strong association was observed with
STAT1, acetylation of H3 and H4 at several positions, and
methylation of H2AZ, H3K4, and K9. We generated a
supermarker by combining high scoring markers. The
supermarker localized within 2 kB of 75% of MLV
proviruses and predicted the likelihood of integration
within specific chromosomal regions in a cell-type specific
manner. This study identified chromosomal features highly
favored for retroviral integration. It also provides clues to
the mechanism by which retrovirus integration sites are
selected, and offers a tool for predicting cell-type specific
proto-oncogene activation by retroviruses.

Retrovirus Integration Site Selection
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extraordinarily low p-values and making it difficult to compare the

importance of two factors [78]. Receiver operating characteristic

area methods (ROC) have also been used to identify associations

[78,80,81], but these methods also have drawbacks when it comes

to discriminating between markers for retroviral integration. With

the datasets used in these studies, the number of true negatives

(control sites not associated with the marker) is considerably higher

than the number of false positives (control sites associated with the

marker). Given that the false positive rate = false positives / [false

positives+true negatives], two markers which differ by as much as

10-fold in terms of the number of false positives will fail to be

differentiated from one another using ROC [82].

To address the problems associated with the analysis of these

highly skewed data sets, we borrowed the concepts of Precision

and Recall from the field of Information Retrieval [82–84]. In the

context of this discussion, Precision is defined as the number of

experimentally-determined integration sites associated with a

marker divided by the sum of all associated experimental and all

associated control sites (see Methods). Recall is the number of

marker-associated experimental integration sites divided by all

experimental integration sites. The Fb score, a convenient way to

aggregate Precision and Recall, is the weighted harmonic mean of

the two measures [85]. Usual values for b are 0.5, 1 or 2 [86]. To

limit the influence of true negatives in the analysis of these skewed

datasets, we emphasized Precision over Recall by setting b= 0.5.

The F score tracks better with statistical significance when b= 0.5,

than 1 or 2 (see the comparison of results using different values for

b, as well as with other metrics, described below, as well as Text

S1). Moreover we normalized the number of false positives with

respect to the number of experimental integration sites so as to

make the F score independent of control sample size. For the

analysis here, markers with F scores between 0.5 and 1 were

considered to be associated with integration sites.

To visualize genome-wide association of proviruses with

potential markers, chromosome projection mandalas were devel-

oped (Figure 1A, see Methods). Each dot on the mandala

represents a retroviral integration site with the following polar

coordinates: angular distance corresponds to genomic location on

the indicated chromosome; radial distance from the contour of the

circle is the distance in nucleotides from the nearest site of the

marker in question, log-scaled from 0 to 1 megabase.

Association of retroviral integration sites with ChIPSeq
datasets

Currently, the best chromosomal marker for retroviral integra-

tion site selection is the association of CpG islands and

transcription start sites (CpG+TSS) with gammaretroviruses

[31,43,71]. By examining published datasets for MLV, 21 to

27% of integration sites fall within 2 kB (wi2kB) of CpG+TSS,

with probabilities ,3610222 to ,4610242 (Table 3). Despite

these extremely low p-values, F scores calculated for these datasets

fall between 0.36 to 0.51 (Table 3 and Figure 1E), indicating that

CpG+TSS is not a powerful predictor of MLV integration sites.

Stronger association with CpG+TSS was observed with porcine

endogenous retrovirus, PERV (50% wi2kB; p,102250; F score

0.72), and xenotropic MuLV-related virus, XMRV (33% wi2kB;

p,10246; F score 0.58), two viruses from the same gammare-

trovirus family as MLV (Table 3 and Figure 2). No significant

association with CpG/TSS was observed for proviruses generated

by non-gammaretroviruses, including HIV-1, for which the F

score was 0.11 (Table 3, Figure 3), or with ASLV, HTLV, or

Foamy virus (Table 3, Figure S1).

ChIPSeq datasets for 60 chromatin-associated factors (Table 1)

were compared with 14 provirus datasets for MLV, PERV,

XMRV, HIV-1, HTLV-1, ASLV, Foamy virus, and HIV/MLV

chimeras (Table 2). Acetylation of H3 and H4 at several positions,

and methylation of H2AZ, H3K4, and K9, were strongly

associated with gammaretroviral integration sites, all with F

scores .0.80 (Figures 1 and 2, Table 3 and Tables S1 and S2).

H3K4me3 in particular was strongly associated with MLV

integration sites (68% wi2kB; p,102324; F score 0.83) and with

the integration sites of PERV (60% wi2kB; p,102350; F score

0.82) and XMRV (64% wi2kB; p,102170; F score 0.81) (Figures 1

and 2, Table 3). The effect of window size on the F score was

examined for factors strongly associated with MLV and the other

gammaretroviruses. Interestingly, the F score was maximal when it

was calculated using a window of +/22 kB for proviruses flanking

the sites of these chromatin features (Figure 4).

In contrast to the gammaretroviruses, HIV-1 integration sites

were not associated with H3K4me3 (9% wi2kB; p.0.05; F score

0.21)(Figure 3 and Table 3). Among the markers for which

ChIPSeq datasets were available from HeLa cells, H3K4me1 had

the strongest association with HIV-1 proviruses (48% wi2kB;

p,10231; F score 0.6), though H3K4me1 was the sole chromatin

marker that yielded F score values greater than 0.5 across all

queried viruses (Table 3, Table S3). H3K4me3, and other

chromatin modifications linked to transcriptionally active promot-

ers [64,87–89], were reported to be associated with HIV

proviruses when a window of 50 kB flanking the proviruses was

considered [81,90]. This could be explained by the fact that HIV-

1 proviruses localize to active transcription units with equal

distribution along the length of the genes [32,42,43], and that the

size of the average transcription unit is on the order of tens of

kilobases.

To examine this further, the F score for HIV-1 versus

H3K4me3 in HeLa cells was plotted as a function of window

size (Figure 5). For comparison, a similar plot was generated for a

hypothetical marker at the TSS of transcribed genes in HeLa cells,

taking into account the length of these genes, and considering a

uniform distribution of proviruses on each gene. For both

H3K4me3 and the hypothetical TSS marker, the F score

plateaued at a window size of 20 kB, the median gene length.

Thus if the window size is large enough to encompass the TSS and

Table 2. Retrovirus integration datasets in human target cells
used in this paper.

Retrovirus Target cell Reference

MLV HeLa [31]

MLV HeLa [43]

MLV CD4+ T [71]

MLV CD34+ hemato. [74]

HIVmINmGAG HeLa [43]

HIVmIN HeLa [43]

HIVmGAG HeLa [43]

HIV HeLa [43]

HIV CD4+ T [75]

PERV HEK293 [77]

XMRV DU145 [76]

HTLV HeLa [73]

ASLV HeLa [70]

FV CD34+ hemato. [72]

doi:10.1371/journal.pcbi.1001008.t002

Retrovirus Integration Site Selection
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Figure 1. Visualization of association between retroviral integration sites and chromosomal markers. (A) Construction of chromosome
projection mandalas to visualize the proximity of individual proviruses to the nearest marker on the chromosome. The linear sequence of each
human chromosome was linked and circularized. Proviral integration sites were located on the circle according to their position on each chromosome
(empty circles) and then a marker (filled circles) was placed towards the center of the circle, at a distance from the perimeter that was equal, in log
scale from 0 to 1 megabase, to the distance from the closest marker (empty boxes). Blue filled circles represent proviruses that were within 2kB from
the nearest marker; red circles represent proviruses that are .2kB from the nearest marker. Examples of chromosome projection mandala for (B) MLV
(Lewinski et al. 2006) versus H3K4me3, the arrow indicates the chromosomal mapping direction (C) Control versus H3K4me3 (D) MLV versus STAT1
and (E) MLV versus CpG+TSS. The number of MLV proviruses analyzed in this dataset (Lewinski et al. 2006) was 588. The F score and the percentage
of proviruses within 2 kB are presented under each mandala.
doi:10.1371/journal.pcbi.1001008.g001

Retrovirus Integration Site Selection
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half of the gene length, the F score becomes significant. This could

explain the window-size dependence of HIV-1 association with

H3K4me3.

We also analyzed an integration site map for an HIV-1 vector in

which IN-encoding pol sequences and part of gag were replaced by

homologous sequences from MLV [45]. It was shown previously

that substitution of these two viral components from MLV is

sufficient to change the integration site preference of HIV-1, such

that it targets TSS with a frequency like MLV [43]. Replacement

with these MLV genes was sufficient for HIV-1 proviruses to

associate with methylated histones (65% wi2kB, p,102182, F

score 0.82) in a manner that was indistinguishable from MLV

(Figure 3).

STAT1 association with gammaretroviruses
A remarkable association was found between MLV integration

sites and STAT1 binding sites in IFN-c stimulated HeLa cells

(68% wi2kB; p,102324; F score 0.83) (Figure 1 and 2, Table 3).

Strong association with STAT1 binding sites was also observed for

porcine endogenous retrovirus (60% wi2kB; p,102350; F score

0.82) and XMRV (64% wi2kB; p,102170; F score 0.81).

Interestingly, if MLV was compared with STAT1 bindings sites

in HeLa cells that had not been treated with IFN-c the association

was greatly decreased (34% wi2kb; p,102120, F score: 0.69).

HIV-1 proviruses showed no association with STAT1 (8% wi2kB;

p.0.4; F score 0.27). Substitution of HIV-1 IN and parts of gag

with the corresponding genes from MLV was sufficient for HIV-1

proviruses to associate with STAT1 binding sites (64% wi2kB,

p,102182, F score 0.81) (Figure 3, Table 3).

Attempts to detect a protein-protein interaction between

STAT1 and MLV IN were unsuccessful. STAT1-deficient cell

lines, either Stat12/2 mouse embryonic fibroblasts [91], HeLa cells

with stable STAT1 knockdown using lentiviral vectors [92], or

well-characterized, STAT1 mutant, HT1080 cells [93], were

challenged with MLV and, as a control, HIV-1. No clear defect

associated with STAT1-deficiency was detected when MLV

infectivity was compared with HIV-1 (data not shown). These

results suggest that STAT1 itself is not directly responsible for

MLV integration site preference but that its chromatin preferences

resemble those of MLV.

The F score is robust and highly discriminating
The stability of the F score for H3K4me3, an excellent marker,

and for TSS/CpG, a poor marker, was examined as the size of a

dataset containing 588 MLV proviruses [43] was decreased. The

ratio of the size of the provirus dataset with respect to the control

dataset was fixed at ten. While the p-value varied enormously as

the size of the provirus dataset decreased, the F score was constant

for both H3K4me3 and TSS/CpG over the full range from 50 to

500 proviruses (Figure 6A). The size of the provirus dataset was

then fixed at 588 [43] and the F score was plotted versus the ratio

(from 0.1 to 10) of the experimental and control datasets. Under

these conditions the F score for either factor was constant except

for a small increase when the ratio of the experimental to control

datasets decreased below 0.3 (Figure 6B). The p-value for

H3K4me3 changed markedly with the change in ratio of the

datasets. Thus, while the p-value is strongly biased by the size of

the provirus dataset or by the ratio of experimental to control sites,

the F score is a remarkably stable measure. Similar stability was

observed for the F score of all markers as compared to all proviral

integration datasets (data not shown).

As demonstrated for the F score (Figure 6), the area under the

curve (AUC) ROC method used previously to evaluate markers

associated with retroviral integration sites [78,80,81] is a robust

measure that is insensitive to dataset size. Like the F score,

AUC(ROC) also works well to assess markers that are weakly or

moderately associated with integration sites (Text S1). But, as

demonstrated for the highly associated marker H3K4me3,

AUC(ROC) does not respond to the increase in false positives

that is expected with increasing window size (Figure 7A).

Moreover, this insensitivity to false positives leads AUC(ROC) to

overestimate the association of markers that are more common in

the genome. Consequently, AUC ranks markers differently from

statistical significance, as shown in Figure 8 and discussed in more

detail in Text S1. In contrast, the p-value and the F0.5 score

incorporate an adjustment for the increase in false positives as

window size increases, and both measures achieve a maximal

value at a window size of 2 kB (Figure 7A). A standard regression

plot shows that the F0.5 score tracks with the p-value almost

perfectly (R2 = 0.97), whereas the AUC(ROC) diverges consider-

ably (R2 = 0.37) (Figure 7B). The F0.5 score and the p-value adjust

similarly for the increasing number of false positives.

Table 3. Association of retroviral integration sites with some ChIPSeq profiles.

Provirus Dataset CpG+TSS H3K4 me3 H3K4 me1 STAT1 POL II CTCF

MLV HeLa [31] 24%; 0.49; 6E-24 63%; 0.84; ,1E-350 88%; 0.80; 1E-240 63%; 0.83; 1E-310 46%; 0.70; 1E-198 5%; 0.26; N.S.

MLV HeLa [43] 27%; 0.51; 4E-42 68%; 0.83; 1E-249 90%; 0.78; 1E-226 68%; 0.83; 4E-324 49%; 0.71; 2E-164 7%; 0.19; 4E-5

MLV CD4+T [71] 21%; 0.36; 3E-22 65%; 0.82a; 1E-110 75%; 0.80a; 1E-90 47%; 0.73; 2E-46 34%; 0.64; 2E-43 3%; 0.17; N.S.

HIV [43] 6%; 0.11; N.S. 9%; 0.24; N.S. 48%; 0.60; 1E-31 8%; 0.27; N.S. 6%; 0.16; N.S. 2%; 0.06; N.S.

HIV mIN [43] 14%; 0.29; N.S. 27%; 0.50; 1E-14 49%; 0.51; 1E-11 30%; 0.51; 1E-12 13%; 0.36; 2E-6 5%; 0.17; N.S.

HIV mGAG [43] 4%; 0.04; N.S. 11%; 0.30; N.S. 43%; 0.56; 1E-11 8%; 0.11; N.S. 3%; 0.14; N.S. 1%; 0.04; N.S.

HIV mINmGAG [43] 21%; 0.43; 4E-14 65%; 0.82; 1E-221 89%; 0.79; 1E-150 64%; 0.81; 1E-183 33%; 0.67; 4E-101 4%; 0.16; N.S.

PERV [77] 50%; 0.72; ,1E-350 64%; 0.82; ,1E-350 79%; 0.78; ,1E-350 60%; 0.82; ,1E-350 56%; 0.70; ,1E-350 12%; 0.3; 3E-40

XMRV [76] 33%; 0.58; 1E-46 64%; 0.81; 8E-175 83%; 0.76; 1E-144 64%; 0.81; 9E-171 53%; 0.75; 1E-135 7%; 0.36; 2E-3

HTLV [73] 8%; 0.21; N.S. 30%; 0.59; 1E-15 62%; 0.70; 6E-26 31%; 0.60; 4E-15 13%; 0.39; 1E-6 6%; 0.22; N.S

ASLV [70] 10%; 0.10; N.S. 16%; 0.43; 1E-4 39%; 0.56; 1E-4 13%; 0.37; N.S. 6%; 0.13; N.S. 2%; 0.08; N.S.

FV [72] 11%; 0.27; 2E-5 17%; 0.42; 1E-17 39%; 0.56; 1E-22 17%; 0.44; 6E-17 9%; 0.28; 1E-14 4%; 0.17; N.S.

Values indicate percent of integration sites within 2 kB of the indicated factor; the F0.5 score; and the significance (p-value). N.S. means p value.0.01.
aChIPSeq profiles from CD4+ T cells. All other ChIPSeq profiles from HeLa cells.
doi:10.1371/journal.pcbi.1001008.t003
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Indeed among a set of measures that included F0.5, F1, F2, Area

Under Curve (AUC), Area Under Precision/Recall (AUPR), Odds

Ratio (OR), Shannon Mutual Information (SMI), and Difference

of Proportions (DOP), the F0.5 score showed the strongest link with

statistical significance (see Methods). We analyzed one of the MLV

integration dataset in HeLa cells [43] (the same results were

obtained using the other HeLa dataset [31]) and the MLV

integration dataset in CD4+ T cells [71]. The strength of

association of 9 significant markers (in terms of p-value) from

HeLa cells, and 31 significant markers from CD4+ T cell, was

assessed. Markers were ranked according to each of the above

methods and the results of each were compared with the ranking

obtained using significance 2log(p value). This was done by fixing

the matched control data set size at 10-times the experimental

dataset size and using window sizes of 2, 5, 10, and 20 kilobases.

Results for the analysis are reported in Table 4 and in Text S1.

Several conclusions can be drawn from this analysis. Concern-

ing markers that were highly associated with proviruses, the

ranking yielded by the F0.5 score closely tracked with significance

(Table 4). By increasing the weight of recall over precision by

increasing the beta value (F1 or F2) the F score tracked less well

with significance (it was the F0.5 score that was used throughout

this manuscript). The SMI also tracked well, but, unlike the F

score, the results with this method vary with dataset size (see Text

S1). The AUC, OR, AUPR, and DOP were clearly not as good as

the F0.5 score.

Concerning markers that are moderately or weakly associated

with proviruses (Text S1), the ranking based on the F0.5 score was

Figure 2. Chromosome projection mandala and F score calculated within 2 kB for the indicated markers (columns) versus the
indicated proviruses (rows). The source of the provirus datasets is listed (see Table 2 and the text) and N indicates the number of proviruses
considered for each analysis. MLV [31] proviruses were cloned from HeLa cells, XMRV proviruses from DU145, and PERV proviruses from HEK 293.
H3K4me3 and STAT1 ChIPSeq datasets were from HeLa (see Table 1 and text). The F score and the percentage of proviruses within 2 kB are presented
under each mandala.
doi:10.1371/journal.pcbi.1001008.g002
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similar to that obtained by significance, AUC, AUPR, OR, or

DOP (Table 4). SMI scored less well for these markers.

Figure 8 visualizes the deviation of AUC, AUPR or F0.5 from

significance. Red squares indicate cases in which the ranking calculated

by the specified metric differs from the rank obtained by significance.

All results indicate that, for the datasets evaluated here, the F0.5 score is

a superior measure at discriminating among factors for differences in

magnitude of association with genomic sites of integration.

Figure 3. Chromosome projection mandala and F score calculated within 2 kB for the indicated markers (columns) versus the
indicated proviruses (rows). All proviruses were cloned from HeLa cells (Table 2 and text). H3K4me3 and STAT1 ChIPSeq datasets were from HeLa
cells (Table 1). N indicates the number of specific proviral integrations considered for each analysis. The F score and the percentage of proviruses
within 2 kB are presented under each mandala.
doi:10.1371/journal.pcbi.1001008.g003

Retrovirus Integration Site Selection

PLoS Computational Biology | www.ploscompbiol.org 7 November 2010 | Volume 6 | Issue 11 | e1001008



Generation of a supermarker for retrovirus integration
Given the effectiveness of the F score for identifying and ranking

individual factors associated with retrovirus integration site

selection, markers with the best F scores were combined in an

attempt to generate a supermarker (see Methods for more details).

An estimate of the probability of proviral integration into the host

genome (P(V)) was derived based on the genomic distribution of

combinations of ChIPSeq peaks for the best scoring markers with

respect to particular experimental provirus datasets. The resulting

probability mass function (at base- pair resolution) is

Figure 4. Influence of window size on the F score. Association (F score) between MLV proviruses [43] and either H3K4me3 (green dashed line
with stars) or the supermarker in HeLa cells (solid blue line with solid circles) as a function of window size in kilobases. The true positive fraction
versus the false positive fraction is shown for each point.
doi:10.1371/journal.pcbi.1001008.g004

Figure 5. Association (F score) between HIV-1 proviruses and two markers as a function of window size in kB. The first marker is
H3K4me3 sites in HeLa (green solid line). The second is a virtual marker placed in the promoter region of transcribed genes in HeLa cells (blue dashed
line), assuming a uniform distribution of integration sites in transcribed regions. The median length of transcribed genes in HeLa is ,20kB.
doi:10.1371/journal.pcbi.1001008.g005
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where V is the set of proviral integration sites, Fj is the F score

associated with each marker Mj, for the set of peaks Cj. x is the

physical position on chromosomal DNA and K is a normalization

constant. From this composite distribution, the peaks with the

largest amplitude were identified, and the subset of peaks yielding

the maximal F score in the test dataset was defined as the

supermarker peak set.

Two strategies were used to validate the supermarker

procedure. First we calculated the supermarker and the relative

peak set on each single proviral dataset and then we evaluated the

association with the remaining datasets. The second strategy was a

Figure 6. Stability of F score as function of dataset size. (A) Plot of the absolute value of the p-value exponent (right Y scale) or the F score
(left Y scale) for H3K4me3 or CpG+TSS, as a function of MLV provirus dataset size. The experimental MLV dataset size (x-axis) was reduced by random
sampling and the ratio of control dataset points was fixed at 10. (B) Examination of the same parameters as a function of the ratio between
experimental and control dataset size (x-axis). The experimental dataset size was reduced by random sampling from 1:1 down to 0.1:1. From 1:1 up to
1:10 the control dataset size was proportionally increased by matched random generation.
doi:10.1371/journal.pcbi.1001008.g006

Retrovirus Integration Site Selection

PLoS Computational Biology | www.ploscompbiol.org 9 November 2010 | Volume 6 | Issue 11 | e1001008



standard 10-fold cross-validation applied to each single dataset.

The two evaluations yielded the same results (Table 5 and Table

S5). Further, we compared the strength of association of the

supermarker peak set for gammaretroviral datasets to the

performance of the Random Forest machine learning algorithm

[94]. The two methods obtained superimposable results (Table S6,

see Methods for details).

With respect to MLV integration in HeLa cells, H3K4me1,

H3K4me3, H3K9ac and STAT1 were the markers with the best F

scores (.0.80)(Table S1 and S2). Examination of the ChIPSeq

peaks derived from all combinations of these five candidates

revealed that the best supermarker was generated by combining

H3K4me3, H3K4me1, and H3K9ac (75% wi2kb; p,102284; F

score 0.87) (Figure 9 and Table 5). Figure 9A shows the

distribution of supermarker density and MLV integration sites

across the human genome, with an expansion of chromosome 1 to

help visualize detail in Figure 9B. The Pearson correlation for the

supermarker density and MLV integration site density across the

whole genome was 0.75 (p = 0, with both functions averaged over

a non-overlapping 10 kB window). Figure 9C shows the

correlation for chromosome 1 in isolation. As with the single

marker H3K4me3, the supermarker yields a maximal F score

using a window size of 2 kB (Figure 4).

Inclusion of STAT1 in the HeLa supermarker increased the

number of false positives over the number of true positives and

thus decreased the composite F score. This suggests that any

information carried by STAT1 is contained within the other

markers.

Among the ChIPSeq data in CD4+ T cells, the best individual

markers associated with MLV were H3K4m1, H3K4m2,

Figure 7. Effect of the window size on F score. (A) Plot of Area Under Curve (AUC) or F score (both on left Y scale) or the absolute value of the p-
value exponent (right Y scale) for MLV with respect to H3K4me3 as a function of window size in basepairs. (B) Pearson correlation for AUC or F score
(both on X axis) versus the absolute value of the p-value exponent (Y axis).
doi:10.1371/journal.pcbi.1001008.g007
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H3K4m3, H3K9ac, H2BK120ac, H2BK5ac, H3K18ac,

H3K27ac, and H2AZ (all .0.80, Table S1 and S2). The best

supermarker for MLV on CD4+ T cells was composed of

H3K4m1, H3K4m2, H3K4m3, and H3K9ac (71% wi2kb;

p,102122; F score 0.84).

The F score detects differences between cell types
The F scores reported here (Tables 3 and 4) were calculated

using ChIPSeq and provirus datasets that were matched for cell

type. In a previous report, when AUC(ROC) was used to evaluate

epigenetic marks mapped in T cells, the correlation with

proviruses cloned from T cells was no greater than the correlation

with proviruses cloned from other target cell types such as the

human embryonic kidney cell line HEK 293 or the fibrosarcoma

cell line HT1080 [90]. Differences due to experimental error were

in fact greater than differences due to cell type [90].

To determine if the F score has the ability to discriminate

between cell types, MLV provirus data sets from HeLa and CD4+

T cells were compared with the supermarker for each of these cell

types, in all combinations. As mentioned above, when an MLV

provirus dataset obtained from infection of HeLa cells [43] was

compared with the supermarker from HeLa cell ChIPSeq data,

very strong association was observed (75% wi2kB; p,102284; F

score 0.87) (Table 5 and Figure 10). When the same provirus

dataset was compared with the supermarker derived from CD4+ T

cell ChIPSeq data the strength of the association was much

decreased (32% wi2kB; p,10257; F score 0.61) (Table 5 and

Figure 10). The same pattern was seen for the chimera

HIVmINmGag, for which association with the supermarker in

HeLa cells (70% wi2kB; p,102263; F score 0.86)(Table 5 and

Figure 10) was much greater than association with the super-

marker in CD4+ T cells (27% wi2kB; p,10224; F score 0.56)

(Table 5 and Figure 10). The opposite pattern was also seen in that

MLV proviruses cloned from CD4+ T cells [71] were strongly

associated with the supermarker derived in these cells (71% wi2kB;

p,102112; F score 0.84) (Table 5 and Figure 10), and less well

associated with the supermarker from HeLa cells (39% wi2kB;

p,10242; F score 0.67) (Table 5 and Figure 10).

A similar analysis was attempted with provirus datasets for the

gammaretroviruses XMRV and PERV (Table 5). The XMRV

provirus data was obtained in the human prostate cancer cell line

DU145 [76] and ChiPSeq datasets are not available for these cells.

Despite the mismatched cell lines, when the XMRV dataset from

DU145 cells was compared with the epigenetic markers mapped

in HeLa cells strong correlation was observed with the super-

marker (66% wi2kB; p,102190; F score 0.83). When the

supermarker was derived from CD4+ T cell data, the association

with XMRV was much less significant (41% wi2kB; p,10285; F

score 0.70). Similarly, the PERV provirus dataset cloned from

HEK 293 cells was better associated with the supermarker from

HeLa cells (66% wi2kB; p,102350; F score 0.83) than from CD4+
T cells (51% wi2kB; p,102350; F score 0.75).

To understand why some mismatched cell comparisons gave

higher F scores than others, CD4+ T cells, HeLa, DU145, Jurkat,

HEK 293, and CD34+ hematopoietic stem cells were clustered

based on global gene expression profiles (http://www.ncbi.nlm.

nih.gov/geo). The resulting dendrogram (Figure S2) demonstrated

that the cells clustered into two groups, one consisting of HeLa,

DU146, and HEK 293 cells, and the other CD4+ T cells, Jurkat

cells, and CD34+ cells. Based on expression profiles DU145 cells

are more similar to HeLa cells than to CD4+ T cells, offering an

explanation for the higher F score when XMRV was compared

with HeLa.

Use of the supermarker to predict the likelihood of
integration at specific loci within specific cell types

As a first step towards examining the utility of the supermarker

in the context of published clinical or experimental data,

supermarker density was examined in proto-oncogenes that have

been activated by retroviral insertion. 20 SCID-X1 patients were

successfully treated with autologous bone marrow CD34+
hematopoietic stem cells transduced ex-vivo with an MLV vector

expressing the therapeutic gene IL2RG. 5 of these patients

developed T cell leukemia and 4 possessed insertional mutations

from the MLV vector at LMO2 [24–28], a T cell oncogene [95].

Figure 8. Comparison of different methods for ranking markers associated with integration. Markers for MLV integration in HeLa cells (A)
or in CD4+ T cells (B) were ranked by Area Under Curve (AUC), Area Under Precision and Recall Curve (AUPR), or using the F0.5 score. The rankings
obtained by these methods were compared with the ranking obtained by the Fisher’s exact test: each crosslink between markers in the grid
represents a comparison. Red squares indicate when the ranking calculated by the specified metric disagrees with the ranking calculated by
significance. Markers were arranged in order of decreasing significance (from left to right).
doi:10.1371/journal.pcbi.1001008.g008

Table 4. Comparison of different methods for ranking markers of MLV integration.

Provirus Dataset Window Size AUC AUPR F0.5 F1 F2 OR SMI DOP

HeLa [43] 2K 0.80 0.88 0.95 0.83 0.80 0.83 0.95 0.80

5K 0.73 0.91 0.95 0.73 0.70 0.75 0.95 0.68

10K 0.68 0.93 0.95 0.83 0.66 0.73 0.91 0.65

20k 0.68 0.78 1.00 0.83 0.60 0.60 1.00 0.59

CD4+T [71] 2K 0.88 0.91 0.96 0.87 0.85 0.81 0.95 0.84

5K 0.85 0.91 0.95 0.81 0.76 0.89 0.95 0.76

10K 0.82 0.89 0.95 0.81 0.74 0.92 0.95 0.72

20k 0.81 0.90 0.92 0.87 0.70 0.88 0.94 0.66

Similarity of the ranking of integration markers obtained by each metric with that yielded by Fisher’s statistical significance. The formula used to calculate the similarity
is in the methods. By this formula, 0ƒDƒ1, and D = 1 when the ranking perfectly matches that obtained by significance. AUC - Area Under the Curve, AUPR - Area
Under Precision and Recall curve, F - F score at b= 0.5, 1, 2, OR - Odd Ratio, SMI - Shannon Mutual Information, DOP - Differences Of Proportions.
doi:10.1371/journal.pcbi.1001008.t004
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The fifth patient had a provirus near CCND2, another lymphoid

oncogene [96] that encodes cyclin D2.

When ChIPSeq datasets from HeLa cells were used to generate

the supermarker, no high probability sites were identified near the

promoters of LMO2 or CCND2 (Figure 11). For LMO2 the nearest

sites in HeLa cells were .150 kbp upstream and .200 kbp

downstream of the TSS. For CCND2 the nearest sites in HeLa

were .800 kbp upstream and .50 kbp downstream of the TSS.

Sufficient ChIPSeq datasets to generate a supermarker were not

available for CD34+ hematopoietic stem cells. Given the relative

similarity of the transcription profile (Figure S2) we used the

supermarker data generated from CD4+ T cells. The F score when

crossing from CD34+ cells to CD4+ cells decreases from 0.85 to

0.78 (57% wi2kb, p,102102), but is much better than when using

HeLa cell data (38% wi2kB; p,10248 ; F score 0.66).

With respect to the LMO2 TSS a very prominent supermarker

peak was observed at 21730 bp (Figure 11A). Based on the

probability of the supermarker we estimate that 1 out of 105 MLV

proviruses would target this gene in CD34+ cells or CD4+ T cells,

as compared to a much less frequent 1 out of 107 MLV proviruses

in HeLa cells. Nearly identical probabilities were calculated based

on experiments in which MLV proviruses were cloned from T cell

lines and HeLa cells [97]. These authors observed a hotspot for

MLV integration located between 21740 to 23000 of the LMO2

promoter within CD4+ T cells but not within HeLa. Though

experimental data for calculating the probability of integration

into CCND2 is not available, it is interesting that multiple, high-

probability supermarkers are located wi2kB of the promoter

(Figure 11B).

Discussion

Here we attempted to identify epigenetic markers predictive of

retroviral integration site selection. To this end, the growing body

of ChIP-Seq and retroviral integration datasets was exploited.

Borrowing from the field of information retrieval, we derived a

measure, the F score, that allowed us to identify and rank

candidate markers for association with proviruses. Covalent

modification of histone H3, most prominently H3K4me1,

H3K4me3, and H3K9ac, as well as binding sites for the

transcription factor STAT1, were tightly linked to proviruses

from MLV, XMRV, and PERV. The F score also permitted us to

combine factors to generate a supermarker that predicted 75% of

integration sites with precision and with specificity for integration

site preference within a given cell type. The ChIPSeq datamining

approach used here identified markers for gammaretroviral

integration site selection that are superior to any markers

previously reported.

Advantages of the F score
Prior to this study, the best predictor for retroviral integration

site selection was the association of TSS/CpG with gammare-

troviruses such as MLV [31,43,71]. Given a window of 2 kB,

TSS/CpG predicts 21 to 27% of MLV integration sites. But even

this modest prediction comes with the cost of a high background

rate (low precision) and consequently a borderline F score (0.51

under the best conditions). In contrast, H3K4me3 predicts 63 to

68% of MLV integration sites with high precision (F score 0.84).

H3K4me1 predicts 90% of MLV integration sites but, in isolation,

this marker has a higher background rate (F score 0.78) due to the

larger size of the H3K4me1 ChIPSeq dataset (300,000 binding

sites for H3K4me1 versus 70,000 for H3K4me3).

Previous studies have reported the same histone modifications

as markers associated with integration sites [81,90]. The Precision-

Recall methods used here have been shown to be better suited

than ROC when negative results far exceed positive ones [82].

Precision-Recall methods have been shown to perform better than

ROC in a number of other areas in biology, including the

prediction of functional residues within proteins [98] or predicting

the function of genes [99]. In our case, the resolution offered by

the Precision-Recall-based F score allowed us to rank markers

according to statistical significance (Text S1). Then, by ranking

markers with respect to their F score, we were able to combine

them to generate a supermarker which predicts 75% of MLV

integration sites wi2kB with very high precision (F score 0.87). It

will certainly be important to find an explanation for the

remaining 25% of integration sites not accounted for by the

markers identified here.

Significance of the supermarker
The supermarker was used here to predict the probability of

gammaretroviral integration into a specific locus, in a cell-type

specific manner (Figure 11). Our in silico probability estimates for

integration near a particular proto-oncogene, LMO2, were nearly

identical to the probabilities calculated from experimental data

[97], and even concurred with respect to the cell-type specificity of

the experimentally determined probability. Additional experimen-

tal confirmation of supermarker predictions is called for but the

case of LMO2 suggests that the supermarker is indeed the first

powerfully predictive tool for retroviral integration site selection. A

supermarker generated from cell-type-specific ChIPSeq data for a

Table 5. Association of supermarker with gammaretroviruses.

Matcheda Unmatched

Retrovirus F0.5 score p-value wi2kb(%) F0.5 score p-value wi2kb(%)

MLV HeLa [43] 0.87 3E-285 75 0.61 1E-57 32

MLV HeLa [31] 0.85 ,1E-350 70 0.60 1E-88 29

MLV CD4+T [71] 0.84 2E-113 71 0.67 1E-42 39

HIVmINmGAG [43] 0.86 4E-264 70 0.56 1E-24 27

XMRV [76] 0.83 1E-190 66 0.70 1E-85 41

PERV [77] 0.83 ,1E-350 66 0.75 ,1E-350 51

aMatched means that the supermarker was calculated using proviruses cloned from the same cell type as the ChIPSeq dataset. In the case of XMRV and PERV, proviruses
were cloned from a cell type that is similar to the ChIPSeq dataset, according to the transcriptional profile (see text and Figure S2).

doi:10.1371/journal.pcbi.1001008.t005
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handful of markers has the potential to transform how decisions

are made concerning clinical gene-therapy trials.

The calculations here were based on distinct datasets from

multiple sources (Tables 1 and 2). It is possible that by generating

matched datasets, i.e., integration datasets and ChiPSeq datasets

from identical cells and by the same laboratory, or by combining

ChIPSeq data for new factors in new combinations, the ability of

the supermarker to predict integration sites will be improved even

further. On the other hand, STAT1, a powerful marker in

isolation, increased the false positive rate and decreased the F

score. In addition to the ChIPSeq datasets in Table 1, we checked

if the F score was improved by examining other previously

reported features, including GC content, AT content, putative

consensus sequences for integration or transcription factors

[80,100]. When a window of 2kB was considered, these features

failed to yield a significant F score (all were #0.5) for all of the

retroviral provirus datasets, and these factors considerably lessened

the F score when combined with the highly associated markers

(Table S7).

Mechanistic implications
The strength of the associations with H3K4me3, H3K4me1,

and H3K9ac indicates that gammaretroviral integration is not a

quasi-random process, but rather, a deterministic process that

follows the epigenetic histone code. Though some of these histone

modifications are linked to transcriptionally active promoters

[64,87–89], the link to transcription per se seems not to be relevant

since 60 to 70% of supermarker loci are not associated with TSS/

Figure 9. Visualization of association between retroviral integration sites and the chromosomal supermarker. (A) Chromosome
projection mandala showing MLV proviruses from HeLa cells plotted as in Figure 1 and 2 with supermarker density (gray shading) from the 2 kB circle
to the contour of the circle. (B) Chromosome projection mandala for chromosome 1 in isolation. (C) Plot showing density of supermarker (red dashed
line) vs MLV proviruses (solid blue line) in HeLa cells, calculated over a 10 kB sliding window on chromosome 1. Pearson correlation is 0.81 for
chromosome 1 and 0.75 for the whole genome.
doi:10.1371/journal.pcbi.1001008.g009
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CpG. Consistent with this point, our supermarker is highly

associated with the LMO2 promoter in CD4+ T cells, but not in

HeLa cells, and these cell-type-specific differences in marker

binding do not correlate with differential LMO2 expression in

these cells [97]. The 2 kB window maxima for the F score of the

supermarker is intriguing and suggests that it is a physical property

of chromatin that is favored for integration by gammaretroviruses,

perhaps linked to the position of the supermarker relative to

nucleosomes or bent DNA [34,36–38].

The factors constituting the supermarker, along with the other

histone modifications listed in Tables S1 and S2 that are also

associated with MLV integration, suggest a mechanistic link

between gammaretroviral integration and chromatin-associated

complexes with H3K4 methyltransferase and histone acetyltrans-

ferase activity. H3K4 methylation is clearly linked with histone

acetylation, in that promoters which are methylated are much

more likely to become acetylated [65] and knockdown of WDR5,

a factor required for H3K4 methylation [101] leads to altered

histone acetylation [65,102]. Methylation may recruit chromatin

remodeling complexes [103,104], the methylated histone may be

bound by the acetylases [105], or acetylases may be components of

the methylase complex itself [101]. CBP/p300 is associated with

H3K4 methyltranferase activity in vivo [106,107]. ChIPSeq data

on acetyltransferases shows a weak but significant association

between CBP and MLV integrations in CD4+ T cells (F score

0.68, Table S4). Interestingly, combination of CBP and p300 leads

to an aggregated F score of 0.75. Thus, any of these chromatin

associated factors, methylated histones, methylases, chromatin

remodeling complexes or acetylases are candidates for gammar-

etroviral IN-binding factors. Interestingly, HIV-1 IN associates

with, and is acetylated by, p300 [108] but the p300 ChIPSeq

binding profile was not associated with the HIV-1 proviral datasets

(F score 0.34).

Figure 10. Influence of dataset matching on the F score. Histograms of the F score (upper panel) and the percentage of associated proviruses
wi2kb of the supermarkers (lower panel) with respect to MLV proviruses, either from Lewinski et al (MLV HeLa I) or Wu et al (MLV HeLa II), and the
HIVmINmGAG chimera, as indicated. Supermarkers were generated with ChiPSeq data from HeLa cells or from CD4+ T cells and compared with MLV
proviruses from either HeLa cells or CD4+T cells. ‘‘Matched’’ means that the provirus and the supermarker are from the same cell type.
doi:10.1371/journal.pcbi.1001008.g010

Figure 11. Cell type-dependence of supermarker density near
the promoters of protooncogenes. (A) Schematic diagram of the
region on human chromosome 11 flanking the promoter of the
protooncogene LMO2. In CD4+ T cells, a very prominent supermarker
peak is found wi2kB of the TSS. According to supermarker density, the
probability of MLV integration in this region is 1 in 105. In HeLa cells, the
nearest supermarker is found more .150 kB upstream and the
probability of MLV integration is 1 in 107. (B) Schematic diagram of
the region on human chromosome 12 flanking the promoter of the
protooncogene CCND2. In CD4+ T cells, a dense cluster of supermarker
peaks is found wi2kB of the TSS, and the probability of MLV integration
is 1 in 104. In HeLa cells, the nearest supermarker is found .50 kB
downstream and the probability of MLV integration is 1 in 107.
doi:10.1371/journal.pcbi.1001008.g011
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Gammaretrovirus association with STAT1
Though very strong association was observed when any of the

gammaretroviruses were compared with STAT1 binding sites,

adding this transcription factor to the supermarker did not

improve the F score. This is perhaps because any retroviral

targeting information derived from STAT1 binding sites is already

present in the modified histone H3. 90 to 95% of the STAT1

binding sites are in fact within 2 kB of the nearest H3K4me1 site.

Our attempts to detect STAT1 binding to MLV IN, or to see

effects of STAT1 disruption on MLV infectivity were unsuccessful.

Taken together it seems likely that STAT1 itself is not

mechanistically involved in gammaretrovirus integration. More

likely, STAT1 homes to chromosomal regions that are also

preferred targets for integration by these viruses. STAT1 has a

complex relationship with the histone acetylase CBP/p300.

Acetylation of histones is required for STAT1-mediated transcrip-

tion [89,109] but STAT1 itself binds CBP/p300 [110] and is also

acetylated and this contributes to its inactivation [111].

HIV integration site selection
The best single marker for HIV-1 in HeLa cells, H3K4me1,

predicted 48% of proviruses wi2kB but with only moderate

precision (F score 0.60). Using the F score we were able to detect a

stronger association of HIV-1 with H3K4me1 in CD4+ T cells

(57% wi2kB, p,10271, F score 0.73) but combining markers in an

attempt to generate a supermarker failed to improve the F score.

The associations that were observed may be related to HIV-1’s

propensity to integrate along the length of transcriptionally active

genes [81,90]. Association with histone modifications at active

promoters may be detected given short enough gene-length, or a

wide-enough window around the provirus (Figure 5). Either way,

we were unable to identify a marker capable of predicting HIV-1

integration site selection wi2kB. Perhaps the HIV-1 IN-interacting

protein PSIP1/LEDGF/p75 [53–55] would be such a factor.

Though binding sites have been reported for LEDGF [112], this

dataset is limited to 1% of the human genome and cannot be used

for a genome-wide association study. LEDGF influences HIV-1

integration site selection in that its disruption causes a shift away

from transcriptional units and towards CpG-rich sequences

[56,58,59]. Nonetheless, these are relatively general effects and

LEDGF binding sites may fail to give resolution down to a window

of 2 kB. It appears that integration site selection by HIV-1 is

mechanistically quite different than for the gammaretroviruses.

Methods

Retrovirus integration site datasets and generation of
controls

The analysis of integration sites was based on the published

integration datasets in Table 2. In the analysis performed here, to

control for possible bias introduced during the cloning of the

integration sites, 10 control sites in the human genome were

generated for each integration site, as previously described

[42,43,78,80]. These control, in silico-generated sites were used

to calculate the significance and the F score (see below).

CpG island and transcription start sites
These genomic features were obtained from Annotated

Genome version hg18 for human (http://genome.ucsc.edu/).

CpG island and transcription start sites were combined into single

datasets for determining association with retrovirus integration

sites.

ChIPSeq datasets
ChIPSeq peaks were derived from published ChIPSeq datasets

(Table 1) with a robust and fast algorithm, F-Seq [113] running

with default parameters and standard Poisson statistics. We

recalculated the peaks even when the peak set was already

available to confirm the reproducibility of published procedures.

Statistical analysis
Two-sided Fisher exact test (or x2 approximation when

appropriate) was used to evaluate statistical significance. All p-

values were Bonferroni corrected for multiple testing. p-values

,0.01 were considered significant.

To measure marker performance with respect to a given

retroviral integration dataset, we used the Fb-score (van Rijsber-

gen 1979). It is defined as the b-weighted harmonic mean of

Precision P~
tp

tpzfp

� �
and Recall

R~
tp

tpzfn

� �
, that is :

Fb: 1zb2
� � PR

b2PzR

ð1Þ

where tp is the number of actual integration sites within 2 kB from

a specified factor; tn is the number of control datapoints (generated

in silico as described above) .2 kB from a specified factor; fp is the

number of control datapoints within 2 kB from a specified factor

and fn is the number of actual integration sites .2 kB from a

specified factor. We set b= 0.5 to give more weight to Precision

than to Recall. This balances type I and type II errors by adjusting

for the high rate of False Positives (fp) inherent in the examination

of large datasets for genome-wide binding sites according to

statistical significance (Text S1). Moreover, to overcome the

limitation of standard statistical methods we normalized fp with

respect to the number of actual integration sites.

The normalized F0:5-score is finally

F0:5~
1:25tp

1:25tpz0:25fnzfp
V

C

with V and C being, respectively, the number of effective and

control integration sites. The resulting F score is almost constant

with respect to the size and ratio of experimental and control

datasets (Figure 7).

It is worth noting that a null-predictor yielding fp~C (i.e. a

marker composed of all bases in the genome) gives P = 0.5 and

R = 1, resulting in an F score%0.5. A marker is considered

significant if the F score lies between 0.5 and 1.0.

Marker ranking and metric comparison
Different metrics can be used to measure the association

between proviruses and given markers. We opted to identify the

metric among F0.5, F1, F2, Area Under Curve (AUC), Area Under

Precision/Recall (AUPR), Odds Ratio (OR), Shannon Mutual

Information (SMI), and Difference of Proportions (DOP) that best

agrees with statistical significance. The association between

markers and proviruses was measured according to each of the

above-mentioned metrics. Then the markers were ranked by

comparing the measure associated to the i-esim marker with that

associated with the j-esim marker and filling in an NXN matrix M

for each measure. Formally
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MX ½i,j�~
1 if X ½i�§X ½j�
0 if X ½i�vX ½j�

�
,

where X is one of the considered metrics. As a reference, a similar

matrix was built using the p-value (significance) obtained by

Fisher’s exact test, defined for the i-esim marker as Si~{ log (pi).
Thus

MS½i,j�~
1 if S½i�§S½j�
0 if S½i�vS½j�

�
:

A simple measure of similarity between metric X and reference S

was calculated by D(X ,S)~
X

i,j

1{DMS½i,j�{MX ½i,j�D
N2

(sum spans

over all matrices elements). Observe that 0ƒDƒ1.

Generation of a supermarker
The mass probability functions p(V = i) or p(M = i) are defined

as the probability of a provirus V or a marker M to be localized at

a given genomic location defined as i;(chromosome, position).

p(V = i) is estimated from the linear combination of mass

probability functions for candidate markers, that is

p(V~i)~
X

j

pjp(Mj~i):

Coefficient pj measures the goodness of fit of the marker Mj and it

seems reasonable to write pj as a function of the related F score.

Indeed the probability of integration P(V) can be written as

P(V )~
X

i

p(V DM1~i)p(M1~i),

P(V )~
X

i

p(V DM2~i)p(M2~i),

. . . ,

P(V )~
X

i

p(V DMN~i)p(MN~i),

with respect to a set of markers M1,M2,…,MN.

Adding these equations we get the mixture model

P(V )~
X

j

X
i

p(V DMj~i)

N
p(Mj~i): ð2Þ

Now, from (1) and b~
1

2
we have

(1zb2)

F
~

1

P
z

b2

R
~

1

P(V DM)
z

b2

P(M DV )

then

F%P(V DM):

A first order approximation of (2) is then

X
i

X
j

p(V Mj~i
�� )

N
p(Mj~i)ƒ

X
j

X
k

p(V Mj~k
�� )

N

X
i

p(Mj~i)

%K
X

i

X
j

Fj

N
p(Mj~i)

where K is a normalization constant. Eventually we set pj~K
Fj

N
and the resulting new probability mass function is

p(M�~i)~
X

j

K
Fj

N
p(Mj~i): ð3Þ

The marker mass density p(Mj~i) was modeled as the sum of

Gaussian functions centered on ChIPSeq peaks, with the variance

set as the average size of the peak regions, as determined by the F-

seq algorithm [113]. In this way we minimized the potential bias

that can arise by summing ChIPSeq densities obtained over

different experimental conditions. Briefly, each marker probability

density function was written as

p(M~i)~
X
p[C

e
{(i{p)2

2s2 ,

where C is the peak set of the marker M.

This function (3) summarizes the properties of all the markers

and can be interpreted as a new ChIPSeq density. Indeed it

contains all markers associated and not associated peaks. To

reduce the number of false positives we applied a thresholding

procedure similar to that used to filter raw ChIPSeq data in a

training set of experimental and control integration sites. The

peaks of function (3) were ranked with respect to their amplitude

and the F score is recalculated on the training set as a function of

the number of peaks. We define the supermarker M* as the

marker set that yields a maximal F score.

The supermarker density function is finally written as

p(M�~x)~
X

j

K
Fj

N

X
p[C�j

e
{(x{p)2

2s2 , ðAÞ

where C* is the reduced peak set.

To validate the model, we adopted two strategies. First we

calculated the supermarker and the relative reduced peak set on

each single proviral dataset and then we evaluated the association

with the remaining datasets. The second strategy was a standard

10-fold cross-validation applied to each single dataset.

Machine learning
To validate the effectiveness of the supermarker peak set, we

trained RandomForest [94], a machine learning algorithm, with

the same set of markers composing the supermarker. Our datasets

are extremely imbalanced and this results in a classifier with an

high misclassification error for predicting the minority class (i.e.

the experimental dataset) as shown in Table S6. In order to correct

for that, RandomForest can be tuned by an additional parameter,

classwt, that can be used to assign priors to the classes

(experimental and control) to minimize the misclassification error

and improve the performance. We adopted a 10-fold cross-

validation procedure by correcting the priors in the training set.
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Interestingly, the maximum achievable F score and the number of

associated integration sites wi2kb match almost exactly with the F

score and wi2kb that we obtained with our supermarker

procedure. We consider this as further evidence of the effectiveness

of the supermarker.

Position specific scoring matrix (PWM)
PWM for retroviruses and human transcription factors was

borrowed from [80] and from the JASPAR database (jaspar.

cgb.ki.se).

Computation
All computation and graphics were done with ad-hoc Python

scripts with the support of the motility library for PWM

calculations (cartwheel.caltech.edu/ motility), Matplotlib library for

graphical and scientific computing (matplotlib.sourceforge.net) and the

Random Forest implementation on R environment (http://cran.

r-project.org/web/packages/randomForest/).

Graphic representation of data
Chromosome projection mandalas (Figure 1) represent the

distribution across of the genome of binding sites for a specific

factor or histone modification on the circumference of a circle.

Each dot represents a retroviral integration site with the following

polar coordinates: angular distance corresponds to genomic

location on the indicated chromosome; radial distance from the

contour of the circle is the log-scaled distance in nucleotides from

the closest marker site. Diagrams have been set to visualize

proviruses located between 0 and 1 megabase. Proviruses located

more than 1 megabase from the nearest marker accumulate at the

center of the mandala.

Supporting Information

Figure S1 Chromosome projection mandala and F0.5 score

calculated within 2 kB for the indicated markers (columns) versus

the indicated proviruses (rows). ASLV and HTLV1 proviruses

were cloned from HeLa cells, the Foamy virus from CD34+
hematopoietic stem cells (Table 2 and text). H3K4me3 and

STAT1 ChIPSeq datasets were from HeLa cells (Table 1). N

indicates the number of specific proviral integrations considered

for each analysis. The F0.5 score and the percentage of proviruses

within 2 kB are presented under each mandala.

Found at: doi:10.1371/journal.pcbi.1001008.s001 (0.35 MB TIF)

Figure S2 Hierarchical clustering applied to the expression

profiles of the cell types cited in this study as a measure of

similarity. Branch length correlates inversely with similarity,

according to the scale bar.

Found at: doi:10.1371/journal.pcbi.1001008.s002 (0.06 MB TIF)

Table S1 Histone acetylation markers and MLV.

Found at: doi:10.1371/journal.pcbi.1001008.s003 (0.04 MB

DOC)

Table S2 Histone methylation markers and MLV.

Found at: doi:10.1371/journal.pcbi.1001008.s004 (0.05 MB

DOC)

Table S3 HIV-1 versus histone methylation and acetylation.

Found at: doi:10.1371/journal.pcbi.1001008.s005 (0.04 MB

DOC)

Table S4 Acetyltransferases, deacetyltransferases, and MLV.

Found at: doi:10.1371/journal.pcbi.1001008.s006 (0.03 MB

DOC)

Table S5 Crossvalidation of supermarker association with

gammaretroviral proviruses.

Found at: doi:10.1371/journal.pcbi.1001008.s007 (0.03 MB

DOC)

Table S6 Comparison of supermarker with random forest

algorithm.

Found at: doi:10.1371/journal.pcbi.1001008.s008 (0.03 MB

DOC)

Table S7 Association of various genomic features with provi-

ruses, H3K4me3, and H3K4me1.

Found at: doi:10.1371/journal.pcbi.1001008.s009 (0.04 MB

DOC)

Text S1 Comparison of Precision/Recall-based methods with

Receiver Operating Characteristic Area and other methods,

applied to the analysis of provirus datasets.

Found at: doi:10.1371/journal.pcbi.1001008.s010 (0.52 MB PDF)

Acknowledgments

The authors thank Peter Cherepanov, Madeleine Zufferey, and Stephane

Hausmann for stimulating discussions and experiments.

Author Contributions

Conceived and designed the experiments: FAS JL. Performed the

experiments: FAS. Analyzed the data: FAS OH JL. Contributed

reagents/materials/analysis tools: FAS. Wrote the paper: FAS JL.

References

1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial

sequencing and analysis of the human genome. Nature 409: 860–921.

2. SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The

paleontology of intergene retrotransposons of maize. Nat Genet 20: 43–45.

3. Coffin J, Hughes S, Varmus H (1997) Retroviruses. New York: Cold Spring

Harbor Laboratory Press.

4. Bushman F (2002) Lateral DNA transfer: mechanisms and consequences. Cold

Spring Harbor: Cold Spring Harbor Laboratory Press.

5. Uren AG, Kool J, Berns A, van Lohuizen M (2005) Retroviral insertional

mutagenesis: past, present and future. Oncogene 24: 7656–7672.

6. Jern P, Coffin JM (2008) Effects of retroviruses on host genome function. Annu

Rev Genet 42: 709–732.

7. Goodier JL, Kazazian HH, Jr. (2008) Retrotransposons revisited: the restraint

and rehabilitation of parasites. Cell 135: 23–35.

8. Moran JV, DeBerardinis RJ, Kazazian HH, Jr. (1999) Exon shuffling by L1

retrotransposition. Science 283: 1530–1534.

9. Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A

retrotransposition into TRIM5 explains owl monkey resistance to HIV-1.

Nature 430: 569–573.

10. Whitelaw E, Martin DI (2001) Retrotransposons as epigenetic mediators of

phenotypic variation in mammals. Nat Genet 27: 361–365.

11. Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, et al. (2005)

Somatic mosaicism in neuronal precursor cells mediated by L1 retrotranspo-

sition. Nature 435: 903–910.

12. Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, et al. (2009) L1

retrotransposition in human neural progenitor cells. Nature 460: 1127–1131.

13. Li M, Mizuuchi M, Burke TR, Jr., Craigie R (2006) Retroviral DNA

integration: reaction pathway and critical intermediates. EMBO J 25:

1295–1304.

14. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P (2010) Retroviral

intasome assembly and inhibition of DNA strand transfer. Nature 464:

232–U108.

15. Roth MJ, Schwartzberg PL, Goff SP (1989) Structure of the termini of DNA

intermediates in the integration of retroviral DNA: dependence on IN function

and terminal DNA sequence. Cell 58: 47–54.

16. Engelman A, Mizuuchi K, Craigie R (1991) HIV-1 DNA integration:

mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:

1211–1221.

Retrovirus Integration Site Selection

PLoS Computational Biology | www.ploscompbiol.org 18 November 2010 | Volume 6 | Issue 11 | e1001008



17. Vink C, Yeheskiely E, van der Marel GA, van Boom JH, Plasterk RH (1991)

Site-specific hydrolysis and alcoholysis of human immunodeficiency virus DNA

termini mediated by the viral integrase protein. Nucleic Acids Res 19:

6691–6698.

18. Aiyar A, Hindmarsh P, Skalka AM, Leis J (1996) Concerted integration of

linear retroviral DNA by the avian sarcoma virus integrase in vitro:

dependence on both long terminal repeat termini. J Virol 70: 3571–3580.

19. Daniel R, Katz RA, Skalka AM (1999) A role for DNA-PK in retroviral DNA

integration. Science 284: 644–647.

20. Yoder KE, Bushman FD (2000) Repair of gaps in retroviral DNA integration

intermediates. J Virol 74: 11191–11200.

21. Skalka AM, Katz RA (2005) Retroviral DNA integration and the DNA damage

response. Cell Death Differ 12 Suppl 1: 971–978.

22. Sarafianos SG, Marchand B, Das K, Himmel DM, Parniak MA, et al. (2009)

Structure and function of HIV-1 reverse transcriptase: molecular mechanisms

of polymerization and inhibition. J Mol Biol 385: 693–713.

23. Hazuda D, Iwamoto M, Wenning L (2009) Emerging pharmacology: inhibitors

of human immunodeficiency virus integration. Annu Rev Pharmacol Toxicol

49: 377–394.

24. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, et al. (2008)

Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of

SCID-X1. J Clin Invest 118: 3132–3142.

25. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N,

et al. (2003) LMO2-associated clonal T cell proliferation in two patients after

gene therapy for SCID-X1. Science 302: 415–419.

26. Deichmann A, Hacein-Bey-Abina S, Schmidt M, Garrigue A, Brugman MH,

et al. (2007) Vector integration is nonrandom and clustered and influences the

fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Invest 117: 2225–2232.

27. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, et al.

(2008) Insertional mutagenesis combined with acquired somatic mutations

causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin

Invest 118: 3143–3150.
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