DOI: 10.1002/mbo3.1259

ORIGINAL ARTICLE

MicrobiologyOpen

WILEY

Living in a bottle: Bacteria from sediment-associated Mediterranean waste and potential growth on polyethylene terephthalate

¹Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain

²Darwin Bioprospecting Excellence S.L., Paterna, Spain

³Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Spain

⁴Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Spain

Correspondence

Manuel Porcar, Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Catedrático José Beltrán, 2, Paterna 46980, Spain. Email: manuel.porcar@uv.es

Funding information

Formación del Profesorado Universitario, Grant/Award Numbers: FPU17/04184, FPU18/02578; Ministerio de Ciencia e Innovación, Grant/Award Numbers: DI-17-09613, RTI2018-095584-B-C41-42-43-44; H2020 Environment, Grant/Award Numbers: 210491758, 101000470; Agencia Estatal de la Innovación AEI, Grant/Award Number: PCI2019-111845-2; Agència Valenciana de la Innovación AVI, Grant/Award Number: INNEST/2021/334

Abstract

Ocean pollution is a worldwide environmental challenge that could be partially tackled through microbial applications. To shed light on the diversity and applications of the bacterial communities that inhabit the sediments trapped in artificial containers, we analyzed residues (polyethylene terephthalate [PET] bottles and aluminum cans) collected from the Mediterranean Sea by scanning electron microscopy and next generation sequencing. Moreover, we set a collection of culturable bacteria from the plastisphere that were screened for their ability to use PET as a carbon source. Our results reveal that *Proteobacteria* are the predominant phylum in all the samples and that *Rhodobacteraceae*, *Woeseia*, *Actinomarinales*, or *Vibrio* are also abundant in these residues. Moreover, we identified marine isolates with enhanced growth in the presence of PET: *Aquimarina intermedia*, *Citricoccus* spp., and *Micrococcus* spp. Our results suggest that the marine environment is a source of biotechnologically promising bacterial isolates that may use PET or PET additives as carbon sources.

KEYWORDS

bioprospecting, bioremediation, marine sediments, marine waste, plastic-degrading microorganisms, polyethylene terephthalate

1 | INTRODUCTION

Plastic production and, subsequently, plastic waste have increased exponentially through the last decades (Worm et al., 2017). The poor management of these residues, and their resistance to natural degradation (in some cases it comprises from hundreds to thousands of years) (Barnes et al., 2009), has resulted in a major, worldwide problem of plastic accumulation in all ecosystems on Earth. Even though the amount of recycled plastic has doubled from 2006 to 2018, the amount of postconsumer waste plastic that is sent to landfills in Europe was still 25% in 2018 (PlasticsEurope, 2020).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

 $\ensuremath{\mathbb{C}}$ 2021 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

WILFY_MicrobiologyOpen

Plastic residues in landfills are exposed to wind and water flows, which transport them into rivers and streams and, ultimately, into the oceans (Lebreton et al., 2017). Moreover, other direct sources such as beach littering, aquaculture, or fishing are also responsible for the accumulation of plastic in marine environments (GESAMP, 2016). Due to the generally low temperature and limited UV exposure in marine conditions, plastic degradation is considered to take longer in the sea (Gewert et al., 2015; Napper & Thompson, 2019). Plastic waste tends to fragment and spread in small particles (<5 mm) commonly known as microplastics (Arthur et al., 2009), which are easily ingested by marine wildlife, entering this way the trophic chain, and finally being ingested by humans (Setälä et al., 2014). Several studies have revealed the presence of plastic particles in fish, crustaceans, and mollusks (Neves et al., 2015; Van Cauwenberghe et al., 2015; Watts et al., 2014), and even in dietary salt (Iñiguez et al., 2017). This may have an impact on human health because of its physical accumulation as well as the toxicity of the additives used in plastic industries and the organic pollutants that plastic can adsorb in the marine environment (Bouwmeester et al., 2015; Rochman et al., 2013; Teuten et al., 2009). Moreover, not only the entrance of these microplastics on the trophic chain but also the enrichment of potentially pathogenic multidrug-resistant bacterial strains in the plastisphere is a major health problem to face (Wang et al., 2021).

However, the amount of plastic estimated to enter into marine ecosystems does not correlate with the accumulation found by sampling techniques (Eriksen et al., 2014; Jambeck et al., 2015). Although there could be biases in sampling specific areas, this fact could also indicate that either physical or chemical plastic degradation is taking place in these ecosystems and/or microbial biodegradation is involved (Auta et al., 2017; Gewert et al., 2015; Sole et al., 2017; Zrimec et al., 2021). In recent years, plastic debris has proved a niche for specific plastic-associated microbial communities to flourish, generally known as the "plastisphere" (Agostini et al., 2021; Zettler et al., 2013). Microbial growth on the plastisphere usually takes place in the shape of a biofilm on the plastic surface (Lobelle & Cunliffe, 2011). Although meta-analyses are suggesting that a significant enrichment of potentially plastic biodegrading microorganisms in the plastisphere is detected (Wright, Langille, et al., 2021), there are still contradictory reports on the specificity of the composition of the microbial plastisphere. Specifically, some studies have shown that nonbiodegradable plastics, such as polyethylene terephthalate (PET), are colonized by a general biofilm rather than plasticspecific species (Oberbeckmann et al., 2016; Pinnell & Turner, 2019). Therefore, microbial biofilms attached to plastic surfaces in the marine environment seem to be composed of complex communities where some microorganisms, although not being the primary producers, may have evolved or adapted to degrade plastic polymers or plasticizers (Pinnell & Turner, 2019).

In the last decades, there has been a rapid rise in the use of PET to produce disposable packaging, such as single-use plastic bottles. This has led to a dramatic increase in PET waste generation, which is now one of the most common plastics polluting marine environments (PlasticsEurope, 2020; Ritchie & Roser, 2018). PET is a polymer made from raw petroleum-derived monomers, terephthalic acid, and ethylene glycol. Its high content in aromatic compounds makes it chemically inert and subsequently very robust against biodegradation (Sinha et al., 2010).

In this context, bioprospecting microbial species able to in situ biodegrade plastic has arisen as a potentially useful tool for tackling the plastic contamination problem in the oceans (Danso et al., 2018). The first bacterium that demonstrated an effective PET-degrading activity due to the expression of a lipase (PETase) was *Ideonella sakaiensis*, isolated from the sediments of a plasticrecycling industry, which can hydrolyze this polymeric compound (Yoshida et al., 2016). However, these enzymes capable of PET hydrolysis have also been detected in other bacterial and fungal isolates, such as *Thermobifida fusca*, *Streptomyces* spp. or *Fusarium solani*, among others (Carr et al., 2020), and have been mainly described as cutinases, lipases, and esterases which are carboxylic ester hydrolases (Kawai et al., 2020).

Here, we show a complete characterization of the microbial communities associated with marine residues from the Mediterranean Western coast with a dual culture-dependent and -independent approach. We have studied the biofilm morphology on plastic and aluminum debris through scanning electron microscopy (SEM), characterized the microbial communities of their inner sediments by 16S and 18S ribosomal RNA (rRNA) genes sequencing, and established a microbial collection of mainly culturable bacteria and some yeasts, whose ability to grow on media supplemented with PET as sole carbon source has been characterized.

2 | MATERIALS AND METHODS

2.1 | Sampling

Plastic residues and cans were collected from the Malva-rosa beach (València, Spain; 39°27'48.3"N 0°19'07.6"W) in September 2017 (Figure 1). The sampling was carried out at 20 m from the coastline and 3 m in depth. Four PET plastic bottles (labeled as P1-4) and four metallic beverage cans (labeled as M10-13) were collected and transported to the laboratory into sterile plastic bags. All the residues were originally submerged or half-buried in the marine sediments and they were thus partially filled with sand, mollusk shells, and marine plants (Posidonia oceanica) debris. Three samples of control seabed sediments (CS4-6) from the same area where plastic and aluminum residues were collected, which consisted of similar materials like sand, little stones, and shells, were also collected. Furthermore, some of the marine residues collected were still labeled with the expiration date of the product; therefore, an approximate age for these bottles or cans can be deduced: aluminum can M10 (expiration date 2003), aluminum can M12 and M13 (expiration date 2018), plastic bottle P1 (expiration date 2010).

FIGURE 1 (a) Sampling location at the Mediterranean Western coast, Malva-rosa beach, València (Spain). The specific sampling sites are pointed out with white arrows. (b) Examples of the samples collected, from left to right: PET plastic bottle P1; plastic bottle P2; aluminum can M10

3 of 23

(b)

Samples from the insides of each recipient (sediments) were collected under sterile conditions in the laboratory and stored at -20°C until required. To obtain samples from the plastic surface biofilms, recipients P1-4 were shortly rinsed with sterile water and then cut into small pieces which were shaken together with glass beads in phosphate-buffered saline (PBS; pH 7.4; in g/L: 8.0 NaCl, 0.2 KCl, 1.42 Na₂HPO₄, 1.80 KH₂PO₄), at 500 rpm, for an hour. A total of 150 ml of the resulting suspension were collected and centrifuged at 4500 rpm for 15 min (sample P12) and stored at -20°C until required. Sample 12 was only analyzed in terms of culturable bacteria and it was not included in the high-throughput 16S rRNA gene sequencing.

2.2 | Isolation of microbial strains

Sediment samples from recipients P1–4, M10–13, biofilm sample P12, and control sediments CS4–6 were diluted in PBS at a final ratio of 1:4 (v:v). Serial dilutions were then prepared and four replicates of 50 μ l aliquots were spread on commercial Marine Agar (MA) (Ref: 1059; Laboratorios Conda S.A.) and incubated at 18°C for 2 weeks. Two replicates were incubated under aerobic conditions and the other two replicates in anaerobic conditions by placing the dishes inside a hermetic container without oxygen (N₂ atmosphere).

Individual colonies were picked according to morphological traits (color, shape, and size) and restreaked on fresh media until a pure culture was obtained. The strains were named after a code composed of a letter and a number associated with its origin (P1–4 and P12: plastic bottles; M10–13: aluminum cans; CS4–6: external sediments), followed by a unique number for each strain and a letter referring to the incubation conditions (X: aerobic conditions; A: anaerobic conditions). For example, P1.1X means the first colony isolated from

bottle P1 that grew under aerobic conditions. The strains were stored in cryotubes with 20% glycerol at -80° C until used.

2.3 | Molecular identification of isolates through 16S/18S rRNA gene sequencing

DNA extraction was carried out by using the protocol described by Latorre et al. (1986) and confirmed through electrophoresis in agarose gel (1.4% w/v). Strain identification was performed through 16S rRNA gene Sanger sequencing, by using the universal primers 8 F (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492 R (5'-CGGTTACCTT GTTACGACTT-3'). In the cases that the 16S rRNA gene amplification failed, 18S rRNA gene universal primers 86 F (5'-ACTGCGAATGG CTCATTAAATCAG-3') and 1188 R (5'-AGTCAAATTAAGCCGC AG-3') were used to verify whether the strains were eukaryotic. Amplicons were precipitated overnight in isopropanol 1:1 (v:v) and potassium acetate 3 M, pH 5, 1:10 (v:v) at -20°C. After centrifuging at 12,000 rpm for 10 min, DNA pellets were washed in 70% ethanol and resuspended in the required amount of sterile Milli-Q water. BigDye[®] Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) was used for amplicon tagging for Sanger sequencing, which was performed in the Sequencing Service (SCSIE) of the University of València (Spain). The Sequences were manually edited with Trev (Staden Package, 2002) to eliminate low-quality base calls and compared by EzBioCloud 16S online tool (https://www.ezbiocloud. net/). The 16S rRNA genes of some interesting isolates holding an identity lower than 98.7% with the closest type strain were also sequenced with primers 341 R (5'- CTGCTGCCTCCCGTAGG-3') and 1055 F (5'-ATGGCTGTCGTCAGCT-3') and complete 16S rRNA gene sequences were assembled with the MEGA10 tool and compared again by EzBioCloud 16S online tool.

WILEY_MicrobiologyOpen _

2.4 | Scanning electron microscopy

Plastic and aluminum samples were briefly washed with sterile distilled water and then pieces of ca. 0.25 cm^2 were cut and fixed in Karnovsky's fixative (Karnovsky, 1965). The fixation solution was changed after five hours and samples were stored in this solution at 4°C until required. For SEM, the pieces were washed in phosphate buffer 0.1 M, pH 7.4 (PB, in g/L: 3.1 NaH₂PO₄·H₂O, 10.9 Na₂HPO₄) to remove the fixative and progressively dehydrated in increasing ethanol concentrations. Samples were placed inside microporous specimen capsules (30 µm pore size) immersed in absolute ethanol, followed by critical point drying in an Autosamdri 814. The fragments were then arranged on SEM aluminum stubs using carbon tape and coated with Au/Pd sputtered in argon gas. The observation was carried out in a Scanning Electron Microscope Hitachi S-4800 at the electron microscopy service of the University of València (SCSIE).

2.5 | DNA purification and high-throughput 16S rRNA gene sequencing

Internal sediments from the marine residues collected were subjected to DNA extraction. In particular, 1 g of sediments of each sample (Plastic bottles P1, P2, P3, and P4; Aluminum cans M10-M13; Control sediments CS4-CS6) were taken from 2 cm in depth from the inner sediments of each bottle/can. No replicates were performed. Metagenomic DNA extraction was carried out by using the Power Soil[®] DNA Isolation Kit (12888-100; MoBio Laboratories Inc.) according to the manufacturer's instructions, but incubating at 65°C (10 min) after the addition of solution C1, and resuspending the extracted DNA in 25 µl of Milli-Q water. The resulting DNA was quantified using the QUBIT dsDNA HS-high sensitivity kit (Invitrogen). Then, primers 341 F (5'-CCTAYGGGRBGCASCAG-3') and 806 R (5'-GGACTACNNGGGTATCTAAT-3') were used to amplify the V3-V4 region of the 16S rRNA gene. All polymerase chain reactions (PCRs) were carried out with Phusion[®] High-Fidelity PCR Master Mix (New England Biolabs). PCR products were mixed at equal density ratios. The pool was then purified with Qiagen Gel Extraction Kit (Qiagen). Sequencing libraries were generated with NEBNext[®] Ultra[™] DNA Library Prep Kit for Illumina and guantified via Qubit and qPCR. Finally, the NovaSeq 6000 Sequencing System $(2 \times 250 \text{ bp})$ was employed for sequencing the samples. All the library preparation and sequencing steps were carried out by Novogene.

2.6 | Bioinformatic analysis

Raw Illumina sequences were analyzed using Qiime2 (v. 2020.8) (Bolyen et al., 2019). Briefly, the quality of the reads was assessed with the Demux plugin, and the sequences were subsequently corrected, trimmed, and clustered into amplicon sequence variants (ASVs) via Dada2 (Callahan et al., 2016). The taxonomy of each sequence variant was assigned employing the classify-Sklearn module from the feature-

classifier plugin (Bokulich et al., 2018). SILVA (v. 138) was used as a reference for the 16S rRNA gene assignment (Quast et al., 2013). The phyloseq R package (McMurdie & Holmes, 2013) was used for analyzing and visualizing the data. All the α -diversity tests were carried out using ASVs and rarefying to the lowest library size (128,327 sequences). Principal coordinate analysis (PCoA) plots were created using Bray–Curtis as a dissimilarity measure. Finally, DESeq. 2 (Love et al., 2014) was used for differential abundance analyses).

2.7 | Plastic degradation assay in solid medium

Plastic degradation was assessed through qualitative assays by comparing the growth of the bacterial strains on minimal marine medium (MMA), enriched marine medium (MME), and marine medium supplemented with plastic (MMP). MMA consisted of water from the Mediterranean Sea and 15 g/L agar, whereas MME consisted of seawater and, in g/L, 1.0 yeast extract, 5.0 bacteriological peptone, and 15 agar. MMP was prepared by using seawater, supplemented with 9.3 g/L of ground PET of approximately 0.5 mm in size, from a commercial PET water bottle (brand Cortes) and 15 g/L of agar, which was then sterilized at 121°C for 30 min. The PET bottle was ground in a coffee grinder for 5 min at maximum speed. As plastic particles tended to sediment on the bottom of the dishes, the media was stirred by using sterile spatulas before solidification.

Before the incubation with PET, bacterial isolates were grown on solid MMA for 4 days at room temperature. Cell suspensions with an Optical Density at 600 nm (OD_{600}) of 1 were prepared in PBS and 4 µl of the suspensions were placed on Petri dishes containing MMA, MME, and MMP (in duplicate). The dishes were incubated for 16 days at 18°C. Isolates with a more vigorous growth (as determined by colony diameter and cell density) in MMP than in MMA were selected as potential plastic degrading bacteria and tested again in the same media conditions but using a 10-fold dilution of the bacterial suspensions (OD_{600} of 0.1).

2.8 | Plastic degradation assay in liquid medium

Assay tubes were prepared with 3 ml of seawater and 0.400 ± 0.001 g of particles of PET from a new water bottle (brand Cortes), of 3 mm in size (cut by hand to obtain homogeneous size), and sterilized by autoclaving at 121°C for 30 min. Bacterial strains were grown on solid MA for 4 days at room temperature. Cell suspensions were prepared in PBS and adjusted to a final OD₆₀₀ of 0.05. The assay was carried out in duplicate by incubating the tubes at 18°C under shaking (200 rpm) for 3 months. Control tubes consisted of sterile seawater inoculated with the microbial cultures, as well as seawater and plastic particles but without inoculated bacteria.

At the end of the incubation period, PET fragments were rinsed with sterile water and vortexed for 2 min in distilled water. The process was repeated three times and the washed plastic particles were dried at 65°C for 48 h. Finally, the remaining plastic particles were weighted in a precision balance. To finally compare the colony-

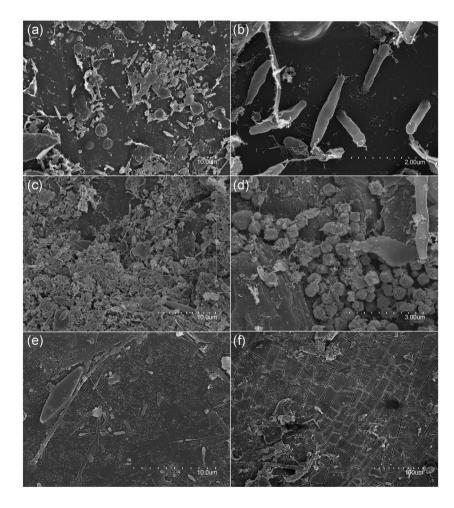
-WILEY

forming units (CFU) in each condition, the recovered supernatants of each tube were diluted in serial dilutions and 50 μ l of each dilution was inoculated in duplicate into MA plates.

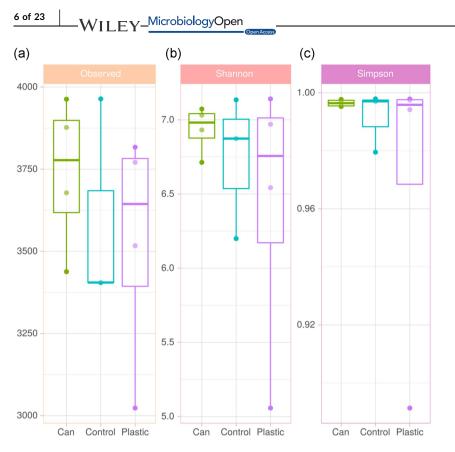
3 | RESULTS

3.1 | Residue types and samples

Plastic PET bottles and aluminum cans were collected to study their associated microbiota as described in Section 2. The bacterial communities present in the inside-sediments, coming from PET bottles and aluminum cans, were compared with control, non-artificial residuesassociated sediments from the same area. Interestingly, some of the marine residues collected were still labeled with the expiration date of the product; therefore, an approximate age for these bottles or cans can be deduced: aluminum can M10 (expiration date 2003), aluminum can M12 and M13 (expiration date 2018), plastic bottle P1 (expiration date 2010).


3.2 | Scanning electron microscopy

The SEM images of the surface of plastic and aluminum marine waste suggest a diverse microbial community attached to these surfaces


(Figure 2). Different microbial morphologies could be differentiated in both cases, including rod- and coccus-shaped cells as well as diatoms and filamentous microorganisms. In particular, spermatozoid-shaped bacteria stood out in Figure 2c,e which may belong to prosthecate bacteria such as *Hyphomonadaceae*. Interestingly, several samples showed 2 μ m fusiform bacilli firmly attached to the plastic surface, to which they were linked through polar fimbriae-like structures (Figure 2a,b). In another plastic bottle, one of the most frequent morphologies was a square shape of around 0.6 μ m in size which could not be attributed to a microorganism as it could instead correspond to mineral forms (Figure 2c,d). Finally, eukaryotic flagellated cells and diatoms were observed in the analyzed aluminum surfaces of cans (Figure 2e,f).

3.3 | Taxonomy of the waste-associated bacterial communities

The bacterial community of marine waste was studied by highthroughput 16S rRNA gene sequencing yielding the composition of the taxa in the inside sediments of four PET bottles, inner sediments of four aluminum cans, as well as three samples of control marine sediments. The shape of rarefaction curves revealed that sequencing was deep enough to cover all the microbial diversity for all samples

FIGURE 2 Scanning electron microscopy images of microorganisms on the surface of different marine residues. Scale bar (a) $10 \,\mu$ m, (b) $2 \,\mu$ m, (c) $10 \,\mu$ m, (d) $3 \,\mu$ m, (e) $10 \,\mu$ m, and (F) $100 \,\mu$ m. (a, b) Microbial community on the plastic surface of sample P1. Fusiform bacilli-like microorganisms attached to the surface by fimbriae-like adhesion structures. (c, d) Biofilm on the plastic surface of sample P2. Square-like nonidentified shapes of less than $1 \,\mu$ m are predominant in this sample. (e, f) The surface of aluminum cans with scattered microbial cells

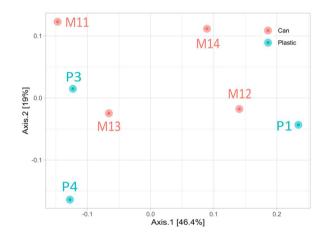


FIGURE 3 Representations of the values of alpha diversity indices in the (a) observed richness at the amplicon sequent variant (ASV) level (number of ASVs), (b) Shannon index of diversity, and (c) Simpson index of diversity. The 11 analyzed samples are represented: inside-sediments of cans (green); polyethylene terephthalate inside-sediments (purple); control-sediments of the sea-bed (blue)

(Figure A1). Furthermore, based on the comparison of the richness value (number of different AVSs; Figure 3a) and the diversity (Shannon index; Figure 3b and Simpson index; Figure 3c), the alpha diversity was not significantly different among samples (p > 0.1; Mann–Whitney U test).

A PCoA including samples P1, P3, P4, M10, M11, M12, and M13 revealed no significant difference between the composition of the bacterial communities of both (plastic and cans) inside waste sediments (p > 0.05; PERMANOVA) (Figure 4). Sample P2 was not included in Figure 4 due to its substantial difference in bacterial composition, which precluded its separation from the other samples in the PcoA and difficulted the interpretation of the figure (see Figure A2 for the complete analysis).

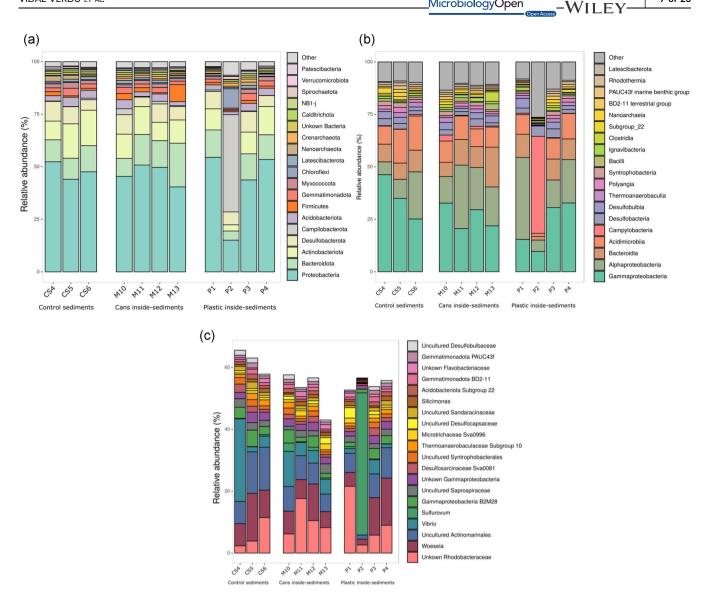
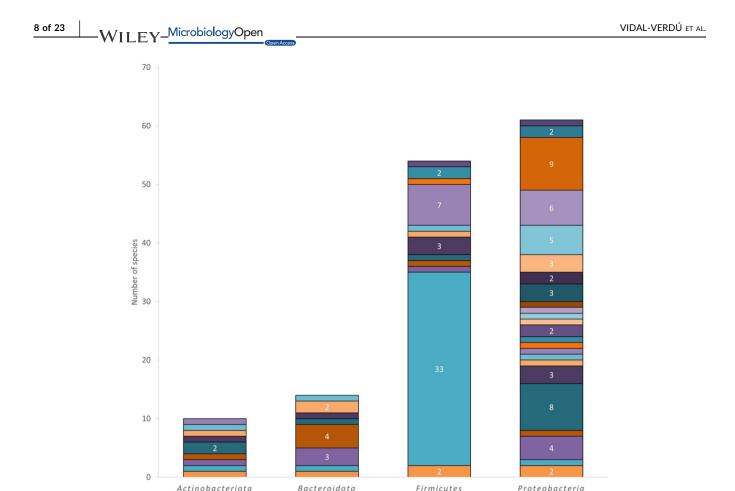

The representation of the relative abundance of the 20 most abundant phyla (Figure 5a) and the 20 most abundant classes (Figure 5b) showed that the microbial composition was similar among the different types of sediments. However, the comparison at the genus level of the 20 most abundant genera revealed some differences between samples (Figure 5c). At the phylum level, the bacteriomes of all the samples (mean relative abundance) were dominated by *Proteobacteria* (45.2%), followed by *Bacteroidota* (or *Bacteroidetes*) (11.9%), *Actinobacteriota* (or *Actinobacteria*) (11.2%), and *Desulfobacterota* (or *Deltaproteobacteria*) (7.3%). On top of that, other less frequent phyla that were present in all the samples were *Campilobacterota* (predominant in sample P2), *Acidobacteriota, Firmicutes, Gemmatimonadota, Myxococcota, Crenarchaeota*, and *Calditrichota*, among others. In terms of class, *Gammaproteobacteria* (27.2%), *Alphaproteobacteria* (18.0%), *Acidimicrobiia* (10.7%), and

FIGURE 4 Principal coordinates analysis (PCoA) based on Bray-Curtis dissimilarities at the genus level in bacterial populations of both inside-sediments of marine residues, plastic (blue), and aluminum cans (red). Sample P2 not included

Bacteroidia (9.7%) comprised almost 50% of all the samples. Furthermore, at the genus level, high diversity was found in all the samples. On average, the top 10 genera described in these marine samples were: Unknown *Rhodobacteraceae* (9.0%), *Woeseia* (8.7%), uncultured *Actinomarinales* (8.0%), *Vibrio* (5.8%), *Sulfurovum* (4.7%), *Gammaproteobacteria* B2M28 (2.8%), unknown *Gammaproteobacteria* (2.3%), uncultured *Saprospiraceae* (1.9%), *Desulfosarcinaceae* Sva0081 (1.5%), and uncultured *Syntrophobacterales* (1.4%). Samples CS4 and P2 showed a similar taxa composition to the other samples, but clear

7 of 23


Barplots showing the taxonomic profiles at the phylum (a), class (b), and genus (c) level of the top 20 most abundant groups in FIGURE 5 terms of relative abundance of inside-sediments from marine residues (plastic and aluminum cans) and control sediments by high-throughput 16S ribosomal RNA gene sequencing

differences in abundance, where Vibrio and Sulfurovum were the dominant genera in each sample, respectively. A test for differential abundance (Table A1) revealed that the phylum Caldatribacteriota was significantly more abundant in plastic sediments than in aluminum sediments. At the same time, it showed that when comparing debris sediments to control sediments, Cyanobacteria and Marinimicrobia were more abundant in can sediments as well as Campilobacteria, Cloacimonadota, and Acetothermia were significantly more abundant in inner plastic sediments.

3.4 Strain collection and identification

Culturing the marine sediments associated with artificial residues yielded a large number of highly diverse microbial colonies, in terms

of color and morphology. A total of 170 bacterial strains and one yeast were isolated. All the strains that grew at first under anaerobic conditions showed later the ability to grow in the presence of oxygen. In total, 142 out of 171 strains were identified through colony PCR and 16S and 18S rRNA gene sequencing (Table A2), whereas 29 remained unidentified due to the impossibility to carry out the amplification of these fragments through PCR. The identified bacteria were distributed into four phyla: Firmicutes, Proteobacteria, Bacteroidota, and Actinobacteriota (Figure 6). Bacillus spp. was by far the most abundant genus (33 species identified), followed by Vibrio spp. (9), Erythrobacter spp. (8), Planomicrobium spp (7), Sulfitobacter spp. (6) and Sphingorhabdus spp. (5) among other genera. Interestingly, the identification of a large fraction of the microorganisms in the collection revealed that some isolates could represent new species, as they held a percentage of identity with the closest type strain below

FIGURE 6 Bar plots showing the distribution into four phyla of the isolated species within the collection. The different colors in each phylum represent one different genus and the numbers indicate the number of isolates identified, which are only written when the number of isolates per genus is greater than two (see Table A2 for detailed information about each strain identified)

the 98.7% threshold established to circumscribe a new bacterial species (Chun et al., 2018). In particular, isolates M10.2A, M10.9X, and P4.10X with the closest type strains belonging to the genera *Gillisia, Sagittula,* and *Maritalea,* respectively, are potentially new species. Further characterization is needed to determine it.

3.5 | PET degradation assays

To test the PET degrading activity of the microbial isolates obtained from marine waste, a preliminary qualitative screening was carried out consisting of a drop assay of bacterial culture in MMA and MMP to check differential growth when PET plastic was present (see Section 2.7). From this preliminary screening, differences in terms of growth after the drop assay performed as described in Section 2 are shown in Figure 7. In the first round of selection, 27 out of the 171 strains tested were selected as they showed increased growth in minimal medium supplemented with PET particles compared to the control medium without PET, after 28 days at 18°C. A second assay with the 27 selected strains was then carried out and led to the further selection of 16 strains with the more obvious differential growth on PET-containing media. 16S rRNA complete gene sequences were obtained and compared using EzBioCloud thus allowing the identification at the species level (Table A3). A selection of eight of these isolates are shown in Figure 7 and they were identified as members of the species *Bacillus algicola*, *Pseudomonas juntendi*, *Kocuria rosea*, *Aquimarina intermedia*, *Microbacterium aerolatum*, *Rhodotorula evergladensis*, *Citricoccus alkalitolerans*, and *Bacillus simplex*.

The group of 16 strains selected in the previous assay was incubated for 3 months at 18°C in liquid MMP containing PET particles precisely weighted. The following controls were included in the assay: PET without inoculated bacteria; the medium without neither bacteria nor PET; and each bacterium incubated without plastic. The test resulted in no detectable weight loss of the plastic particles in any sample inoculated with any of the 16 strains. Surprisingly, a small weight loss was detected in the noninoculated controls, in which the liquid became cloudy, appearing a white precipitate (Figure A3). To discard microbial contamination of the controls, the commercial MA medium was inoculated with the cloudy supernatant, which was also observed under the microscope. Both experiments yielded negative results and contamination of the controls was thus discarded. There was one unit decrease in the pH of these control tubes (7.5 ± 0.1) compared with the tubes inoculated with a microorganism, all of which remained at a pH of 8.5 ± 0.3 and exhibited no turbidity in any inoculated tube.

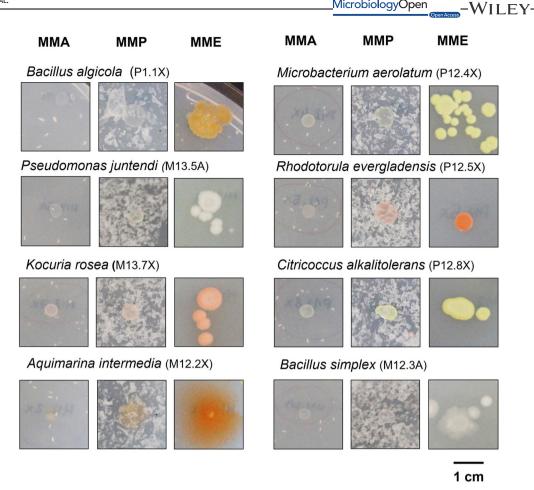
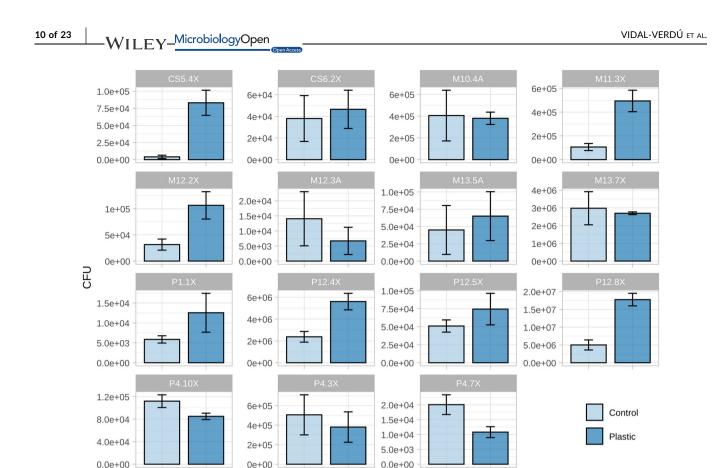


FIGURE 7 Differential growth of eight selected strains on minimal marine medium (MMA), minimal marine medium supplemented with polyethylene terephthalate (PET) (MMP), and enriched marine medium (MME). MMA was used as a control for the basal growth of the strain without any supplemented carbon source. MMP was used to compare the growth of the isolates in the presence of PET plastic. MME allowed the normal growth of the strain in a rich nutrient marine medium


Substantial differences in bacterial growth were found in the containing-PET and non-containing-PET medium in four of the strains, by comparing cell number (CFU) of the supernatants inoculated in MA medium (Figure 8). The strains that showed an increased growth when PET was present were: Micrococcus luteus (CS5.4X, 20.8-fold increased growth), Idiomarina piscisalsi (M11.3X, 4.7-fold increase), Citricoccus alkalitolerans (P12.8X, 3.6-fold increase), Aquimarina intermedia (M12.2X, 3.4-fold increase), Microbacterium aerolatum (P12.4X, 2.4-fold increase), Bacillus algicola (P1.1X, 2.1-fold increase), and the yeast Rhodotorula evergladensis (P12.5X, 1.5-fold increase) (Table A3).

4 DISCUSSION

Artificial residues hold great promise as a source of a huge variety of microorganisms for the bioremediation of plastic waste (Delacuvellerie et al., 2019; Yoshida et al., 2016). The interest in the study of the microbial communities associated with the plastisphere, as well as to other anthropic residues such as glass bottles or ceramic surfaces (McCormick et al., 2014; Oberbeckmann et al., 2016; Pinnell & Turner, 2019), has increased exponentially in the last years. The worldwide problem of plastic contamination in the oceans has led researchers to investigate the impact of these pollutants not only on the surfaces but also in deep-sea areas (Woodall et al., 2018). Even though these studies shed light on the plastic degradation problem, there are still several questions that need further investigation in this field and more research focusing on other materials such as metal debris would be interesting.

Regarding the bacterial communities inhabiting the marine sediments studied in this study, at the β -diversity level, the samples analyzed did not cluster together depending on the type of sediment (cans-inner sediments, plastic-inner sediments, and control-external sediments) (Figures 4 and A2). This suggests that the bacterial profile of sediments trapped into artificial residues falls within the diversity of bacterial profiles of similar, natural environments. Interestingly, samples from each type (plastic or metal) displayed similar morphological features under SEM (Figure 2).

The morphology of the microorganisms in the biofilms we studied by SEM is in line with previous descriptions, in which a high diversity of microorganisms, both eukaryotes, and prokaryotes, were found (Bryant et al., 2016; Masó et al., 2016; Reisser et al., 2014).

FIGURE 8 Comparison in colony-forming units (CFU) count of selected isolates that showed increased growth in polyethylene terephthalate (PET)-containing medium. Strains were incubated in a PET-containing medium and control medium without PET at 18°C under shaking (200 rpm) for 3 months. Negative controls yielded no CFU count. Identification of strains based on 16S ribosomal RNA (rRNA) gene sequencing: CS5.4X: Micrococcus luteus; CS6.2X: Aurantimonas coralicida; M10.4A: Bacillus zhangzhouensis; M11.3X: Idiomarina piscisalsi; M12.2X: Aquimarina intermedia; M12.3A: Bacillus simplex; M13.5A: Pseudomonas juntendi; M13.7X: Kocuria rosea; P1.1X: Bacillus algicola; P12.4X: Microbacterium aerolatum; P12.5X: Rhodotorula evergladensis; P12.8X: Citricoccus alkalitolerans; P4.10X: Maritalea mobilis; P4.3X: Meridianimaribacter flavus; P4.7X: Microbacterium imperiale. Accession numbers of deposited 16S rRNA gene sequences and fold-increase in CFU can be found in Table A3

Interestingly, we found numerous fusiform bacteria attached to the plastic surface through fimbriae-like structures (Figure 2b). Similar shapes have previously been described to inhabit plastic surfaces in marine environments. For example, Bryant et al. (2016), showed a similar microbial community and also reported a bacillary shape that is attached from one pole to the plastic surface. In another study on the plastisphere of microplastics from the Australian shores, the same bacillary shapes with fimbriae-like structures adhering to the plastic surface were described (Reisser et al., 2014). Furthermore, the well-known PET degrading bacteria *Ideonella sakaiensis* exhibits attaching appendages when growing on plastic (Figure 2f in Yoshida et al., 2016). Hence, the finding of microorganisms directly attached to the plastic surface points towards the possibility of these bacterial forms being anchored to the plastic substrate to allow its degradation by exoenzymes.

Another interesting morphological trait of the observed microorganisms is the presence of spermatozoid-shaped bacteria (Figure 2c,e). This bacterial shape may correspond to prosthecate bacteria, particularly the genus *Hyphomonadaceae*, which is abundant in the microbial communities of plastic residues (fig. 5c,f from Bryant et al., 2016; fig. 2 from Zettler et al., 2013) and we have also detected this taxon, although in low abundance, in the marine debris analyzed through high-throughput 16S rRNA gene sequencing.

In terms of microbiota, our results show that the bacterial profile is very similar between seafloor sediments and internal residue sediments. The microbial composition is characterized by a set of marine bacterial classes (Gammaproteobacteria, Alphaproteobacteria, Acidimicrobiia, and Bacteroidia) that belong to the phyla Proteobacteria, Actinobacteriota, and Bacteroidota which have widely been described in surface marine sediments (Hoshino et al., 2020). Indeed, Gammaproteobacteria and Alphaproteobacteria proved the dominant classes in all the samples analyzed, and they have been reported as the most abundant taxa in samples from pelagic to benthic locations (Petro et al., 2017; Zinger et al., 2011). Moreover, in our study, the phylum Desulfobacterota was detected in all the samples. This result correlates with the fact that sulfate concentrations are higher in the surface layers of seafloor sediments (Leloup et al., 2009; Pellerin et al., 2018), which allows the proliferation of species within this phylum, such as members of Desulfosarcinaceae, Syntrophobacterales, Desulfocapsaceae, and

-WILEY

Desulfobulbaceae, all of which were found in the sediments analyzed in this study.

Interestingly, the abundance of the genus *Vibrio* is remarkable in all the samples. Pathogenic bacterial species belonging to *Vibrio* have been widely described in marine environments usually in low abundance and they have also been found in plastic debris (Delacuvellerie et al., 2019; Jacquin et al., 2019; Zettler et al., 2013). *Vibrio* is very resistant to hard conditions and can perform a rapid growth in marine environments in response to an increase of nutrients (Westrich et al., 2018). Another interesting fact is that PET bottle P2 was dominated by *Sulfurovum* while this genus remained in low abundance in the other samples. Species from the genus *Sulfurovum* are chemolithoautotrophic sulfur-oxidizing bacteria that are primary producers in marine sediments communities (Mori et al., 2018) and even have been described to be the dominant taxon in seafloor sediments in some localizations (Sun et al., 2020).

The microbial composition we have found is similar to that reported in a variety of studies carried out on the biofilm that directly colonizes the plastic surface (Amaral-Zettler et al., 2020; Delacuvellerie et al., 2019; Oberbeckmann et al., 2016). A recent review on colonization and plastic biodegradation in the marine environment (Jacquin et al., 2019), summarizes that the surface of plastic residues are generally quickly colonized by *Gammaproteobacteria* and *Alphaproteobacteria*, and then, with time, *Bacteroidota* also becomes an important group in the biofilm.

The microbial profiles observed in the collection of culturable strains we set are in accordance with the previous results reported by several authors. This collection of 171 microbial isolates includes strains of 53 different genera distributed among the phyla Firmicutes, Proteobacteria, Bacteroidota, and Actinobacteriota, Specifically, Proteobacteria, which is one of the most common phyla in most of the biomes, is also the most abundant phylum associated with plastic residues worldwide (Roager & Sonnenschein, 2019). Among the recurrent alphaproteobacterial families found in such environments are Erythrobacteraceae and Rhodobacteraceae, which in our collection are represented by the eight genera: two belonging to Erythrobacteraceae (Altererythrobacter, Erythrobacter) and six belonging to Rhodobacteraceae (Epibacterium, Maliponia, Ruegeria, Sagittula, Sulfitobacter, and Yoonia). Moreover, the eight representative genera of the phylum Bacteroidota belonged to the Flavobacteriaceae family, which is, again, a common plastic debris-associated taxa (Amaral-Zettler et al., 2020; Jacquin et al., 2019). The abundance of Firmicutes is linked to the high number of Bacillus spp, (33 species isolated in total) we found. This genus has been reported as a marine plastic colonizer and degrader (Delacuvellerie et al., 2019; Oberbeckmann et al., 2015; Ribitsch et al., 2011).

The diversity of microorganisms found on artificial debris, the presence of biofilms and plastic adhesion fimbriae-like structures, and the taxonomic identity of some of the taxa suggest a possible role in plastic biodegradation of some of the bacteria of the collection we set and characterized. The quantitative PET degradation assay with the selected strains yielded no significant loss of non-pretreated PET particles weight. However, this is not particularly surprising givien the

fact that PET is very resistant to biodegradation due to its compact structure, hence heat or oxidative pretreatments are usually needed to enhance biodegradation (Gewert et al., 2015). Nevertheless, we observed an increased growth (measured as CFU count variation), of seven of the isolates when PET was present as the sole carbon source in the medium, suggesting the capability of some strains to degrade plastic or plastic additives, such as plasticizers, antioxidants, light and heat stabilizers, pigments or slip reagents that are usually added to plastics to enhance their structural properties. These compounds are commonly not covalently bonded to the plastic polymer; therefore, they can more easily leak out from the plastic structure to the liquid phase (Hahladakis et al., 2018). Remarkably, the strain of Micrococcus luteus we tested, showed a 20-fold increase in CFUs when the minimal medium was supplemented with PET particles compared to a non-supplemented-PET medium. This is not the first time that Micrococcus luteus has been described to potentially degrade plastic (Montazer et al., 2018; Sivasankari & Vinotha, 2014), and its degrading ability seems to be associated with its ability to form biofilm in plastic surfaces (Blakeman et al., 2019; Feng et al., 2011). The isolates identified as Idiomarina piscisalsi, Citricoccus alkalitolerans, Aquimarina intermedia, and Microbacterium aerolatum which showed roughly a two- to four-fold increase in growth in PET, have been sparsely studied in previous works regarding plastic-degrading activity. Specifically, Idiomarina has been recently reported to possibly assist in the formation of biofilms on the surface of PET particles, although it showed no significant PET degradation (Gao & Sun, 2021). On the contrary, although there is no previous report on the ability of Bacillus algicola (which showed double CFU count when incubated with PET) to degrade plastic polymers, other species and strains within the genus have been described as degraders of polystyrene, polypropylene, polyethylene, and PET microplastic particles (Auta et al., 2017; Wright, Bosch, et al., 2021) as well as polyvinyl chloride (Giacomucci et al., 2019). Finally, the yeast Rhodotorula evergladensis, which showed a tiny increase in growth on PET in our study, has been previously reported to degrade plasticizers (Gartshore et al., 2003).

Taken together, our results suggest that the marine wasteassociated microbiota hold potential as a source of biotechnological interesting strains for plastic or plastic-related compounds.

ACKNOWLEDGMENTS

We acknowledge Darwin Bioprospecting Excellence SL for the bioinformatic analysis and sequencing and the CSIC-PTI Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy (SusPlast) for their support. Financial support by Ministerio de Ciencia e Innovación (grant SETH ref. RTI2018-095584-B-C41-42-43-44 co-financed by FEDER), the European Union H2020 (BIOROBOOST project ID 210491758; Micro4Biogas project ref. 101000470), Agencia Estatal de la Innovación AEI (MIPLACE project ref. PCI2019-111845-2), and Agència Valenciana de la Innovación AVI (ENTOMOPLAST project ref. INNEST/2021/334) are acknowledged. Àngela Vidal-Verdú and Esther Molina-Menor are funded with a Formación del Profesorado Universitario grant from the Spanish 12 of 23

II FY_MicrobiologyOpen

Ministerio de Ciencia, Innovación y Universidades with references FPU18/02578 and FPU17/04184, respectively. Adriel Latorre-Pérez is a recipient of a Doctorado Industrial fellowship from the Spanish Ministerio de Ciencia, Innovación y Universidades (reference DI-17-09613).

CONFLICT OF INTERESTS

None declared.

ETHICS STATEMENT

None required.

AUTHOR CONTRIBUTIONS

Àngela Vidal-Verdú: Conceptualization (equal); Data curation (lead); Investigation (lead); Writing – original draft (lead); Writing – review and editing (equal); Adriel Latorre-Pérez: Conceptualization (supporting); Formal analysis (lead); Writing – review and editing (equal); Esther Molina-Menor: Investigation (supporting); Writing – original draft (supporting); Writing – review and editing (equal); Joaquin Baixeras: Investigation (Supporting); Supervision (Supporting); Writing – review and editing (equal); Juli Peretó: Conceptualization (equal); Writing – review and editing (equal); Manuel Porcar: Conceptualization (equal); Writing – review and editing (equal).

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in online repositories. Raw reads are available in the NCBI repository (BioProject accession PRJNA704512: https://www.ncbi.nlm.nih.gov/bioproject/ PRJNA704512). 16S and 18S rRNA gene sequences are available in GenBank under accession numbers MZ437807-MZ437945, MZ604909-MZ604910, MZ604692, MZ994595-MZ994596, and MW785249. The code and the results of the bioinformatics and statistical analyses (including taxonomy tables of absolute and relative abundances and the BIOM table) have been uploaded to GitHub (https://github.com/adlape95/Living-in-a-bottle).

ORCID

Àngela Vidal-Verdú D http://orcid.org/0000-0001-7923-4835 Adriel Latorre-Pérez D http://orcid.org/0000-0002-2868-9562 Esther Molina-Menor D http://orcid.org/0000-0002-8604-5052 Joaquin Baixeras D http://orcid.org/0000-0002-6092-0496 Juli Peretó D http://orcid.org/0000-0002-5756-1517 Manuel Porcar D http://orcid.org/0000-0002-7916-9479

REFERENCES

- Agostini, L., Moreira, J., Bendia, A. G., Kmit, M., Waters, L. G., Santana, M., Sumida, P., Turra, A., & Pellizari, V. H. (2021). Deep-sea plastisphere: Long-term colonization by plastic-associated bacterial and archaeal communities in the Southwest Atlantic Ocean. *Science of the Total Environment*, 793, 148335. https://doi.org/10.1016/j.scitotenv. 2021.148335
- Amaral-Zettler, L. A., Zettler, E. R., & Mincer, T. J. (2020). Ecology of the plastisphere. *Nature Reviews Microbiology*, 18, 139–151. https://doi. org/10.1038/s41579-019-0308-0

- Arthur, C., Baker, J., & Bamford, H. (2009). Proceedings of the International Research Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris. Sept 9-11, 2008. NOAA Technical Memorandum NOS-OR&R-30. National Oceanic and Atmospheric Administration.
- Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. *Environmental Pollution*, 231, 1552–1559. https://doi.org/10.1016/j.envpol.2017.09.043
- Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, 364(1526), 1985–1998. https:// doi.org/10.1098/rstb.2008.0205
- Blakeman, J. T., Morales-García, A. L., Mukherjee, J., Gori, K., Hayward, A. S., Lant, N. J., & Geoghegan, M. (2019). Extracellular DNA provides structural integrity to a *Micrococcus luteus* biofilm. *Langmuir*, 35(19), 6468–6475. https://doi.org/10.1021/acs. langmuir.9b00297
- Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., Huttley, G. A., & Caporaso, J. G. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. *Microbiome*, 6(90), 90. (2018) https://doi.org/10.1186/s40168-018-0470-z
- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., ... Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. *Nature Biotechnology*, *37*(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9
- Bouwmeester, H., Hollman, P. C. H., & Peters, R. J. B. (2015). Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: Experiences from nanotoxicology. *Environmental Science and Technology*, 49, 8932–8947. https://doi. org/10.1021/acs.est.5b01090
- Bryant, J. A., Clemente, T. M., Viviani, D. A., Fong, A. A., Thomas, K. A., Kemp, P., Karl, D. M., White, A. E., & DeLong, E. F. (2016). Diversity and activity of communities inhabiting plastic debris in the North Pacific gyre. mSystems, 1(3):e00024-16. https://doi.org/10.1128/ msystems.00024-16
- Callahan, B., McMurdie, P., Rosen, M., Han, A., Johnson, A., & Holmes, S. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. *Nature Methods*, 13, 581–583. https://doi.org/10. 1038/nmeth.3869
- Carr, C. M., Clarke, D. J., & Dobson, A. D. W. (2020). Microbial polyethylene terephthalate hydrolases: Current and future perspectives. Frontiers in Microbiology, 11, 2825. https://doi.org/ 10.3389/fmicb.2020.571265
- Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D. R., da Costa, M. S., Rooney, A. P., Yi, H., Xu, X. W., de Meyer, S., & Trujillo, M. E. (2018). Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. *International Journal* of Systematic and Evolutionary Microbiology, 68(1), 461–466. https:// doi.org/10.1099/ijsem.0.002516
- Danso, D., Schmeisser, C., Chow, J., Zimmermann, W., Wei, R., Leggewie, C., Li, X., Hazen, T., & Streit, W. R. (2018). New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. *Applied and Environmental Microbiology*, 84(8):e02773-17. https://doi.org/10.1128/AEM.02773-17
- Delacuvellerie, A., Cyriaque, V., Gobert, S., Benali, S., & Wattiez, R. (2019). The plastisphere in marine ecosystem hosts potential specific microbial degraders including *Alcanivorax borkumensis* as a key player for the low-density polyethylene degradation. *Journal of*

MicrobiologyOpen

Hazardous Materials, 380, 120899. https://doi.org/10.1016/j. jhazmat.2019.120899

- Eriksen, M., Lebreton, L. C., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., Ryan, P. G., & Reisser, J. (2014). Plastic pollution in the world's oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. *PLOS One*, 9(12), e111913. https://doi.org/10.1371/journal.pone.0111913
- Feng, L., Li, X., Song, P., Du, G., & Chen, J. (2011). Surface interactions and fouling properties of *Micrococcus luteus* with microfiltration membranes. *Applied Biochemistry and Biotechnology*, 165(5–6), 1235–1244. https://doi.org/10.1007/s12010-011-9341-9
- Gao, R., & Sun, C. (2021). A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene. *Journal of Hazardous Materials*, 416, 125928. https://doi.org/10.1016/j. jhazmat.2021.125928
- Gartshore, J., Cooper, D. G., & Nicell, J. A. (2003). Biodegradation of plasticizers by Rhodotorula rubra. Environmental Toxicology and Chemistry, 22(6), 1244–1251. https://doi.org/10.1002/etc. 5620220609
- GESAMP (2016). Sources, fate and effects of microplastics in the marine environment: part two of a global assessment, In Kershaw, P. J., & Rochman, C. M. (Eds), *Rep. Stud. GESAMP No. 93*, (p. 220). IMO/ FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection.
- Gewert, B., Plassmann, M. M., & Macleod, M. (2015). Pathways for degradation of plastic polymers floating in the marine environment. *Environmental Science: Processes & Impacts*, 17, 1513–1521. https:// doi.org/10.1039/c5em00207a
- Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N., & Fava, F. (2019). Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnology, 52, 35–41. https://doi.org/10. 1016/j.nbt.2019.04.005
- Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. *Journal of Hazardous Materials*, 344, 179–199. https://doi. org/10.1016/j.jhazmat.2017.10.014
- Hoshino, T., Doi, H., Uramoto, G. I., Wörmer, L., Adhikari, R. R., Xiao, N., Morono, Y., D'Hondt, S., Hinrichs, K. U., & Inagaki, F. (2020). Global diversity of microbial communities in marine sediment. *Proceedings* of the National Academy of Sciences of the United States of America, 117(44), 27587–27597. https://doi.org/10.1073/pnas.1919139117
- Iñiguez, M. E., Conesa, J. A., & Fullana, A. (2017). Microplastics in Spanish table salt. *Scientific Reports*, 7(1), 8620. https://doi.org/10.1038/ s41598-017-09128-x
- Jacquin, J., Cheng, J., Odobel, C., Pandin, C., Conan, P., Pujo-Pay, M., Barbe, V., Meistertzheim, A. L., & Ghiglione, J. F. (2019). Microbial ecotoxicology of marine plastic debris: A review on colonization and biodegradation by the "plastisphere. Frontiers in Microbiology, 10(Apr), 865. https://doi.org/10.3389/fmicb.2019.00865
- Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. *Science*, 347(6223), 768–771. https://doi. org/10.1126/science.1260352
- Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. *Journal of Cell Biology*, 3(18), 200.
- Kawai, F., Kawabata, T., & Oda, M. (2020). Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling. ACS Sustainable Chemistry and Engineering, 8(24), 8894–8908. https://doi.org/10.1021/acssuschemeng.0c01638
- Latorre, A., Moya, A., & Ayala, F. J. (1986). Evolution of mitochondrial DNA in Drosophila subobscura. Proceedings of the National Academy

of Sciences of the United States of America, 83(22), 8649-8653. https://doi.org/10.1073/pnas.83.22.8649

-WILEY

- Lebreton, L. C. M., van der Zwet, J., Damsteeg, J. W., Slat, B., Andrady, A., & Reisser, J. (2017). River plastic emissions to the world's oceans. *Nature Communications*, 8, 1–10. https://doi.org/10.1038/ncomms15611
- Leloup, J., Fossing, H., Kohls, K., Holmkvist, L., Borowski, C., & Jørgensen, B. B. (2009). Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): Abundance and diversity related to geochemical zonation. *Environmental Microbiology*, 11(5), 1278–1291. https://doi.org/10.1111/j.1462-2920.2008.01855.x
- Lobelle, D., & Cunliffe, M. (2011). Early microbial biofilm formation on marine plastic debris. Marine Pollution Bulletin, 62(1), 197–200. https://doi.org/10.1016/j.marpolbul.2010.10.013
- Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8
- Masó, M., Fortuño, J. M., de Juan, S., & Demestre, M. (2016). Microfouling communities from pelagic and benthic marine plastic debris sampled across Mediterranean coastal waters. *Scientia Marina*, 80(S1), 117–127. https://doi.org/10.3989/scimar.04281.10a
- McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J., & Kelly, J. J. (2014). Microplastic is an abundant and distinct microbial habitat in an urban river. *Environmental Science and Technology*, 48(20), 11863–11871. https://doi.org/10.1021/es503610r
- McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLOS One, 8(4), e61217. https://doi.org/10.1371/journal.pone. 0061217
- Montazer, Z., Habibi Najafi, M. B., & Levin, D. B. (2018). Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. *Canadian Journal of Microbiology*, 65(3), 224–234. https://doi.org/10.1139/cjm-2018-0335
- Mori, K., Yamaguchi, K., & Hanada, S. (2018). Sulfurovum denitrificans sp. Nov., an obligately chemolithoautotrophic sulfur-oxidizing epsilonproteobacterium isolated from a hydrothermal field. International Journal of Systematic and Evolutionary Microbiology, 68, 2183–2187. https://doi.org/10.1099/ijsem.0.002803
- Napper, I. E., & Thompson, R. C. (2019). Marine plastic pollution: Other than microplastic, Waste: A handbook for managegement (2nd ed.). Academic Press. https://doi.org/10.1016/b978-0-12-815060-3. 00022-0
- Neves, D., Sobral, P., Ferreira, J. L., & Pereira, T. (2015). Ingestion of microplastics by commercial fish off the Portuguese coast. *Marine Pollution Bulletin*, 101(1), 119–126. https://doi.org/10.1016/j. marpolbul.2015.11.008
- Oberbeckmann, S., Löder, M. G. J., & Labrenz, M. (2015). Marine microplastic-associated biofilms—A review. Environmental Chemistry 12(5), 551–562. https://doi.org/10.1071/EN15069
- Oberbeckmann, S., Osborn, A. M., & Duhaime, M. B. (2016). Microbes on a bottle: Substrate, season and geography influence community composition of microbes colonizing marine plastic debris. *PLOS One*, 11(8), 159289. https://doi.org/10.1371/journal.pone.0159289
- Pellerin, A., Antler, G., Røy, H., Findlay, A., Beulig, F., Scholze, C., Turchyn, A. V., & Jørgensen, B. B. (2018). The sulfur cycle below the sulfate-methane transition of marine sediments. *Geochimica et Cosmochimica Acta*, 239, 74–89. https://doi.org/10.1016/j.gca. 2018.07.027
- Petro, C., Starnawski, P., Schramm, A., & Kjeldsen, K. U. (2017). Microbial community assembly in marine sediments. *Aquatic Microbial Ecology*, 79(3), 177–195. https://doi.org/10.3354/ame01826
- Pinnell, L. J., & Turner, J. W. (2019). Shotgun metagenomics reveals the benthic microbial community response to plastic and bioplastic in a coastal marine environment. *Frontiers in Microbiology*, 10, 1252. https://doi.org/10.3389/fmicb.2019.01252

WILEY_MicrobiologyOpen

- PlasticsEurope. (2020). Plastics—The facts 2020. Retrieved October 29, 2021, from https://plasticseurope.org/knowledge-hub/plastics-thefacts-2020
- Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. *Nucleic Acids Research*, 41, D590–D596. https://doi.org/10.1093/ nar/gks1219
- Reisser, J., Shaw, J., Hallegraeff, G., Proietti, M., Barnes, D. K., Thums, M., Wilcox, C., Hardesty, B. D., & Pattiaratchi, C. (2014). Millimeter-sized marine plastics: A new pelagic habitat for microorganisms and invertebrates. *PLOS One*, 9(6), e100289. https://doi.org/10.1371/ journal.pone.0100289
- Ribitsch, D., Heumann, S., Trotscha, E., Herrero Acero, E., Greimel, K., Leber, R., Birner-Gruenberger, R., Deller, S., Eiteljoerg, I., Remler, P., Weber, T., Siegert, P., Maurer, K. H., Donelli, I., Freddi, G., Schwab, H., & Guebitz, G. M. (2011). Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from *Bacillus* subtilis. Biotechnology Progress, 27, 951–960. https://doi.org/10. 1002/btpr.610
- Ritchie, H., & Roser, M. (2018). Plastic pollution—Our world in data. Retrieved February 8, 2021, from https://ourworldindata.org/ plastic-pollution
- Roager, L., & Sonnenschein, E. C. (2019). Bacterial candidates for colonization and degradation of marine plastic debris. *Environmental Science and Technology*, 53, 11636–11643. https:// doi.org/10.1021/acs.est.9b02212
- Rochman, C. M., Hoh, E., Kurobe, T., & Teh, S. J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. *Scientific Reports*, 3(1), 1–7. https://doi.org/10.1038/srep03263
- Setälä, O., Fleming-Lehtinen, V., & Lehtiniemi, M. (2014). Ingestion and transfer of microplastics in the planktonic food web. *Environmental Pollution*, 185, 77–83. https://doi.org/10.1016/j.envpol.2013. 10.013
- Sinha, V., Patel, M. R., & Patel, J. V. (2010). PET waste management by chemical recycling: A review. Journal of Polymers and the Environment, 18, 8–25. https://doi.org/10.1007/s10924-008-0106-7
- Sivasankari, S., & Vinotha, T. (2014). In vitro degradation of plastics (plastic cup) using Micrococcus luteus and Masoniella Sp. Scholars Academic Journal of Biosciences, 2(2), 85–89.
- Sole, R., Fontich, E., Vidiella, B., Duran-Nebreda, S., Montanez, R., Pinero, J., & Valverde, S. (2017). The paradox of constant oceanic plastic debris: Evidence For evolved microbial biodegradation? *BioRxiv*, 457, e135582-70. https://doi.org/10.1101/135582
- Sun, Q. L., Zhang, J., Wang, M. X., Cao, L., Du, Z. F., Sun, Y. Y., Liu, S. Q., Li, C. L., & Sun, L. (2020). High-throughput sequencing reveals a potentially novel *Sulfurovum* species dominating the microbial communities of the seawater-sediment interface of a deep-sea cold seep in South China Sea. *Microorganisms*, 8(5), 687. https://doi. org/10.3390/microorganisms8050687
- Teuten, E. L., Saquing, J. M., Knappe, D. R. U., Barlaz, M. A., Jonsson, S., Björn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet, P. H., Tana, T. S., Prudente, M., Boonyatumanond, R., Zakaria, M. P., Akkhavong, K., ... Takada, H. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. *Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences*, 364, 2027–2045. https://doi.org/10.1098/rstb. 2008.0284
- Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B., & Janssen, C. R. (2015). Microplastics are taken up by mussels (Mytilus

edulis) and lugworms (Arenicola marina) living in natural habitats. *Environmental Pollution*, 199, 10–17. https://doi.org/10.1016/j. envpol.2015.01.008

- Wang, Z., Gao, J., Zhao, Y., Dai, H., Jia, J., & Zhang, D. (2021). Plastisphere enrich antibiotic resistance genes and potential pathogenic bacteria in sewage with pharmaceuticals. *Science of the Total Environment*, 768, 144663. https://doi.org/10.1016/j.scitotenv.2020.144663
- Watts, A. J. R., Lewis, C., Goodhead, R. M., Beckett, S. J., Moger, J., Tyler, C. R., & Galloway, T. S. (2014). Uptake and retention of microplastics by the shore crab Circinus maenas. *Environmental Science and Technology*, 48(15), 8823–8830. https://doi.org/10. 1021/es501090e
- Westrich, J. R., Griffin, D. W., Westphal, D. L., & Lipp, E. K. (2018). Vibrio population dynamics in mid-Atlantic surface waters during Saharan dust events. *Frontiers in Marine Science* 5(Feb), 12. https://doi.org/ 10.3389/fmars.2018.00012
- Woodall, L. C., Jungblut, A. D., Hopkins, K., Hall, A., Robinson, L. F., Gwinnett, C., & Paterson, G. L. J. (2018). Deep-sea anthropogenic macrodebris harbours rich and diverse communities of bacteria and archaea. PLOS One, 13(11), e0206220. https://doi.org/10.1371/ journal.pone.0206220
- Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C., & Jambeck, J. (2017). Plastic as a persistent marine pollutant. Annual Review of Environment and Resources 42, 1–26. https://doi.org/10.1146/ annurev-environ
- Wright, R. J., Bosch, R., Langille, M. G. I., Gibson, M. I., & Christie-Oleza, J. A. (2021b). A multi-OMIC characterisation of biodegradation and microbial community succession within the PET plastisphere. *Microbiome*, 9(1), 1–22. https://doi.org/10.1186/s40168-021-01054-5
- Wright, R. J., Langille, M. G. I., & Walker, T. R. (2021a). Food or just a free ride? A meta-analysis reveals the global diversity of the Plastisphere. *ISME Journal*, 15(3), 789–806. https://doi.org/10.1038/s41396-020-00814-9
- Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). *Science*, 351(6278), 1196–1199. https://doi.org/10. 1126/science.aad6359
- Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the "plastisphere": Microbial communities on plastic marine debris. *Environmental Science and Technology*, 47(13), 7137–7146. https:// doi.org/10.1021/es401288x
- Zinger, L., Amaral-Zettler, L. A., Fuhrman, J. A., Horner-Devine, M. C., Huse, S. M., Welch, D. B., Martiny, J. B., Sogin, M., Boetius, A., & Ramette, A. (2011). Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. *PLOS One*, *6*(9), 24570. https:// doi.org/10.1371/journal.pone.0024570
- Zrimec, J., Kokina, M., Jonasson, S., Zorrilla, F., & Zelezniak, A. (2021). Plastic-degrading potential across the global microbiome correlates with recent pollution trends. *mBio*, 26 12(5), e0215521. https://doi. org/10.1128/mBio.02155-21

How to cite this article: Vidal-Verdú, À., Latorre-Pérez, A., Molina-Menor, E., Baixeras, J., Peretó, J., & Porcar, M. (2021). Living in a bottle: Bacteria from sediment-associated Mediterranean waste and potential growth on polyethylene terephthalate. *MicrobiologyOpen*, 11, e1259.

https://doi.org/10.1002/mbo3.1259

APPENDIX

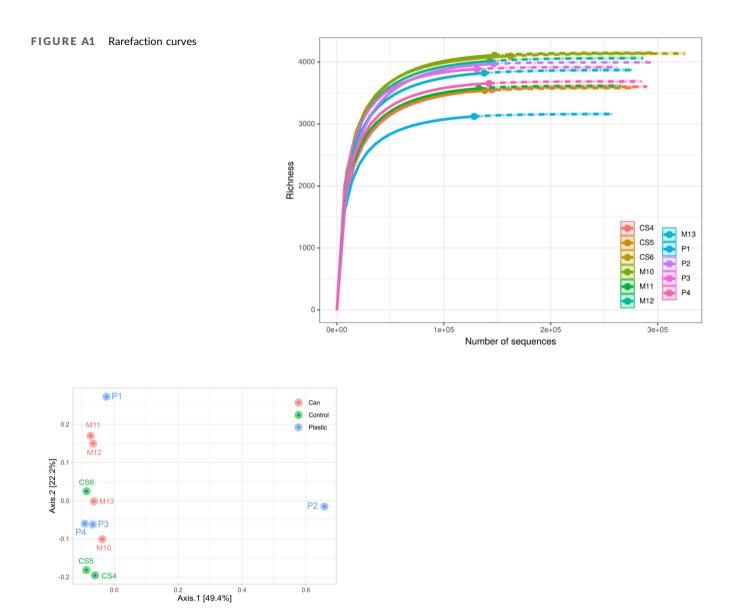
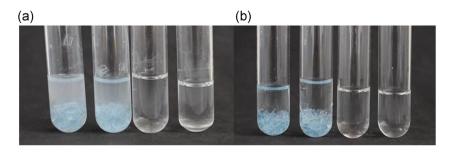



FIGURE A2 Principal coordinate analysis including all samples

FIGURE A3 Quantitative assays for polyethylene terephthalate (PET) degradation ability. (a) Negative control tubes at the end of the assay. On the left, the two replicates of the negative control consisting of marine water with PET fragments. A white precipitate of mineral nature appeared after the incubation time, probably due to the change in pH. The two tubes on the right contained only marine water. (b) A representative example of the assay with the isolate M11.3X. All the tubes were inoculated with the bacterium at the beginning of the assay in duplicate, on marine water supplemented with PET particles (left) and marine water without plastic as control (right)

TABLE A1 Results	Results of comparing plastic inner sediments, aluminum cans inner sediments, and control sediments from the seabed by DESeq. 2 test	ediments, al	uminum cans ii	nner sediments, and contr	ol sediments from the	seabed by DESeq. 2 test	
Phylum level							
Base mean abundance	log2FoldChange	IfcSE	p value	P	FDR-adjusted <i>p</i> value	Domain	Phylum
Can sediment versus control sediment	ontrol sediment						
Reference: Control sediment	iment						
Test: DESeq. 2							
221.353	2.046	0.610	0.001		2.89E-02	dBacteria	pCyanobacteria
128.105	1.612	0.463	0.000		2.89E-02	dBacteria	pMarinimicrobia_(SAR406_clade)
Plastic sediment versus control sediment	control sediment						
Reference: Control sediment	iment						
Test: DESeq. 2							
9090.508	5.066	1.36	1.97E-04	-04	7.39E-03	dBacteria	pCampilobacterota
69.709	5.242	1.57	8.29E-04	-04	2.07E-02	dBacteria	pCloacimonadota
68.653	22.730	3.68	6.46E-10	:-10	4.84E-08	dBacteria	pAcetothermia
Plastic sediment versus can sediment	can sediment						
Reference: Can sediment	nt						
Test: DESeq. 2							
24.250	21.853	2.916	6.74E-14	5-14	5.12E-12	dBacteria	pCaldatribacteriota
Genus level							
Base mean abundance	Log2FoldChange	IfcSE	<i>p</i> value	FDR-adjusted <i>p</i> value	Phylum	Family	Genus
Can sediment versus control sediment	ontrol sediment						
Reference: Control sediment	iment						
Test: DESeq. 2							
172.967	23.916	3.678	7.93E-11	8.07E-09	pFirmicutes	fLachnospiraceae	gShuttleworthia
157.511	23.795	3.051	6.29E-15	3.20E-12	pFirmicutes	fHungateiclostridiaceae	gFastidiosipila
33.656	-23.170	3.381	7.20E-12	9.16E-10	pFirmicutes	fClostridia_UCG-014	gClostridia_UCG-014
129.622	2.701	0.690	9.02E-05	5.10E-03	pBacteroidota	fLentimicrobiaceae	gLentimicrobiaceae
103.293	3.529	0.936	1.64E-04	8.36E-03	pBacteroidota	fProlixibacteraceae	guncultured
63.609	22.529	3.086	2.89E-13	4.90E-11	pFirmicutes	fHungateiclostridiaceae	gMageibacillus
10.991	20.088	3.682	4.87E-08	3.54E-06	pFirmicutes	fVeillonellaceae	gVeillonella

	bium		torques_group																									ter		(Continues)
gLactococcus	gConfluentimicrobium	gKangiella	g[Ruminococcus]_torques_group	gPseudoruegeria				gCutibacterium	gSulfurovum	gProsthecochloris	g661239	gGIF3	gDubosiella	gMSBL8	gSJA-28	gRothia	gAlistipes	gMethanolinea	gLentilitoribacter	gAcetothermiia	gMuribaculaceae	gRodentibacter	gDemequina	gTropicibacter	gFS117-23B-02	gFW22	guncultured	gPseudophaeobacter	gAB-539-J10	
fStreptococcaceae	fRhodobacteraceae	fKangiellaceae	fLachnospiraceae	fRhodobacteraceae				fPropionibacteriaceae	fSulfurovaceae	fChlorobiaceae	f661239	fGIF3	fErysipelotrichaceae	fMSBL8	fSJA-28	fMicrococcaceae	fRikenellaceae	fMethanoregulaceae	fRhizobiaceae	fAcetothermiia	fMuribaculaceae	fPasteurellaceae	fDemequinaceae	fRhodobacteraceae	fFS117-23B-02	fFW22	funcultured	fRhodobacteraceae	fAB-539-J10	
pFirmicutes	pProteobacteria	pProteobacteria	pFirmicutes	pProteobacteria				pActinobacteriota	pCampilobacterota	pBacteroidota	pChloroflexi	pChloroflexi	pFirmicutes	pCloacimonadota	pBacteroidota	pActinobacteriota	pBacteroidota	pHalobacterota	pProteobacteria	pAcetothermia	pBacteroidota	pProteobacteria	pActinobacteriota	pProteobacteria	pChloroflexi	pChloroflexi	pChloroflexi	pProteobacteria	pChloroflexi	
4.81E-11	3.35E-02	2.29E-02	9.14E-07	3.55E-06				2.66E-02	2.82E-02	8.41E-03	3.46E-02	4.79E-02	4.75E-08	4.51E-02	5.65E-08	1.29E-07	1.22E-07	1.25E-06	1.24E-06	4.75E-08	9.43E-08	2.11E-07	2.11E-07	1.67E-06	1.22E-07	1.13E-07	2.42E-07	1.27E-06	1.57E-07	
1.89E-13	7.91E-04	4.94E-04	1.08E-08	5.58E_08				8.51E-04	9.41E-04	2.57E-04	1.20E-03	1.86E-03	1.32E-10	1.69E-03	2.35E-10	1.61E-09	1.35E-09	3.12E-08	2.93E-08	8.74E-11	5.24E-10	3.80E-09	3.80E-09	4.87E-08	1.14E-09	7.87E-10	4.70E-09	3.36E-08	2.21E-09	
3.036	2.282	0.855	3.680	3.682				3.196	2.024	2.510	2.100	3.065	3.632	2.179	3.539	3.679	3.633	3.682	3.682	3.599	3.632	3.680	3.680	3.683	3.679	3.679	3.680	3.682	3.679	
22.335	7.658	-2.979	21.042	20.000	Plastic sediment versus control sediment	sediment		10.661	6.694	9.176	6.801	9.537	-23.332	6.841	22.421	22.197	-22.020	20.379	20.419	23.346	-22.563	21.683	21.683	20.094	22.402	22.616	21.555	20.331	22.008	
55.211	21.466	23.666	21.844	10.304	Plastic sediment ve	Reference: Control sediment	Test: DESeq. 2	454.017	18,607.676	672.863	241.181	1402.831	41.074	136.694	52.605	44.815	15.691	12.107	12.491	143.561	23.229	30.963	30.963	9.854	51.876	60.568	28.247	11.692	39.111	

-WILEY

18.741 20.981 3.681 1.5 18.741 20.981 3.681 1.5 12.303 7.012 2.2006 1.4 37.753 21.959 3.679 2.4 37.753 21.959 3.680 3.683 4.5 10.548 20.188 3.680 7.0 7.0 10.548 21.306 3.680 7.0 7.0 23.630 21.306 3.680 3.680 7.0 10.548 21.306 2.1306 3.680 7.0 Plastic sediment versus can sediment 2.1306 4.5 4.5 Plastic sediment 2.1306 3.680 4.5 10.016 10.016 2.614 1.5 175.086 -24.614 3.186 1.1 175.086 -23.932 3.214 9.6 179.331 -23.932 3.384 1.1 112.919 -23.534 3.157 8.7	1.20E-08 1.48E-03 2.40E-09 4.21E-08 7.06E-09	5.38E-07 4.11E-02 1 57E-07	pAenigmarchaeota pAcidobacteriota	fAenigmarchaeales fAcanthopleuribacteraceae fGIF9	NA gAcanthopleuribacter
7.012 2.206 21.959 3.679 21.959 3.679 20.188 3.680 20.188 3.680 20.188 3.680 20.188 3.680 20.188 3.680 21.306 3.680 21.305 21.306 sediment versus can sediment 3.680 cc: Can sediment 10.016 5 -24.614 3.186 6 -23.932 3.384 7 -23.932 3.384 7 -23.544 3.157		4.11E-02 1 57E-07	pAcidobacteriota	fAcanthopleuribacteraceae fGIF9	gAcanthopleuribacter
21.959 3.679 20.188 3.683 20.188 3.683 21.306 3.680 sediment versus can sediment 3.680 sediment versus can sediment 2.1306 ce: Can sediment 2.385 b 10.016 2.614 b -23.932 3.386 c -23.932 3.384 c -23.544 3.157		1 57E-07		fGIF9	
20.188 3.683 21.306 3.683 sediment versus can sediment 3.680 sediment versus can sediment 2.380 cc: Can sediment 2.330 cb 10.016 2.614 b 10.016 2.614 c -23.932 3.384 c -23.932 3.384 c -23.544 3.157		TO TO	pChloroflexi		gGIF9
21.306 3.680 sediment versus can sediment 3.680 ce: Can sediment 2.385 b 8.385 c 8.385 c 9.385 c 2.614 c -24.614 c -23.932 c -23.932 c -23.544 c -23.544		1.51E-06	pProteobacteria	fCaulobacteraceae	gBrevundimonas
sediment versus can sediment ce: Can sediment Eseq. 2 2.385 2.380 0 10.016 2.614 5 -24.614 3.186 1 -23.932 3.214 0 24.056 3.384 -23.544 3.157		3.39E-07	pChloroflexi	fSh765B-AG-111	gSh765B-AG-111
ce: Can sediment Eseq. 2 5 8.385 2.380 0 10.016 2.614 5 -24.614 3.186 1 -23.932 3.214 9 24.056 3.384 -23.544 3.157					
Eseq. 2 8.385 2.380 5 8.385 2.614 0 10.016 2.614 5 -24.614 3.186 1 -23.932 3.214 > 24.056 3.384 -23.544 3.157					
5 8.385 2.380 0 10.016 2.614 5 -24.614 3.186 1 -23.932 3.214 9 24.056 3.384 -23.544 3.157					
10.016 2.614 2.614 3.186 1 -23.932 3.214 2 24.056 3.384 -23.544 3.157	4.26E-04	1.21E-02	pActinobacteriota	fPropionibacteriaceae	gCutibacterium
5 -24.614 3.186 1 -23.932 3.214 2 24.056 3.384 -23.544 3.157	1.27E-04	3.81E-03	pBacteroidota	fChlorobiaceae	gProsthecochloris
1 -23.932 3.214 24.056 3.384 -23.544 3.157	1.11E-14	5.99E-12	pFirmicutes	fHungateiclostridiaceae	gFastidiosipila
9 24.056 3.384 -23.544 3.157	9.69E-14	1.74E-11	pFirmicutes	fVeillonellaceae	gMegasphaera
-23.544 3.157	1.17E-12	1.26E-10	pProteobacteria	fSedimenticolaceae	gCandidatus_Thiodiazotropha
	8.78E-14	1.74E-11	pFirmicutes	fErysipelotrichaceae	gDubosiella
48.636 -23.324 3.199 3.1	3.10E-13	4.18E-11	pFirmicutes	fHungateiclostridiaceae	gMageibacillus
9.616 -21.118 3.387 4.5	4.51E-10	1.74E-08	pFirmicutes	fVeillonellaceae	gVeillonella
56.335 23.106 3.384 8.6	8.64E-12	7.78E-10	pCaldatribacteriota	fJS1	gJS1
19.112 –22.040 3.385 7.4	7.47E-11	3.36E-09	pFirmicutes	fLachnospiraceae	g[Ruminococcus]_torques_group
41.129 22.668 3.385 2.1	2.12E-11	1.27E-09	pActinobacteriota	fMicrococcaceae	gRothia
10.782 20.807 3.388 8.1	8.16E-10	2.75E-08	pHalobacterota	fMethanoregulaceae	gMethanolinea
8.932 -21.035 3.387 5.2	5.29E-10	1.90E-08	pProteobacteria	fMagnetospiraceae	gMagnetovibrio
35.895 22.475 3.385 3.1	3.13E-11	1.69E-09	pChloroflexi	fAB-539-J10	gAB-539-J10
45.865 22.821 3.384 1.5	1.55E-11	1.05E-09	pChloroflexi	fDehalococcoidia	gDehalococcoidia
22.443 21.818 3.222 1.5	1.28E-11	9.89E-10	pAsgardarchaeota	fLokiarchaeia	gLokiarchaeia
34.648 22.428 3.385 3.4	3.44E-11	1.69E-09	pChloroflexi	fGIF9	gGIF9
11.110 -6.714 1.654 4.9	4.90E-05	156E-03	pVerrucomicrobiota	fRubritaleaceae	gRubritalea
21.686 21.623 3.386 1.6	1.69E-10	7.03E-09	pChloroflexi	fSh765B-AG-111	gSh765B-AG-111

WILEY

TABLE A2 List of the strains identified in the collection, with the closest type strain, accession number, ID percentage, and the GenBank accession number for the 16S or 18S rRNA gene sequences obtained in this study

P12AAurantimonas carelicidaATXK01000033100MZ437808P13ASufficobacter sabulilitorisMK72609998.71MZ437807P14ABacillus endyaphyticusF18957699.1MZ437817P21ABacillus endyaphyticusAF29530299.67MZ437817P22ABacillus oryzeroricisK54484099.67MZ437817P23ABacillus oryzeroricisK54484099.73MZ437817P24ABocillus orale arachoidesKJ000002598.6MZ437816P25ABacillus salipakulisRCUV010002598.6MZ437816P25ABacillus salipakulisKJ00271598.6MZ437817P3ABacillus sithiudinisSCO00002999.68MZ437817P3ABacillus drientensisAF02934499.58MZ437817P3ABacillus drientensisAF02934499.66MZ437817P3ABacillus drientensisJMW0100006498.61MZ437821P4ABacillus viedmanniiLGBC0100003399.64MZ437821P4AAurantimanas carolicidaATXK010003399.54MZ437823P4AAAurantimanas carolicidaATXK010000397.81MZ437824P4AAAurantimanas carolicidaATXK010000397.81MZ437824P4AAAurantimanas carolicidaATXK010000397.81MZ437823P4AAGalius rhedmanisJOTP0100006199.60MZ437824P4AAGalius rhedmanisATV4010000397.81MZ437824P4AA </th <th>Sample</th> <th>Closest type strain</th> <th>Accession number</th> <th>ID %</th> <th>GenBank accession number</th>	Sample	Closest type strain	Accession number	ID %	GenBank accession number
P13ASulfitobacter sobuliitorisMK72609996.71MZ437809P14ABacillus beiringensisF188957699.1MZ437810P21ABacillus orinzensisKF9484096.67MZ437811P22ABacillus arinzensisKF9484096.67MZ437812P23ABacillus arinzensisKF9484096.67MZ437812P23ABacillus arinzensisSJC010002999.58MZ437813P24ADombacillus salipuluiisBCUY010020596.64MZ437813P25ABacillus arinzensisSUS0271598.36MZ437813P31AErythrobacter arachoidesKU90271598.36MZ437813P33ABanomicrobuum atkanoclasticumASIC2100002999.86MZ437813P34ABacillus dremensisASIC200002999.86MZ437813P35AErythrobacter largasJMW010000696.61MZ437823P44ABacillus dremensisASIC200003399.64MZ437823P44ABacillus dremensisK620984100MZ437823P44AAurantinoaccandicidaMK91775MZ43783M104AKocuria polistrisK1620984100MZ437823M104AGallus mitskerichiaejgl.11071397.57MZ43783M104ASagittula stellartaAVA0100000197.81MZ437831M104ASagittula stellartaKU92936498.63MZ437833M104ASagittula stellartaKM27562498.42MZ437832M11APintomacrastaniaAF029	P1.1A	Marinobacter similis	CP007151	99.58	MZ437807
P14ABacillus beringensisFJ80957699.1MZ437810P2.1ABacillus endophyticusAF29530299.67MZ437811P2.2ABacillus ortyaecenticisKF5448098.67MZ437813P2.3ABacillus ortyaecenticisASJC010002999.58MZ437813P2.4APentibacillus salpaladisLNB7294399.73MZ437814P2.4ABacillus ortizudinsBCUV010020598.66MZ437815P3.1AErythrobacter arachoidesKU30271598.36MZ437816P3.2ABacillus AltitudinisASIC0100002999.86MZ437817P3.3APlenomicrobium alkanoclesticumAF02936499.58MZ437817P3.3ABacillus dretensisASIC200006399.66MZ437817P3.4ABacillus dretensisASIC200006399.66MZ437821P4.3ABacillus dretensisKI620984100MZ437821P4.3AAeromicrobium alkanifermeAY82204497.57MZ437823P4.4AAeromicrobium alkanifermeKI620984100MZ437825P4.5AErythrobacter insulaeMY69177598.51MZ437821P4.5AGallus anistexichiaejgi.11071397.57MZ437823M10.3AKocuria palustrisJ070010003197.81MZ437824M10.3AGallus anistexichiaejgi.110771397.57MZ437824M10.3AGallus anistexichiaeJ070010003197.81MZ437824M10.3AGallus anistexichiaejgi.110771397.57MZ4	P1.2A	Aurantimonas coralicida	ATXK01000033	100	MZ437808
P21A Bacillus endophyticus AF295302 99.47 MZ437811 P22A Bacillus oryzaecorticis KF548480 98.67 MZ437813 P23A Bacillus salipaludis LN872943 99.73 MZ437813 P24A Portibiocillus salipaludis LN872943 99.73 MZ437814 P25A Bacillus firmus BCUV10000205 98.6 MZ437814 P25A Bacillus Altitudinis ASICO1000029 99.86 MZ437813 P3A Bacillus Altitudinis ASICO1000029 99.86 MZ437813 P3A Bacillus Altitudinis ASICO1000029 99.86 MZ437813 P3A Bacillus Medmannii LOBC0100053 99.66 MZ437813 P3A Bacillus wiedmannii LOBC0100053 99.54 MZ437821 P4A Aeromicrobium alkanectasticum AY82204 100 MZ437823 P4AA Aurontimonas coralicida ATXK01000033 99.54 MZ437823 P4AA Aurontimonas coralicida ATXK01000033 79.51 MZ437824	P1.3A	Sulfitobacter sabulilitoris	MK726099	98.71	MZ437809
P22A Bacillus oryzaccerticis KF548480 98.67 M2437812 P23A Bacillus alitudinis ASJC01000029 99.58 M2437813 P24A Pontibacillus salipaludis LN872943 99.73 M2437814 P25A Bacillus firmus BCUV01000205 98.6 M2437815 P31A Erythrobacter aracholdes KU302715 98.36 M2437816 P32A Bacillus Altitudinis ASJC01000029 99.86 M2437817 P33A Panomicrobium alkanoclasticum ASJC201000023 99.6 M2437818 P34A Bacillus dentensis AS2204 97.57 M2437821 P43A Bacillus wiedmannii LOBC01000053 99.6 M2437823 P44A Aeronicrobium alkanoclasticum AY82044 97.57 M2437823 P43A Aeronicrobium alkanoclasticum Kl620984 100 M2437823 P44A Aurontimones coralicida AY82044 97.57 M2437823 P45A Erythrobacter insulae Kl620984 100 M2437824 <td>P1.4A</td> <td>Bacillus beringensis</td> <td>FJ889576</td> <td>99.1</td> <td>MZ437810</td>	P1.4A	Bacillus beringensis	FJ889576	99.1	MZ437810
P2.3A Bacillus altitudinis ASJC01000029 99.58 MZ437813 P2.4A Pontibacillus solipaludis LN872943 99.73 MZ437814 P2.5A Bacillus firmus BCUV01000205 98.6 MZ437815 P3.1A Erythrobacter arachoides KU302715 98.36 MZ437817 P3.3A Bacillus dictuitis ASJC01000029 99.86 MZ437818 P3.3A Baroinicrobium alkanoclasticum ASJC201000053 99.66 MZ437812 P3.4A Bacillus wiedmannii LOBC01000053 99.6 MZ437820 P4.1A Bacillus wiedmannii LOBC01000033 99.64 MZ437823 P4.4A Aromicrobium alkaliterrae AY822044 97.57 MZ437825 P4.5A Erythrobacter insulae MY91775 98.91 MZ437825 M10.1A Kocura pabrisris J10P0 MZ437825 M10.3A Sagitula stellata AY8204 97.57 MZ945782 M10.3A Sagitula stellata AY40100003 97.81 MZ43782 M10.	P2.1A	Bacillus endophyticus	AF295302	99.67	MZ437811
P24A Pontibacillus selipatudis LN872943 99.73 MZ437814 P25A Bacillus firmus BCUY0100205 98.6 MZ437815 P31A Erythrobacter arachoides KU302715 98.36 MZ437816 P32A Bacillus Altitudinis ASIC0100029 99.86 MZ437817 P33A Planomicrobium alkanoclasticum AF029364 99.58 MZ437818 P34A Bacillus dientensis ASIC0100006 98.64 MZ437820 P3.5A Erythrobacter longus JMW0100006 98.64 MZ437821 P4.1A Bacillus wiedmannii LOBC0100053 99.6 MZ437821 P4.2A Jiella aquimaris KI620984 100 MZ437823 P4.2A Arenoricrobium alkaliterrae AY822044 97.57 MZ437825 P4.3A Arenarinonas coralicida ATK01000033 97.54 MZ437826 M10.4A Kocuria palustris Y16263 100 MZ437826 M10.5A Gajittula stellata AAYA01000003 97.81 MZ437826 <tr< td=""><td>P2.2A</td><td>Bacillus oryzaecorticis</td><td>KF548480</td><td>98.67</td><td>MZ437812</td></tr<>	P2.2A	Bacillus oryzaecorticis	KF548480	98.67	MZ437812
P2.5ABacillus firmusBCUY0100020598.6MZ437815P3.1AErythrobacter arachoidesKU30271598.36MZ437817P3.2ABacillus AltitudinisASIC010002999.86MZ437817P3.3APlanomicrobium alkanoclasticumAF02936499.58MZ437818P3.4ABacillus dentensisA54250699.06MZ437819P3.5AErythrobacter longusJMW0100000698.61MZ437821P4.1ABacillus wiedmanniLOBC010005399.6MZ437821P4.2AJiela aquimarisKJ620984100MZ437823P4.3AAeromicrobium alkaliterraeAY82204497.57MZ437823P4.3AAurantimonas coralicidaATXK0100003399.54MZ437825M10.3AKecuria palustrisY16263100MZ437826M10.3ASagittula stellataAVA010000397.81MZ437826M10.3AGalilus indiskevichiaeJDTP0100006199.60MZ437830M10.3AGarimela sediminificrisKU6963199.85MZ437831M11.3APlontizarthobacter luteolusAY7396299.41MZ437837M11.3APortizarthobacter luteolusAY7396299.61MZ437837M11.3ABacillus sinplexASH010002398.48MZ437836M11.3ABacillus lociasitaAY7396299.61MZ437837M11.3ABacillus lociasitaAY7396299.61MZ437837M11.3ABacillus lociasitaAY7396299.61MZ437837 <t< td=""><td>P2.3A</td><td>Bacillus altitudinis</td><td>ASJC01000029</td><td>99.58</td><td>MZ437813</td></t<>	P2.3A	Bacillus altitudinis	ASJC01000029	99.58	MZ437813
P31A Erythrobacter arachoides KU302715 98.36 MZ437816 P32A Bacillus Altitudinis ASIC0100029 99.86 MZ437817 P3.3A Planomicrobium alkanoclasticum AF029364 99.58 MZ437818 P3.4A Bacillus drentensis AJ542506 99.06 MZ437819 P3.5A Erythrobacter longus JMIW01000006 98.61 MZ437820 P4.1A Bacillus wiedmannii LOBC0100053 99.6 MZ437821 P4.4A Aeromicrobium alkaliterrae AY822044 97.57 MZ437823 P4.4A Aurantimonas carlicida ATXK01000033 99.54 MZ437824 P4.5A Erythrobacter insulae MK991775 98.91 MZ437825 M10.2A Giliain mitskevichiae jaj.1107713 97.57 MZ437826 M10.3A Sagittula stellata AAYA01000003 97.81 MZ437826 M10.3A Sagittula stellata AYA01000003 97.81 MZ437826 M10.3A Sagittula stellata AYA01000003 97.81 MZ437836<	P2.4A	Pontibacillus salipaludis	LN872943	99.73	MZ437814
P3.2ABacillus AltitudinisASJC01000299.9.86MZ437817P3.3APlanomicrobium alkanoclasticumAF0293649.9.58MZ437818P3.4ABacillus drentensisAJ5425069.9.06MZ437819P3.5AErythrobacter longusJMW010000698.61MZ437820P4.1ABacillus wiedmanniiLOBC010005399.6MZ437821P4.2AJella aquimarisK620984100MZ437823P4.3AAeromicrobium alkaliterraeAY82204497.57MZ437823P4.4AAurantimonas coralicidaATXK0100003399.54MZ437826P4.5AErythrobacter insulaeMK99177598.91MZ437826M10.1AKocuria palustrisY1626397.57MZ94595M10.2AGilisin miskevichiaejgi.110771397.57MZ9457826M10.3ASagitula stellataAAV010000397.81MZ437826M10.4ABacillus zhangzhouensisJOTP010006199.60MZ437830M11.1APlanomicrobium alkanoclasticumAF02936498.82MZ437831M11.2ASulfitobacter undariaeKM27562498.42MZ437836M11.3AHoeflee halophilaOCPC010001199.61MZ437836M12.3ABacillus simplexGCV010000199.67MZ437836M12.3ABacillus simplexGCV010000199.67MZ437836M12.3ABacillus toronensisGUTG01001199.67MZ437836M12.3ABacillus toronensisGUTG01001199.67MZ437836	P2.5A	Bacillus firmus	BCUY01000205	98.6	MZ437815
P3.3APlanomicrobium alkanoclasticumAF02936499.58MZ437818P3.4ABacillus drentensisAJ54250699.06MZ437819P3.5AErythrobacter longusJMIW0100000698.61MZ437820P4.1ABacillus wiedmanniiLOBC010005399.6MZ437821P4.2AJiela aquimarisKJ620984100MZ437823P4.4AAeromicrobium alkaliterraeAY8204497.57MZ437824P4.5AErythrobacter insulaeMK99177598.91MZ437826M10.1AKocuria palustrisY16263100MZ437828M10.2AGillisis mitskevichiaejgi.110771397.57MZ9437828M10.3ASagittula stellataAYA0100000397.81MZ437828M10.4ABacillus zhargzhouensisJOTP010006199.60MZ437829M11.5AGramella sediminilitorisKU69654198.53MZ437830M11.1APlanomicrobium alkanoclasticumAF02936499.85MZ437835M11.3AJoftibacter undariaeKM27562498.42MZ437835M11.5ASulfitobacter undariaeJSH010002398.48MZ437835M11.5ASulfitobacter mediterraneusJSH010002399.81MZ437836M12.3ABacillus locisalisAY19053499.83MZ437835M12.3ABacillus locisalisCPO0100001199.67MZ437836M12.3ABacillus locisalisCPO010001199.67MZ437836M12.3ABacillus locisalisCPO0100001499.61<	P3.1A	Erythrobacter arachoides	KU302715	98.36	MZ437816
P3.4ABacillus drentensisAJ54250699.06MZ437819P3.5AErythrobacter longusJMUW010000698.61MZ437820P4.1ABacillus wiedmanniiLOBC010005399.6MZ437821P4.2AJiela aquimarisKI620984100MZ437823P4.3AAeromicrobium alkaliterraeAY82204497.57MZ437823P4.4AAurantimonas caralicidaATKK0100003399.54MZ437824P4.5AErythrobacter insulaeMK99177598.91MZ437826M10.1AKocuria palustrisY16263100MZ437826M10.2AGillisis mitskevichiaejgi.110771397.57MZ937828M10.3ASagittula stellataAYA010000397.81MZ437826M10.4ABacillus zhangzhouensisJOTP010006199.60MZ437830M11.5AGramella sediminilitorisKU69654198.53MZ437830M11.2ASulfitobacter undariaeKK27562498.42MZ437835M11.3APaomicrobium alkanoclasticumAF02936499.61MZ437835M11.5ASulfitobacter luteolusJX1910002398.48MZ437835M11.5ASulfitobacter luteolusJX190002399.61MZ437835M11.5ASulfitobacter materMK68006199.61MZ437835M12.3ABacillus locisalisAY19053499.83MZ437835M12.3ABacillus locisalisCPO010001199.67MZ437835M12.3ABacillus locisalisAY19053499.83MZ437835	P3.2A	Bacillus Altitudinis	ASJC01000029	99.86	MZ437817
P3.5.AErythrobacter longusJMW0100006698.61MZ437820P4.1ABacillus wiedmanniiLOBC010005399.6MZ437821P4.2AJiella aquimarisKJ620984100MZ437823P4.3AAeronicrobium alkaliterraeAY82204497.57MZ437823P4.4AAurantimonas coralicidaATXK010003399.54MZ437826P4.5AErythrobacter insulaeMK99177598.91MZ437826M10.1AKocuria palustrisY16263100MZ437826M10.2AGillisia mitskevichiaejgi.110771397.57MZ945955M10.3ASagittula stellataAAYA0100000397.81MZ437828M10.4ABacillus stengzhouensisJOTP010006199.60MZ437830M11.4APlanomicrobium alkanoclasticumAF02936499.853MZ437830M11.3AHoeflea halophilaOCPC010001199.71MZ437833M11.4APontixanthobacter luteolusAY73966299.61MZ437837M11.4APontixanthobacter luteolusJASH010002398.48MZ437836M12.3ABacillus singlexBCV00100086100MZ437837M12.4AHoeflea halophilaOCPC010001199.67MZ437836M12.3ABacillus locicalisAY19053499.83MZ437836M12.3ABacillus locicalisAY19053499.87MZ437840M13.3ASulfitobacter undariaeKM27562499.87MZ437840M13.3ASulfitobacter undariaeKM27562499.87M	P3.3A	Planomicrobium alkanoclasticum	AF029364	99.58	MZ437818
P4.1A Bacillus wiedmanii LOBC01000053 99.6 M2437821 P4.2A Jiella aquimaris KJ620984 100 M2437822 P4.3A Aeromicrobium alkaliterrae AY822044 97.57 M2437823 P4.4A Aurantimonas coralicida ATKK01000033 99.54 M2437824 P4.5A Erythrobacter insulae MK991775 98.91 M2437826 M10.1A Kocuria palustris Y16263 100 M2437826 M10.2A Gillisia mitskevichiae jgi.1107713 97.57 M294595 M10.3A Sagittula stellata AAYA01000003 97.81 M2437828 M10.4A Bacillus zhangzhouensis JOTP0100061 99.60 M2437830 M11.4A Planomicrobium alkanoclasticum AF029364 98.83 M2437833 M11.1A Planomicrobium alkanoclasticum AF029364 98.48 M2437833 M11.1A Polfea halophila OCPC01000011 99.71 M2437836 M11.3A Hoeflea halophila OCPC01000011 99.61 M2437836 </td <td>P3.4A</td> <td>Bacillus drentensis</td> <td>AJ542506</td> <td>99.06</td> <td>MZ437819</td>	P3.4A	Bacillus drentensis	AJ542506	99.06	MZ437819
P4.2AJiella aquimarisK1620984100M2437822P4.3AAeromicrobium alkaliteraeAY8204497.57M2437823P4.4AAurantimonas coralicidaATXK0100003399.54M2437824P4.5AErythrobacter insulaeMK99177598.91M2437826M10.1AKocuria palustrisY16263100M2437826M10.2AGillisia mitskevichiaejgi.110771397.57M294595M10.3ASagittula stellataAAYA010000397.81M2437828M10.4ABacillus zhangzhouensisJOTP010006199.60M2437830M11.4APlanomicrobium alkanoclasticumAF02936498.82M2437831M11.4APlanomicrobium alkanoclasticumAF02936499.61M2437837M11.4APolicacter undariaeKM27562498.42M2437833M11.4APontixanthobacter luteolusAY73966299.61M2437836M11.4APontixanthobacter luteolusAY73966299.61M2437837M12.3ABacillus simplexBCV00100086100M2437837M12.4AHoeflea halophilaOCPC010001199.67M2437837M12.4AHoeflea halophilaCP00686399.87M2437840M13.4ABacillus locisalisKM27562497.99M2437840M13.4ABacillus locisalisKM27562499.83M2437837M12.4AHoeflea halophilaCP00686399.87M2437840M13.4ABacillus locisalisKM27562497.99M2437840<	P3.5A	Erythrobacter longus	JMIW01000006	98.61	MZ437820
P4.3AAeromicrobium alkaliterraeAY82204497.57MZ437823P4.4AAurantimonas coralicidaATKK0100003399.54MZ437824P4.5AErythrobacter insulaeMK99177598.91MZ437826M10.1AKocuria palustrisY16263100MZ437826M10.2AGillisia mitskevichiaejgi.110771397.57MZ974595M10.3ASagittula stellataAAYA0100003397.81MZ437828M10.4ABacillus zhangzhouensisJOTP010006199.60MZ437829M10.5AGramella sediminilitorisKU69654198.53MZ437830M11.1APlanomicrobium alkanoclasticumAF02936498.42MZ437831M11.2ASulfitobacter undariaeKM27562498.63MZ437833M11.4APortixanthobacter luteolusAY73966299.61MZ437836M11.5ASulfitobacter undariaeMK68006199.67MZ437837M12.3ABacillus simplexBCV01000086100MZ437837M12.4AHoeflea halophilaOCPC01000119.67MZ437836M12.4AHoeflea halophilaOCPC01000119.67MZ437837M12.4AHoeflea halophilaOCPC01000119.63MZ437840M13.4ABacillus toyonensisCP0068639.87MZ437840M13.4ABacillus toyonensisCP0068639.87MZ437840M13.4ABarillus toyonensisF3713749.33MZ437840M13.4ABarillus toyonensisF53713749.33MZ437840 </td <td>P4.1A</td> <td>Bacillus wiedmannii</td> <td>LOBC01000053</td> <td>99.6</td> <td>MZ437821</td>	P4.1A	Bacillus wiedmannii	LOBC01000053	99.6	MZ437821
P4.4AAurantimonas coralicidaATXK0100003399.54MZ437824P4.5AErythrobacter insulaeMK99177598.91MZ437825M10.1AKocuria palustrisY16263100MZ437826M10.2AGillisia mitskevichiaejgi.110771397.57MZ994595M10.3ASagittula stellataAAYA010000397.81MZ437828M10.4ABacillus zhangzhouensisJOTP010006199.60MZ437829M10.5AGramella sediminilitorisKU69654198.53MZ437830M11.1APlanomicrobium alkanoclasticumAF02936499.85MZ437831M11.2ASulfitobacter undariaeKM27562498.42MZ437837M11.3AHoeflea halophilaOCPC0100001199.71MZ437837M11.5ASulfitobacter luteolusAY73966299.61MZ437837M12.4APseudomonas juntendiMK68006199.61MZ437837M12.5AHalobacillus locisalisAY19053499.83MZ437837M13.1ABacillus stoynensisCCPC0100001199.67MZ437837M13.3ASulfitobacter undariaeKM27562499.83MZ437837M13.4ABacillus toynensisCPC0100001199.67MZ437837M13.4ABacillus toynensisCPC0100001199.83MZ437837M13.4ABacillus toynensisCP00686399.87MZ437840M13.3ASulfitobacter undariaeF37137499.33MZ437842M13.4ABhargavaea beijingensisEF37137499.87 <td>P4.2A</td> <td>Jiella aquimaris</td> <td>KJ620984</td> <td>100</td> <td>MZ437822</td>	P4.2A	Jiella aquimaris	KJ620984	100	MZ437822
P4.5AFrythrobacter insulaeMK89177598.91MZ437825M10.1AKocuria palustrisY16263100MZ437826M10.2AGillisia mitskevichiaejgi.110771397.57MZ994595M10.3ASagittula stellataAAYA010000397.81MZ437828M10.4ABacillus zhangzhouensisJOTP010006199.60MZ437829M10.5AGramella sediminilitorisKU69654198.53MZ437830M11.1APlanomicrobium alkanoclasticumAF02936499.85MZ437831M11.2ASulfitobacter undariaeKM27562498.42MZ437837M11.3AHoeflea halophilaOCPC0100001199.71MZ437837M11.4APontixanthobacter luteolusAY73966299.61MZ437837M12.4ABacillus simplexBCV00100086100MZ437837M12.4AHoeflea halophilaOCPC010001199.67MZ437837M12.4ABacillus locisalisAY19053499.83MZ437837M12.4ABacillus simplexSU1000086100MZ437837M13.4ABacillus toynensisCP00686399.87MZ437840M13.3ASulfitobacter undariaeKM27562497.99MZ437841M13.4ABhargavaea beijingensisEF37137499.83MZ437842	P4.3A	Aeromicrobium alkaliterrae	AY822044	97.57	MZ437823
M10.1AKocuria palustrisY16263100MZ437826M10.2AGillisia mitskevichiaejgi.110771397.57MZ994595M10.3ASagittula stellataAAYA010000397.81MZ437828M10.4ABacillus zhangzhouensisJOTP0100006199.60MZ437829M10.5AGramella sediminilitorisKU69654198.53MZ437830M11.4APlanomicrobium alkanoclasticumAF02936499.85MZ437832M11.3AJoffitobacter undariaeKM27562498.42MZ437833M11.4APontixanthobacter luteolusAY73966299.61MZ437834M11.5ASulfitobacter luteolusJASH010002398.48MZ437836M12.1APseudomonas juntendiMK68006199.61MZ437837M12.3ABacillus simplexBCV00100001199.67MZ437836M13.1ABacillus locisalisAY19053499.83MZ437836M13.3ASulfitobacter undariaeKM27562499.83MZ437840M13.3ABacillus locisalisAY19053499.83MZ437840M13.3ASulfitobacter undariaeKM27562497.99MZ437840M13.3ABargavaea beijingensisEF37137499.33MZ437842M13.5APseudomonas juntendiK68006199.87MZ437843	P4.4A	Aurantimonas coralicida	ATXK01000033	99.54	MZ437824
M10.2AGillisia mitskevichiaejgi.110771397.57MZ994595M10.3ASagittula stellataAAYA010000397.81MZ937828M10.4ABacillus zhangzhouensisJOTP0100006199.60MZ437829M10.5AGramella sediminilitorisKU69654198.53MZ437830M11.4APlanomicrobium alkanoclasticumAF02936499.85MZ437831M11.2ASulfitobacter undariaeKM27562498.42MZ437833M11.3AHoeflea halophilaOCPC0100001199.71MZ437833M11.4APontixanthobacter luteolusAY73966299.61MZ437834M11.5ASulfitobacter mediterraneusJASH010002398.48MZ437835M12.1APseudomonas juntendiMK68006199.61MZ437836M12.3ABacillus simplexBCV00100001199.67MZ437836M13.1ABacillus locisalisAY19053499.83MZ437840M13.3ASulfitobacter undariaeKM27562497.99MZ437841M13.4ABacillus coyonensisCP00686399.87MZ437840M13.4ABhargavaea beijingensisEF37137499.33MZ437842	P4.5A	Erythrobacter insulae	MK991775	98.91	MZ437825
M10.3ASagittula stellataAAYA0100000397.81MZ437828M10.4ABacillus zhangzhouensisJOTP0100006199.60MZ437829M10.5AGramella sediminilitorisKU69654198.53MZ437830M11.1APlanomicrobium alkanoclasticumAF02936499.85MZ437832M11.2ASulfitobacter undariaeKM27562498.42MZ437833M11.3AHoeflea halophilaOCPC010001199.71MZ437833M11.4APontixanthobacter luteolusAY73966299.61MZ437836M11.5ASulfitobacter mediterraneusJASH0100002398.48MZ437835M12.1APseudomonas juntendiMK68006199.61MZ437837M12.4AHoeflea halophilaOCPC010001199.67MZ437837M12.4AHobacillus locisalisAY19053499.83MZ437837M13.1ABacillus toyonensisCP00686399.87MZ437841M13.4ABhargavaea beijingensisEF37137499.33MZ437842	M10.1A	Kocuria palustris	Y16263	100	MZ437826
M10.4ABacillus zhangzhouensisJOTP0100006199.60MZ437829M10.5AGramella sediminilitorisKU69654198.53MZ437830M11.1APlanomicrobium alkanoclasticumAF02936499.85MZ437831M11.2ASulfitobacter undariaeKM27562498.42MZ437832M11.3AHoeflea halophilaOCPC0100001199.71MZ437833M11.4APontixanthobacter luteolusAY73966299.61MZ437834M11.5ASulfitobacter mediterraneusJASH010002398.48MZ437835M12.1APseudomonas juntendiMK68006199.61MZ437836M12.3ABacillus simplexBCVO01000086100MZ437837M12.4AHoeflea halophilaOCPC0100001199.67MZ437838M12.4ABacillus locisalisAY19053499.83MZ437840M13.1ABacillus toyonensisCP00686399.87MZ437840M13.3ASulfitobacter undariaeKM27562497.99MZ437841M13.4ABhargavaea beijingensisEF37137499.33MZ437842	M10.2A	Gillisia mitskevichiae	jgi.1107713	97.57	MZ994595
M10.5AGramella sediminilitorisKU69654198.53MZ437830M11.1APlanomicrobium alkanoclasticumAF02936499.85MZ437831M11.2ASulfitobacter undariaeKM27562498.42MZ437832M11.3AHoeflea halophilaOCPC010001199.71MZ437833M11.4APontixanthobacter luteolusAY73966299.61MZ437834M11.5ASulfitobacter mediterraneusJASH0100002398.48MZ437835M12.1APseudomonas juntendiMK68006199.61MZ437836M12.3ABacillus simplexBCV001000086100MZ437837M12.4AHoeflea halophilaOCPC0100001199.67MZ437838M12.5AHalobacillus locisalisAY19053499.83MZ437840M13.3ASulfitobacter undariaeKM27562497.99MZ437841M13.4ABhargavaea beijingensisEF37137499.33MZ437842	M10.3A	Sagittula stellata	AAYA01000003	97.81	MZ437828
M11.1APlanomicrobium alkanoclasticumAF02936499.85MZ437831M11.2ASulfitobacter undariaeKM27562498.42MZ437832M11.3AHoeflea halophilaOCPC0100001199.71MZ437833M11.4APontixanthobacter luteolusAY73966299.61MZ437835M11.5ASulfitobacter mediterraneusJASH010002398.48MZ437835M12.1APseudomonas juntendiMK68006199.61MZ437836M12.3ABacillus simplexBCV01000086100MZ437837M12.4AHoeflea halophilaOCPC0100001199.67MZ437838M12.5AHalobacillus locisalisAY19053499.83MZ437840M13.1ABacillus toyonensisCP00686399.87MZ437841M13.4ABhargavaea beijingensisEF37137499.33MZ437842	M10.4A	Bacillus zhangzhouensis	JOTP01000061	99.60	MZ437829
M11.2ASulfitobacter undariaeKM27562498.42MZ437832M11.3AHoeflea halophilaOCPC0100001199.71MZ437833M11.4APontixanthobacter luteolusAY73966299.61MZ437834M11.5ASulfitobacter mediterraneusJASH010002398.48MZ437835M12.1APseudomonas juntendiMK68006199.61MZ437836M12.3ABacillus simplexBCV00100086100MZ437837M12.4AHoeflea halophilaOCPC0100001199.67MZ437838M13.1ABacillus toyonensisCP00686399.87MZ437840M13.3ASulfitobacter undariaeKM27562497.99MZ437841M13.4ABhargavaea beijingensisEF37137499.33MZ437842	M10.5A	Gramella sediminilitoris	KU696541	98.53	MZ437830
M11.3AHoeflea halophilaOCPC010001199.71MZ437833M11.4APontixanthobacter luteolusAY73966299.61MZ437836M11.5ASulfitobacter mediterraneusJASH010002398.48MZ437835M12.1APseudomonas juntendiMK68006199.61MZ437836M12.3ABacillus simplexBCV00100086100MZ437837M12.4AHoeflea halophilaOCPC010001199.67MZ437838M12.5AHalobacillus locisalisAY19053499.83MZ437839M13.1ABacillus toyonensisCP00686399.87MZ437840M13.4ABhargavaea beijingensisEF37137499.33MZ437842M13.5APseudomonas juntendiMK68006199.87MZ437843	M11.1A	Planomicrobium alkanoclasticum	AF029364	99.85	MZ437831
M11.4APontixanthobacter luteolusAY73966299.61MZ437834M11.5ASulfitobacter mediterraneusJASH010002398.48MZ437835M12.1APseudomonas juntendiMK68006199.61MZ437836M12.3ABacillus simplexBCV001000866100MZ437837M12.4AHoeflea halophilaOCPC0100001199.67MZ437838M12.5AHalobacillus locisalisAY19053499.83MZ437839M13.1ABacillus toyonensisCP00686399.87MZ437840M13.3ASulfitobacter undariaeKM27562497.99MZ437841M13.4ABhargavaea beijingensisEF37137499.83MZ437842M13.5APseudomonas juntendiMK68006199.87MZ437843	M11.2A	Sulfitobacter undariae	KM275624	98.42	MZ437832
M11.5ASulfitobacter mediterraneusJASH010002398.48MZ437835M12.1APseudomonas juntendiMK68006199.61MZ437836M12.3ABacillus simplexBCV001000866100MZ437837M12.4AHoeflea halophilaOCPC010001199.67MZ437838M12.5AHalobacillus locisalisAY19053499.83MZ437849M13.1ABacillus toyonensisCP00686399.87MZ437840M13.3ASulfitobacter undariaeKM27562497.99MZ437841M13.4ABhargavaea beijingensisEF37137499.83MZ437842M13.5APseudomonas juntendiMK68006199.87MZ437843	M11.3A	Hoeflea halophila	OCPC01000011	99.71	MZ437833
M12.1APseudomonas juntendiMK68006199.61MZ437836M12.3ABacillus simplexBCVO0100086100MZ437837M12.4AHoeflea halophilaOCPC0100001199.67MZ437838M12.5AHalobacillus locisalisAY19053499.83MZ437849M13.1ABacillus toyonensisCP00686399.87MZ437840M13.3ASulfitobacter undariaeKM27562497.99MZ437841M13.4ABhargavaea beijingensisEF37137499.83MZ437842M13.5APseudomonas juntendiMK68006199.87MZ437843	M11.4A	Pontixanthobacter luteolus	AY739662	99.61	MZ437834
M12.3ABacillus simplexBCVO0100086100MZ437837M12.4AHoeflea halophilaOCPC0100001199.67MZ437838M12.5AHalobacillus locisalisAY19053499.83MZ437839M13.1ABacillus toyonensisCP00686399.87MZ437840M13.3ASulfitobacter undariaeKM27562497.99MZ437841M13.4ABhargavaea beijingensisEF37137499.33MZ437842M13.5APseudomonas juntendiMK68006199.87MZ437843	M11.5A	Sulfitobacter mediterraneus	JASH01000023	98.48	MZ437835
M12.4AHoeflea halophilaOCPC0100001199.67MZ437838M12.5AHalobacillus locisalisAY19053499.83MZ437839M13.1ABacillus toyonensisCP00686399.87MZ437840M13.3ASulfitobacter undariaeKM27562497.99MZ437841M13.4ABhargavaea beijingensisEF37137499.33MZ437842M13.5APseudomonas juntendiMK68006199.87MZ437843	M12.1A	Pseudomonas juntendi	MK680061	99.61	MZ437836
M12.5AHalobacillus locisalisAY19053499.83MZ437839M13.1ABacillus toyonensisCP00686399.87MZ437840M13.3ASulfitobacter undariaeKM27562497.99MZ437841M13.4ABhargavaea beijingensisEF37137499.33MZ437842M13.5APseudomonas juntendiMK68006199.87MZ437843	M12.3A	Bacillus simplex	BCVO01000086	100	MZ437837
M13.1ABacillus toyonensisCP00686399.87MZ437840M13.3ASulfitobacter undariaeKM27562497.99MZ437841M13.4ABhargavaea beijingensisEF37137499.33MZ437842M13.5APseudomonas juntendiMK68006199.87MZ437843	M12.4A	Hoeflea halophila	OCPC01000011	99.67	MZ437838
M13.3ASulfitobacter undariaeKM27562497.99MZ437841M13.4ABhargavaea beijingensisEF37137499.33MZ437842M13.5APseudomonas juntendiMK68006199.87MZ437843	M12.5A	Halobacillus locisalis	AY190534	99.83	MZ437839
M13.4A Bhargavaea beijingensis EF371374 99.33 MZ437842 M13.5A Pseudomonas juntendi MK680061 99.87 MZ437843	M13.1A	Bacillus toyonensis	CP006863	99.87	MZ437840
M13.5A Pseudomonas juntendi MK680061 99.87 MZ437843	M13.3A	Sulfitobacter undariae	KM275624	97.99	MZ437841
· · · · · · · · · · · · · · · · · · ·	M13.4A	Bhargavaea beijingensis	EF371374	99.33	MZ437842
CS5.1A Sediminicola arcticus KM576847 97.43 MZ437844	M13.5A	Pseudomonas juntendi	MK680061	99.87	MZ437843
	CS5.1A	Sediminicola arcticus	KM576847	97.43	MZ437844

(Continues)

-WILEY_<u>Microbiology</u>Open

TABLE A2 (Continued)

Sample	Closest type strain	Accession number	ID %	GenBank accessio number
CS5.2A	Sediminicola arcticus	KM576847	98.29	MZ437845
CS5.3A	Planomicrobium alkanoclasticum	AF029364	99.36	MZ437846
CS5.4A	Pseudidiomarina aquimaris	PIPT01000016	98.98	MZ437847
CS5.5A	Erythrobacter citreus	AF118020	98.49	MZ437848
CS6.1A	Hoeflea halophila	OCPC01000011	98.98	MZ437849
CS6.2A	Aurantimonas coralicida	ATXK01000033	100.00	MZ437850
CS6.4A	Bacillus aciditolerans	MG589508	99.49	MZ437851
CS6.5A	Gramella salexigens	CP018153	98.67	MZ437852
P12.1A	Altererythrobacter luteolus	AY739662	99.54	MZ437853
P12.3A	Bacillus aciditolerans	MG589508	99.45	MZ437854
P12.4A	Bacillus zhangzhouensis	JOTP01000061	99.84	MZ437855
P12.5A	Bacillus megaterium	JJMH01000057	99.78	MZ437856
P12.6A	Bacillus filamentosus	KF265351	99.54	MZ437857
P1.1X	Bacillus algicola	NR_117184.1	100	MZ604909
P1.2X	Erythrobacter arachoides	KU302715	98.61	MZ437858
P1.4X	Terribacillus saccharophilus	AB243845	99.59	MZ437859
P1.5X	Sphingorhabdus flavimaris	AY554010	99.58	MZ437860
P1.7X	Halobacillus locisalis	AY190534	100	MZ437861
P1.8X	Sulfitobacter mediterraneus	JASH01000023	97.99	MZ437862
P2.1X	Bacillus oceanisediminis	GQ292772	99.14	MZ437863
P2.2X	Fictibacillus halophilus	KP265300	99.7	MZ437864
P2.3X	Bacillus firmus	BCUY01000205	98.61	MZ437865
P2.4X	Cytobacillus firmus	BCUY01000205	98.95	MZ437866
P2.5X	Alkalihalobacillus algicola	AY228462	99.13	MZ437867
P2.6X	Brevibacterium frigoritolerans	AM747813	100	MZ437868
P2.7X	Solibacillus isronensis	AMCK01000046	99.86	MZ437869
P3.2X	Bacillus algicola	AY228462	98.19	MZ437870
P3.4X	Pseudomonas juntendi	MK680061	99.82	MZ437871
P3.5X	Bacillus altitudinis	ASJC01000029	99.75	MZ437872
P3.7X	Actibacter haliotis	KC193210	98.83	MZ437873
P3.8X	Sphingorhabdus flavimaris	AY554010	99.31	MZ437874
P4.1X	Solibacillus isronensis	AMCK01000046	100	MZ437875
	Solidacilius Istonensis			
P4.3X	Meridianimaribacter flavus	jgi.1076156	99.71	MZ437876
P4.3X P4.5X		jgi.1076156 JMQK01000051	99.71 97.87	MZ437876 MZ437877
	Meridianimaribacter flavus			
P4.5X P4.7X	Meridianimaribacter flavus Rhizobium marinum	JMQK01000051	97.87	MZ437877
P4.5X	Meridianimaribacter flavus Rhizobium marinum Microbacterium imperiale	JMQK01000051 X77442	97.87 100.00	MZ437877 MZ437878

_MicrobiologyOpen

-WILEY

21 of 23

TABLE A2 (Continued)

Sample	Closest type strain	Accession number	ID %	GenBank accession number
M10.1X	Bacillus altitudinis	ASJC01000029	99.61	MZ437882
M10.2X	Gramella sediminilitoris	KU696541	98.68	MZ437883
M10.4X	Planomicrobium alkanoclasticum	AF029364	100	MZ437884
M10.5X	Piscibacillus halophilus	FM864227	98.78	MZ437885
M10.6X	Planomicrobium alkanoclasticum	AF029364	99.61	MZ437886
M10.7X	Sulfitobacter sabulilitois	MK726099	98.14	MZ437887
M10.8X	Gillisia hiemivivida	AY694006	97.45	MZ437888
M10.9X	Sagittula stellata	AAYA01000003	97.81	MW785249
M11.1X	Bacillus endophyticus	AF295302	100	MZ437890
M11.2X	Ruegeria atlantica	CYPU01000053	99.33	MZ437891
M11.3X	ldiomarina piscisalsi	AB619724	99.36	MZ437892
M11.4X	Bacillus pseudomycoides	ACMX01000133	100.00	MZ437893
M11.5X	Bacillus altitudinis	ASJC01000029	99.47	MZ437894
M11.6X	Erythrobacter arachoides	KU302715	99.16	MZ437895
M11.7X	Bacillus horikoshii	X76443	98.74	MZ437896
M11.8X	Sphingorhabdus flavimaris	AY554010	99.58	MZ437897
M11.9X	Altererythrobacter luteolus	AY739662	99.57	MZ437898
M11.10X	Planomicrobium alkanoclasticum	AF029364	99.6	MZ437899
M11.11X	Aquamicrobium lusatiense	AJ132378	90.26	MZ437900
M11.12X	Bacillus altitudinis	ASJC01000029	100.00	MZ437901
M12.1X	Erythrobacter arachoides	KU302715	98.64	MZ437902
M12.2X	Aquimarina intermedia	jgi.1107908	99.71	MZ437903
M12.3X	Lutimonas vermicola	EF108218	99.28	MZ437904
M12.4X	Parasphingorhabdus flavimaris	AY554010	99.71	MZ437905
M13.1X	Bacillus altitudinis	ASJC01000029	100.00	MZ437906
M13.2X	Halobacillus litoralis	X94558	99.86	MZ437907
M13.3X	Microbulbifer echini	KJ789957	99.76	MZ437908
M13.4X	Alkalihalobacillus algicola	AY228462	99.85	MZ437909
M13.7X	Kocuria salina	LT674162	99.31	MZ437910
CS4.1X	Yoonia litorea	jgi.1096519	99.74	MZ437911
CS4.3X	Vibrio comitans	DQ922915	99.45	MZ437912
CS4.4X	Mesobacillus subterraneus	RSFW01000004	99.52	MZ437913
CS4.5X	Agromyces indicus	HM036655	98.81	MZ437914
CS5.2X	Bacillus horikoshii	X76443	99.07	MZ437915
CS5.3X	Planomicrobium alkanoclasticum	AF029364	99.4	MZ437916
CS5.4X	Micrococcus luteus	CP001628	99.82	MZ437917
CS6.1X	Sphingorhabdus flavimaris	AY554010	99.32	MZ437918
CS6.2X	Aurantimonas coralicida	ATXK01000033	100.00	MZ437919

(Continues)

TABLE A2 (Continued)

Sample	Closest type strain	Accession number	ID %	GenBank accession number
CS6.3X	Gramella salexigens	CP018153	98.87	MZ437920
CS6.4X	Microbulbifer echini	KJ789957	99.2	MZ437921
CS6.5X	Sphingorhabdus flavimaris	AY554010	99.31	MZ437922
CS6.6X	Gillisia mitskevichiae	jgi.1107713	99.74	MZ437923
CS6.7X	Erythrobacter citreus	AF118020	99.04	MZ437924
P12.4X	Microbacterium aerolatum	BJUW01000027	99.76	MZ604910
P12.5X	Rhodotorula mucilaginosa	KU167832.1	100.00	MZ604692
P12.6X	Yoonia rosea	jgi.1085777	99.06	MZ437925
P12.7X	Ruegeria arenilitoris	FXYG0100008	99.6	MZ437926
P12.8X	Citricoccus alkalitolerans	AY376164	99.21	MZ437927
P12.9X	Bacillus maritimus	KP317497	98.04	MZ437928
P12.10X	Tessaracoccus rhinocerotis	KT215777	97.89	MZ437929
P12.11X	Bacillus beringensis	FJ889576	98.98	MZ437930
P12.12X	Bacillus altitudinis	ASJC01000029	99.58	MZ437931
P12.13X	Bacillus firmus	BCUY01000205	97.85	MZ437932
P12.14X	Bacillus aryabhattai	EF114313	100.00	MZ437933
P12.15X	Ruegeria arenilitoris	FXYG0100008	100.00	MZ437934
P1.1D	Pseudoalteromonas piscicida	CP011925	100.00	MZ437935
P1.2D	Vibrio hyugaensis	LC004912	99.86	MZ437936
P1.5D	Vibrio azureus	LC004912	99.59	MZ437937
P6.1D	Vibrio alginolyticus	CP006718	99.34	MZ437938
P6.2D	Vibrio hyugaensis	LC004912	99.55	MZ437939
M10.3D	Epibacterium mobile	jgi.1108012	100	MZ437940
M10.5D	Vibrio azureus	BATL01000140	100.00	MZ437941
M10.6D	Vibrio shilonii	ABCH01000080	99.03	MZ437942
M10.7D	Vibrio hyugaensis	LC004912	99.86	MZ437943
M10.10D	Vibrio hyugaensis	LC004912	99.85	MZ437944
M10.11D	Tenacibaculum mesophilum	jgi.1107970	99.87	MZ437945

Note: The identification code of the strains corresponds to the sediments from which it was isolated (CS, control sediments; M, can inside-sediments; P, plastic inside-sediments; and a number).

VIDAL-VERDÚ ET AL.	
--------------------	--

Wiley

TABLE A3 List of selected isolates that showed enhanced growth in PET-containing medium, with the closest type strain, GenBank accession number for the 16S and 18 rRNA gene sequences, and results obtained in the quantitative assay

Isolate	Closest Type Strain	Quantitative assay (CFU in minimal marine medium supplemented with PET/CFU in minimal marine medium)	GenBank accession number
P1.1X	Bacillus algicola	2.1	MZ604909
P4.3X	Meridianimaribacter flavus	0.8	MZ437876
P4.7X	Microbacterium imperiale	0.5	MZ437878
M13.5A	Pseudomonas juntendi	1.4	MZ437843
M13.7X	Kocuria rosea	0.9	MZ437910
M11.3X	ldiomarina piscisalsi	4.7	MZ437892
P4.10X	Maritalea mobilis	0.8	MZ437881
P12.10X	Tessaracoccus rhinocerotis	*	MZ437929
CS5.4X	Micrococcus luteus	20.8	MZ437917
CS6.2X	Aurantimonas coralicida	1.2	MZ437919
M12.2X	Aquimarina intermedia	3.4	MZ437903
P12.4X	Microbacterium aerolatum	2.4	MZ604910
P12.5X	Rhodotorula evergladensis	1.5	MZ604692
P12.8X	Citricoccus alkalitolerans	3.6	MZ437927
M10.4A	Bacillus zhangzhouensis	0.9	MZ437829
M12.3A	Bacillus simplex	0.5	MZ437837

Abbreviations: CFU, colony-forming units; PET, polyethylene terephthalate.

*Tessaracoccus rhinocerotis yielded an uncountable number of colonies; therefore, its differential growth was not measured.