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Abstract

The relatively new field of onco-metabolomics attempts to identify relationships between various cancer phenotypes and
global metabolite content. Previous metabolomics studies utilized either nuclear magnetic resonance spectroscopy or gas
chromatography/mass spectrometry, and analyzed metabolites present in urine and serum. However, direct metabolomic
assessment of tumor tissues is important for determining altered metabolism in cancers. In this respect, the ability to obtain
reliable data from archival specimens is desirable and has not been reported to date. In this feasibility study, we
demonstrate the analysis of polar metabolites extracted directly from ten formalin-fixed, paraffin-embedded (FFPE)
specimens, including five soft tissue sarcomas and five paired normal samples. Using targeted liquid chromatography-
tandem mass spectrometry (LC/MS/MS) via selected reaction monitoring (SRM), we detect an average of 106 metabolites
across the samples with excellent reproducibility and correlation between different sections of the same specimen.
Unsupervised hierarchical clustering and principal components analysis reliably recovers a priori known tumor and normal
tissue phenotypes, and supervised analysis identifies candidate metabolic markers supported by the literature. In addition,
we find that diverse biochemical processes are well-represented in the list of detected metabolites. Our study supports the
notion that reliable and broadly informative metabolomic data may be acquired from FFPE soft tissue sarcoma specimens, a
finding that is likely to be extended to other malignancies.
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Introduction

Metabolomics is the study of the metabolite repertoire with

respect to different physiological environments, tissue types, or

cells [1,2]. Analogous to genomics, transcriptomics, or proteomics,

it holds great promise in the quest for biomarker discovery,

particularly in oncology since cancer cells harbor an altered state

of metabolism according to the Warburg effect [3].

The low per-sample cost of performing LC/MS/MS in SRM

mode, or nuclear magnetic resonance spectroscopy (NMR) makes

metabolomic biomarker investigation particularly appealing [4].

The sensitivity and specificity of both technologies, particularly

mass spectrometry have improved dramatically in recent years,

leading to the publication of a number of studies, mostly profiling

urine and serum specimens [4]. Although clinically useful

information has come out of this work, one shortcoming of the

field is a lack of research on tissue metabolites [5]. It has been

shown that the tumor microenvironment places unusual stresses

on cells and leads to a shift in cellular energy production and

utilization. The rate of glycolysis has been shown to increase in

tumors resulting in high lactate levels, and high concentrations of

alanine and ammonium are also observed in various malignancies

as a result of elevated glutamine degradation [6–8]. Therefore,

there is reason to believe that studying the biochemical

intermediates and end products within tumor tissue samples

would enhance our understanding of cancer biology.

As in the other ‘‘omics’’ fields, metabolomics would greatly

benefit from the ability to utilize formalin-fixed and paraffin-

embedded (FFPE) tissue specimens acquired during routine

medical care. Because of their widespread availability and long

term stability, accurately profiling the metabolite content of these

tumor samples could accelerate the rate of discovery of clinically

useful metabolomic biomarkers.

While there is literature on LC/MS/MS based metabolomic

profiling, to our knowledge, there have been no publications on

the use FFPE tissue [1,2,9,10]. In this pilot study, we examine the
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technical feasibility and reproducibility of using targeted LC/MS/

MS to profile FFPE specimens. We examine the degree to which

malignant and non-malignant tissues can be distinguished by

metabolite content, and we comment on the diversity of

biochemical processes than can be probed with this method.

The results of this work demonstrate that metabolomic studies of

archival cancer specimens may yield reliable data and could aid

investigators in identifying clinically and biologically meaningful

biomarkers.

Results

Study Work Flow
A flow chart in Figure 1 summarizes the LC/MS/MS protocol

with a complete methods description presented in the materials

and methods section. We profiled a set of five formalin-fixed,

paraffin-embedded soft tissue sarcoma specimens and five paired

normal tissue samples by LC/MS/MS. Details on the specimen

age and tissue type are presented in Table 1. All paraffin blocks

contain tissue derived from surgical resection procedures. The

specimens are all dated from 2004, 2005, or 2006 and one patient

received radiation and chemotherapy prior to surgery. As this

study aims to demonstrate feasibility and reliability of data

acquisition, clinical variables aside from tissue type were not

considered. To assess the biological reproducibility we ran LC/

MS/MS on each of two independent sections from every paraffin

block. In addition, for every section, we performed three

independent injections to determine assay reproducibility.

Metabolite Detection
Upon acquiring raw data, we observed that out of the 249

compounds screened for by SRM, the number of unique

metabolites robustly detected ranged from 74 to 143 across the

samples with a mean value of 106 and represented several

metabolic pathways. Interestingly, there is a trend towards higher

metabolite detection rates in the tumor samples. Compared to

results from unrelated experiments with fresh frozen tissue using

the same platform, these numbers are approximately 40% lower,

which is expected when analyzing harshly treated and aged

specimens. Because frozen tissue from the patients in our study

does not exist, we cannot make a direct comparison with FFPE

data, however, in fresh tumor tissue we can routinely detect nearly

200 metabolites with robust signal across central pathways,

including amino acids. While the detection of amino acids was

low in this study, those most frequently detected in our dataset are

acidic and positively charged at physiological pH. The presence of

arginine in fifty-five of the sixty runs further illustrates this point as

one should expect the amino acid with the highest side chain pKa

to be extremely soluble in methanol. We also detected glutamate

and histidine in at least one run for six, and five of the ten samples

respectively. Whether formal charge influences compound extrac-

tion is beyond the scope of this paper, but nevertheless these

observations provide a tangible indication of the classes of

compounds that may be retained or lost during our extraction

protocol.

Reproducibility Assessment
In order to assess the technical consistency across different

injections into the mass spectrometer we calculated each pair-wise

correlation coefficient across three injections for every FFPE

section, excluding only those metabolites that were absent in all

three sections. These values were consistently high for both normal

and tumor tissue indicating that there is little variability between

injections of the same sample preparation. The range of these

correlation coefficients was 0.9373 to 0.9998 with very few under

0.9900 (Figure 2A, B). These complete data can be found in the

Table S1. Next, we calculated the correlation coefficient between

average peak intensities across the two sections from each FFPE

block. Although lower than the values between injections, they still

indicate a high degree of consistency across two sections from the

same block with most correlations higher than 0.9000. Taken

together, we can assert that LC/MS/MS data generated from

FFPE tissue specimens are reproducible with respect to different

injections of the same sample preparations and across different

FFPE sections. A summary of the aforementioned analysis is

presented in Figure 2C. It is important to note that in this part of

our analysis no normalization or missing value imputation was

performed so the concordances measured here reflect those of raw

LC/MS/MS data.

Differentiation between Known Phenotypes
After conducting the assessment of technical reproducibility, we

excluded from further analysis any metabolites absent from $80%

of the sixty LC/MS/MS experiments. The remaining missing

values were then replaced by a value equal to half of the smallest

measurement in the data, and we normalized as described in the

methods section. Using normalized data, we examined the

metabolite content across the tumor/normal pairs. Under the

assumption that within the five sarcoma sub-types there would be

a higher degree of metabolic deregulation, we calculated the

variance for all detected metabolites across all samples with the

hypothesis that the data would be more disperse in the tumors.

Confirming our hypothesis, the variance in metabolite peak

intensity across the tumor specimens was significantly higher than

that of their normal counterparts (24.8% higher mean metabolite

variance in tumors, P,0.05).

Having determined that the global metabolite content is more

heterogeneous within our tumor cohort, we attempted to use

unsupervised hierarchical clustering to investigate whether the

sarcoma specimens would separate from their normal pairs. On

the basis of 119 metabolites that passed the filtering criteria

described above, we observed that the tumors clustered apart from

the normal specimens with one exception. The dendrogram

displayed in Figure 3A shows that one cluster contains four tumors

and one normal specimen, while the other contains four normal

tissue samples and one tumor. We hypothesize that the paired

nature of our cohort may have prevented sample 3 and sample 5

from separating as the tumor and normal tissue samples from the

same patient may be highly similar in metabolite content. Further

examination of the pathology report revealed that the paraffin

block containing normal tissue from patient 3 was contaminated

with some tumor tissue and we reason that this may be why the

pairing of samples from patient 3 was particularly difficult to

break. The results of hierarchical clustering therefore suggest that

a meaningful phenotypic distinction can be made on the basis of

LC/MS/MS data from FFPE tissue.

As an additional method of unsupervised classification, we

performed principal components analysis (PCA) on our cohort

(Figure 3B). A similar phenomenon is observed as in the

hierarchical clustering as the tumor and normal specimens

separate in the first principal component with the exception of

two samples.

Exploration of Differentially Abundant Metabolites
We attempted to elucidate which metabolites may be most

differentially abundant between our sarcoma specimens and their

normal counterparts. To that end, we performed a student t-test

and significance analysis of microarrays (SAM). These two

Metabolomic Profiling in FFPE Cancer Specimens
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methods yield mostly overlapping metabolites and they are

presented in Table 2. Overall, we detected eight distinct

differentially abundant metabolites between the two groups that

illustrate the ability to detect differences in biochemical

intermediates across FFPE tissue samples. Notwithstanding the

small sample size, it is noteworthy that metabolites in this short

list, such as cyclic-AMP, have already been shown to be altered in

tumors.

To confirm the relevance of this list, we performed supervised

hierarchical clustering (Figure 4A) and PCA (Figure 4B) using only

LC/MS/MS peak intensities for these metabolites, and indeed, we

observe separation of the tumor/normal pairs.

Figure 1. Flow chart summarizing targeted LC/MS/MS data acquisition.
doi:10.1371/journal.pone.0025357.g001

Metabolomic Profiling in FFPE Cancer Specimens
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Diverse Biochemical Intermediates are preserved in FFPE
Tissue

Considering the treatment conditions of FFPE tissue, one could

reasonably be concerned that metabolites recovered by LC/MS/

MS may restrict analysis to relatively few pathways, with limited

biological relevance. Thus, in order to confirm that the detected

metabolites represent the preservation of a wide range of

biochemical processes, we performed a pathway enrichment

analysis on the entire list of 119 metabolites that passed filtering

criteria (Figure S3). The enrichment analysis uses a list of

compounds as an input and produces a list of known pathways

which are most strongly represented by the input metabolites.

Using our list, we identified a number of potentially impacted

processes, many of which involve cellular energy production,

although we see a wide range of metabolic pathways. This assures

us that our detection of metabolites is not limited to a small subset

of cellular processes, but rather encompasses a wide range of

metabolic activities. It is interesting to note that several of the most

significantly represented pathways - including glycolysis, glutamate

metabolism, and the citric acid cycle - have been studied

extensively in the context of cancer. In glycolysis, five out of

eleven compounds are robustly detected; in glutamate metabolism,

nine of eighteen are measured; and in the TCA cycle, five of

eleven compounds appear in our data. A summary of this

enrichment analysis is reported in Figure 5 and additional

information regarding the specific metabolites detected from four

highly represented pathways is presented in Figure S4 (4A –

Glycolysis, 4B – Pentose Phosphate Pathway, 4C – Citric Acid

Cycle, 4D – Glutamate Metabolism). In addition to the

aforementioned analysis, we also ran the enrichment algorithm

Table 1. Characteristics of specimen cohort.

Sample Year Normal Tissue Type Tumor Type

1 2005 Fibroadipose tissue High grade sarcoma, myogenic differentiation

2 2005 Vein High grade leiomyosarcoma

3 2006 Fibroadipose tissue Monophasic synovial sarcoma

4 2005 Skeletal muscle Biphasic synovial sarcoma

5 2004 Skin and subcutaneous adipose tissue Well-differentiated liposarcoma

Information about the tissue type of each sample pair is provided. The year column refers to the year of surgical resection.
doi:10.1371/journal.pone.0025357.t001

Figure 2. Technical performance summary. A, B) An example of the correlation between MS peak intensities from different sections from the
same FFPE block is shown. C) Presentation of correlation coefficients for biological replicates. A full table with all correlation information is provided
in the supplementary materials.
doi:10.1371/journal.pone.0025357.g002
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on our list of eight differentially present compounds and found that

intracellular signaling processes involving cyclic-AMP were

enriched along with several other pathways (see Figure S1). In

contrast to the analysis performed on the full list of detected

compounds, here we examined which pathways are likely to be

altered in tumors compared to normal samples. To emphasize the

key finding of these analyses, the pathways that are represented are

diverse, which suggests that a broad spectrum of biochemical

processes may be reliably interrogated using LC/MS/MS on

FFPE specimens in future clinical studies.

Discussion

Despite technological advances, there has been relatively little

clinical metabolomics research performed on tumor tissue

specimens [5]. And to our knowledge, there have been no

publications demonstrating the successful acquisition of LC/MS/

MS-based metabolomic data from FFPE tissue. In this study we

show that reproducible data can be acquired from soft-tissue

sarcoma sections preserved in paraffin blocks. Moreover, we

demonstrate how these data can be used to probe a paraffin cohort

for biochemical intermediates pertinent to phenotypic differences.

One concern with any LC/MS/MS-based metabolomic

research protocol is the degree to which sample preparation

degrades potential metabolites of interest [11,12]. This challenge is

amplified when one considers damage on the tissue during the

process of formalin fixation and paraffin embedding. Limitations

associated with FFPE tissue include degradation and attrition of

compounds of interest. For instance, it has been shown that

mRNA levels are significantly lower in FFPE preparations

compared with frozen tissue extractions, and one may reasonably

expect an analogous situation to arise in studying metabolites [13].

Therefore, a pipeline of obtaining reliable LC/MS/MS data from

these challenging specimens would be a substantial step towards

accelerating translational metabolomic studies. We observe a non-

trivial degree of attrition of detectable compounds compared to

the same protocol applied on both fresh and frozen tissue [14;

unpublished data]. However, we still detect a substantial number

of polar metabolites extracted from our FFPE cohort. Because

frozen tissue samples from the patients in this study do not exist,

we could not directly compare our data with those generated by

high quality specimens, although this question is worth investigat-

ing in future work.

Other possible factors leading to compound attrition are

degradation during formalin-fixation, loss of compounds during

methanol extraction, and inefficient de-cross-linking of paraffin,

although we cannot say to what degree these factors influence our

detection rates.

Importantly, when we examine the raw data obtained from our

protocol, we find that there is almost no variability between

different injections from the same sample preparation. This assures

us that the sample preparation protocol generates a homogeneous

solution containing a wide range of metabolites. Furthermore, the

tight correlation suggests that there is almost no technical

variability across runs. Of particular importance to investigators

though, is the high degree of correlation observed between

different sections from the same paraffin block. For seven out of

ten blocks, the correlation across sections was higher than 0.95,

and for nine out of ten, it was above 0.90. These results suggest

that measurements of metabolite content in paraffin embedded

tissue may not be limited by a large sampling error.

Figure 3. Unsupervised phenotypic distinction of samples. A) Hierarchical clustering and B) principal components analysis using data from
the set of 119 metabolites passing filtering criteria. In the figures above, tumor specimens are in red and normal specimens are in green.
doi:10.1371/journal.pone.0025357.g003

Table 2. Differentially abundant metabolites identified by
significance analysis of microarrays and by student t-test.

SAM Metabolite D-value P-value T-Test Metabolite P-value

Carbamoyl
phosphate

3.1031 0.013193 cytosine 0.015548

CMP 2.8751 0.020588 Ng,NG-dimethyl-L-arginine 0.023861

ribose-phosphate 2.8668 0.020756 nicotinamide 0.027013

cytosine 2.7854 0.024622 cyclic-AMP 0.027947

cyclic-AMP 2.4982 0.037059

DL-Pipecolic acid 2.301 0.04916

doi:10.1371/journal.pone.0025357.t002

Metabolomic Profiling in FFPE Cancer Specimens

PLoS ONE | www.plosone.org 5 October 2011 | Volume 6 | Issue 10 | e25357



A critical metric to assess the potential clinical research value of

any ‘‘omics’’ application is the ability to detect known structure

and information in the data. In addition, in the case of

metabolomics one is interested in the breadth of metabolic

pathways involved with the detected compounds. The ability to

use unsupervised methods to accurately classify samples as being

cancerous versus non-malignant is a very good indication of the

value of this application and also suggests that at least a subset of

compounds being detected are true indicators of differential

metabolic activity. It is interesting to note that of the compounds

identified as significantly altered, cyclic-AMP (detected by two

different analytical methods) has been shown to be involved with

several tumorigenic processes [15–17]. Moreover, pathways

involved in cellular energetics – such as glycolysis, pentose

phosphate metabolism, and the citric acid cycle – that have been

implicated in cancer are significantly represented by the set of

metabolites passing filtering criteria [6–8]. We also detected

several phosphorylated metabolites that were identified as

significantly altered, suggesting that phosphorylation may be

better preserved in paraffin tissue than was previously believed.

Taken together, these observations are consistent with the existing

cancer literature and illustrate that many metabolic processes

critical in cancer biology can be interrogated in FFPE tissue using

LC/MS/MS.

To summarize, we have demonstrated the reproducible

acquisition of metabolomic data using LC/MS/MS in SRM

mode from FFPE soft tissue sarcoma specimens. Our data suggest

that larger studies involving a more diverse cohort of malignancies

may be warranted to further establish the reliability and general

utility of the method, and that a wide range of clinical and

biological questions may be successfully investigated with this

methodology in widely available archived specimens.

Materials and Methods

Ethics Statement
This work was done in accordance with a protocol for archival

tissue collection and use which was approved by the Institutional

Review Board (IRB) at Beth Israel Deaconess Medical Center

(BIDMC). The requirement for a patient consent form was waived

by the IRB at BIDMC.

FFPE Sarcoma Specimens
Formalin-fixed and paraffin-embedded tissue samples were

retrieved by the Department of Pathology at Beth Israel Deaconess

Medical Center. The tumor and normal tissue blocks were from

the same patient and were obtained during surgical resection. For

some specimens the tumor and normal tissue type is the same. It is

important to note that for those samples that do not have an

associated normal tissue of origin, e.g. synovial sarcoma, the

normal tissue specimen was taken from areas directly adjacent to

the tumor mass.

Targeted Mass Spectrometry Analysis
From each of ten FFPE blocks, one 40 mm slice was discarded to

minimize contamination of the specimens. The second and third

40 mm sections were then placed in two separate 1.5 mL

microfuge tubes which correspond to the two sections analyzed

from each sample. 1 mL 80% MeOH was added to each slice and

mixed by vortexing. The sections were then incubated for 45

minutes at 70uC to melt the paraffin and extract metabolites. Next,

the samples were placed on ice for 5 minutes, centrifuged in a cold

room for 10 minutes at 14xG and the supernatant was transferred

to a fresh 1.5 mL microfuge tube. The centrifugation was repeated

once under the same conditions and the supernatant was again

transferred to a new tube. The samples were dried by SpeedVac

overnight. Samples were re-suspended using 35 mL HPLC grade

water for mass spectrometry. 10 mL were injected and analyzed

using a 5500 QTRAP triple quadrupole mass spectrometer (AB/

Sciex) coupled to a Prominence UFLC HPLC system (Shimadzu)

via selected reaction monitoring (SRM) of a total of 249

endogenous water soluble metabolites for steady-state analyses of

samples. The 249 compounds monitored were chosen due to their

involvement in central pathways important in a number of

malignancies. Some metabolites were targeted in both positive and

negative ion mode for a total of 298 SRM transitions. ESI voltage

Figure 4. Supervised phenotypic distinction of samples. A) Hierarchical clustering and B) PCA of tumor and healthy specimens using data
from the subset of significantly differentially abundant metabolites identified by t-test or SAM.
doi:10.1371/journal.pone.0025357.g004
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was +4900V in positive ion mode and –4500V in negative ion

mode. The dwell time was 4 ms per SRM transition and the total

cycle time was 1.89 seconds. Approximately 8–11 data points were

acquired per detected metabolite. Samples were delivered to the

MS via normal phase chromatography using a 4.6 mm i.d

610 cm Amide XBridge HILIC column (Waters) at 300 mL/min.

Gradients were run starting from 85% buffer B (HPLC grade

acetonitrile) to 35% B from 0–3.5 minutes; 35% B to 2% B from

3.5–11.5 minutes; 2% B was held from 11.5–16.5 minutes; 2% B

to 85% B from 16.5–17.5 minutes; 85% B was held for 7 minutes

to re-equilibrate the column. Buffer A was comprised of 20 mM

ammonium hydroxide/20 mM ammonium acetate (pH = 9.0) in

95:5 water:acetonitrile. Peak areas from the total ion current for

each metabolite SRM transition were integrated using Multi-

Quant v2.0 software (AB/Sciex). The LC/MS/MS platform was

quality controlled on a daily basis using polar metabolite extracts

from H929 cancer cells. A selected number of metabolites were

assessed using their known chromatographic elution times from

the normal phase column and their expected peak area intensities.

Technical Performance Assessment
Technical reproducibility was assessed across all pairs of

injections of each section of each sample. There were sixty LC/

MS/MS runs in all comprised of three 10 mL injections of each

sample preparation. The Pearson correlation coefficient was taken

between each pair of injections excluding only those metabolites

for which none of the three injections registered a signal. The

average peak intensities across all three injections were then taken

for all metabolites and the Pearson correlation coefficient was

computed across the average peak intensities for both sections

from the same sample, excluding only those metabolites which had

an average value of zero. The average number of metabolites

detected was computed as a mean across all three injections for

every section of every sample.

Figure 5. Summary of pathway enrichment analysis. Above is a display of the diversity of signaling pathways that are enriched on the basis of
all 119 metabolites passing filtering criteria. The most significant p-values are in red while the least significant are in yellow and white.
doi:10.1371/journal.pone.0025357.g005
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Filtering and Normalization
The raw peak intensities were uploaded to Metaboanalyst.ca, an

online freeware program intended for the analysis of metabolomic

data [18,19]. Metabolites were first removed from further analysis

if they were absent from $80% of the 10 mL injections. We chose

the cutoff of 80% in order to ensure that we did not exclude

compounds that may be detected exclusively in one class (tumor or

normal). Remaining missing values were calculated as half of the

minimum positive value in the original LC/MS/MS output. The

resultant data were normalized by sum and log2 transformed

before advancing to statistical analysis. The resultant peak

intensity matrix contained 119 unique metabolites which were

used for further analysis. In some cases, LC/MS/MS cannot

distinguish between isomers; we have intentionally omitted

chemical side group position indices for these compounds. For

completeness, we also attempted normalization by median

followed by log2 transformation, which gave nearly identical

results (see Figure S2A and B for hierarchical clustering and PCA

respectively).

Hierarchical Clustering and Principal Components
Analysis

Unsupervised hierarchical clustering using the entire set of 119

metabolites passing filtering criteria was performed using the

Pearson correlation metric and complete linkage. Principal

components analysis was performed according to default settings

on the metaboanalyst interface. Supervised clustering using the

union of metabolites identified by t-test and SAM was done using

the Pearson correlation metric and the Ward linkage method.

Differentially Abundant Metabolite Identification
Differentially abundant metabolites were identified by a student

t-test using a p-value cutoff of 0.05 and also by significance analysis

of microarrays with a delta value of 0.4.

Pathway Enrichment Analysis
Pathway enrichment (representation) analysis was performed

using both the 119 compounds that passed our filtering criteria

and using the union of compound lists identified by the student t-

test and SAM. The metabolite set library used was the ‘‘metabolic

pathway associated metabolite sets,’’ and representation analysis

was done using the hypergeometric test. The output of this

algorithm will mark a metabolic pathway as significantly

represented by the input list of compounds if significantly more

compounds involved with the pathway are present in the input list

than would be expected by random chance. This analysis was

implemented in Metaboanalyst.

Supporting Information

Figure S1 Pathway enrichment analysis summary using
metabolites detected as significantly differentially pres-
ent in tumor and healthy tissue. Significant p-values are in

red while less significant p-values are in yellow or white.

(TIF)

Figure S2 Unsupervised phenotypic distinction of sam-
ples. A) Hierarchical clustering and B) PCA of tumor and healthy

tissue samples using data normalized by median.

(TIF)

Figure S3 Table of pathways represented by 119
metabolites passing filtering criteria. The column labeled

‘‘hits’’ presents the number of metabolites we detect from each

pathway while the column labeled ‘‘total’’ gives the total number

of intermediates in the process.

(TIF)

Figure S4 Pathway representation summary. The dia-

grams above indicate in boldface the metabolites we robustly

detected which are involved in A) glycolysis, B) pentose phosphate

pathway, C) citric acid cycle, and D) glutamate metabolism.

(TIF)

Table S1 Complete summary of pair-wise correlations
across injections for every section. Included for every

section are all pair-wise Pearson correlation coefficients (r) across

three LC/MS/MS injections. The sections are denoted by sample

number.section number_tumor/normal status; so the first slice

from the tumor pair from sample five would be denoted: ‘‘Sample

5.1 Tumor.’’

(DOC)
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