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Abstract: This work presents a cooperative monocular-based SLAM approach for multi-UAV systems
that can operate in GPS-denied environments. The main contribution of the work is to show that,
using visual information obtained from monocular cameras mounted onboard aerial vehicles flying
in formation, the observability properties of the whole system are improved. This fact is especially
notorious when compared with other related visual SLAM configurations. In order to improve the
observability properties, some measurements of the relative distance between the UAVs are included
in the system. These relative distances are also obtained from visual information. The proposed
approach is theoretically validated by means of a nonlinear observability analysis. Furthermore,
an extensive set of computer simulations is presented in order to validate the proposed approach.
The numerical simulation results show that the proposed system is able to provide a good position
and orientation estimation of the aerial vehicles flying in formation.

Keywords: state estimation; unmanned aerial vehicle; monocular vision; localization; mapping;
observability; cooperative

1. Introduction

Nowadays, unmanned aerial vehicles (UAVs) have received great attention from the robotics
research community. In this case, one of the main objectives has been the improvement of the autonomy
of these systems. In particular, the multi-rotor aerial systems allow great versatility of movements,
making this kind of aerial platform very useful for a great variety of applications. Altogether with
the recent advances in computational processing, computer vision has become an important tool
in order to improve the autonomy of robotics systems. Cameras are well adapted for embedded
systems because they are inexpensive, lightweight and power-saving. For instance, applications of
surveillance [1], tracking and rescue [2], among others, seem to be feasible for aerial robots equipped
with onboard cameras.

A fundamental requirement in order to improve the autonomy of an aerial robot has to do with
the capacity of self-location and perception of the operational environment. In this case, for most
applications, GPS (Global Positioning System) still represents the main alternative for addressing the
localization problem. Nevertheless, the use of GPS presents some drawbacks, for instance, the precision
error can be substantial, and it provides poor operability due to multipath propagation. However,
several mission profiles require the UAVs to fly in GPS-challenging or GPS-denied environments,
as in natural and urban canyons [3]. The use of range sensors like laser, sonar or radar (see [4–6])
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allows obtaining knowledge about the environment of the robot. However, this kind of sensor can
be expensive and sometimes heavy, and its use in outdoor environments can be somewhat limited.
For instance, sonar systems have a limited range of operation. Active laser systems (e.g., LiDAR)
represent a very interesting sensing technology; they can operate under any visibility condition
(i.e., both day and night, unlike cameras) and can directly provide 3D measurements about the
surrounding environment. On the other hand, LiDAR is generally expensive; it can overload the
system for certain applications; and it has moving parts, which can generate error.

1.1. Related Work

Visual SLAM is a technique that makes use of visual features as landmarks. Visual SLAM is
intended to address the navigation problem of a robot moving in a previously unknown environment,
while it provides information about the environment, using mainly angular measurements obtained
from cameras. Currently, there are two main approaches for implementing vision-based SLAM
systems: (i) filtering-based methods [7–9] and (ii) the optimization-based methods [10,11]. While
the latter approach is shown to give accurate results when the availability of computational power
is enough, filtering-based SLAM methods might be still beneficial if limited processing power is
available [12].

Some examples of visual SLAM approaches applied to unmanned aerial vehicles are [13,14].
In [15], a visual SLAM proposal that adds inertial measurements given by an Inertial Measurement
Unit (IMU) is presented. The potential problem with this kind of approach is related to the fact that
the acceleration obtained from the IMU has a dynamic bias, which is difficult to estimate. In [16],
an EKF-based (Extended Kalman Filter) method is proposed in order to perform visual odometry with
an unmanned aircraft. This method uses inertial sensors, a monocular downward facing camera and a
range sensor (sonar altimeter). Unlike vision-based SLAM, in visual odometry approaches, there is not
a mapping process. Furthermore, in those approaches, the operating altitude of the UAV is limited by
the operating range of the sonar. More recently, new approaches appeared addressing the problem of
visual-based navigation in GPS-denied environments, such as [17–19].

Multi-robot systems have also received great attention from the robotics research community.
This attention is motivated by the inherent versatility that this kind of system has for performing tasks
that could be difficult for a single robot. The use of several robots shows advantages like cost reductions,
more robustness, better performance and efficiency [20,21]. In the case of the SLAM problem, in [22,23],
a centralized architecture is used where all vehicles send their sensor data to a unique Kalman filter.
In [16,24,25], the idea of combining monocular SLAM with cooperative, multi-UAV information to
improve navigation capabilities in GPS-challenging environments is presented.

In works like [26–29], it has been shown that 6DOF-SLAM (six degrees of freedom), based
only on angular measurements (i.e., monocular SLAM), is a partially observable system that can be
applied to both the single-robot case and the multi-robot case. In [30], cooperative localization with
visual information is addressed. According to the analysis presented in that work, the proposed
system is completely observable. However, in this case, only distances and the relative orientations
between robots are estimated. This fact can represent a clear drawback for applications where global
measurements of the system are required (e.g., absolute position).

1.2. Objectives and Contributions

In this work, nonlinear observability properties of an aerial multi-robot system are analyzed.
Based on this analysis, it is shown that the observability properties of this kind of system are improved
by the inclusion of measurements of the relative distance between the aerial robots. Furthermore, based
on the observability analysis, it is shown that the cooperative approach has theoretical advantages
with respect to other configurations like the single-robot monocular SLAM approach. In addition, it is
demonstrated that in a system composed of several UAVs, the observation of common landmarks is
a sufficient condition in order to propagate through the whole system the information provided by
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the measurement of the relative distance between two robots. This property allows flexibility in the
system as opposed to the absolute need for multiple contacts between robots.

In order to take advantage of all the above theoretical results, in this work, a novel cooperative
monocular-based SLAM approach for multi-UAV systems is proposed. The system model is composed
of the dynamics of each aerial robot and the Euclidean position of each landmark. The measurements
of the system are the projections of the landmarks in the images, provided by the monocular cameras
carried individually in every aerial robot. Additionally, as was mentioned before, the availability of
some measurements about the relative distance between two robots is assumed.

In order to accomplish the requirement of having measurements of the relative distance between
two robots, a technique based on a homography is also presented in this research. The main idea
is to exploit the physical structure of the aerial robots in order to obtain measurements of relative
distances by means of visual information. In this case, the method is developed assuming a team of
quadrotors. It is important to remark that this proposed approach could be also applied to many other
aerial platforms. The only requirement for the presented approach is that at least one robot has to
be maintained inside the field of view of another aerial robot, while sharing the observation of one
common visual landmark (see Figure 1).

Figure 1. Cooperative monocular-based SLAM.

The geometric structure of a typical quadrotor is cross-shaped, and therefore, each rotor is
mounted at the different ends of the cross. This kind of physical geometry can allow a standard
computer vision algorithm to extract and track the centroids of the rotors. In this case, those centroids
can be assumed to be coplanar. In order to compute the relative distance from one quadcopter in the
field of view of another one, a homography is applied from the camera coordinate reference system of
the observing robot to the plane formed by the four rotors of the robot being observed. The information
obtained by the homography is fused with the orientation of the observing robot, provided by an
IMU, which finally allows one to obtain measurements of relative distances. It is important to note
that, based on the theoretical results presented in this work, it should be straightforward to replace the
homographic technique used for estimating the relative distance between UAVs by another technique
that would provide a similar measurement.

In addition to the benefit of improving the observability of the system, the relative distance
obtained between any pair of robots provides metric information of the system, which is an important
issue to be addressed in monocular-based systems. For example, in other configurations, the metric
information is obtained purely from inertial systems (i.e., monocular/Inertial Navigation Systems
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(INS) solutions), but inertial sensors present some drawbacks due to the large drift bias, which is
inherent to this kind of sensor [31,32].

In the proposed system, in order to take advantage of the multi-UAV cooperative configuration,
the initialization process of new map features is carried out through a pseudo-stereo system composed
of two monocular cameras mounted on two UAVs respectively (one camera per UAV) that observe
common landmarks. This approach allows initializing landmarks with less uncertainty than a pure
monocular system since 3D information of the position of landmarks is gathered from the beginning
of the observation. It is well known that, in visual SLAM, the initialization process can play an
important role in the convergence of the filter. Having a flexible baseline in the pseudo-stereo system
allows one to initialize landmarks at distances far away with less uncertainty, unlike stereo systems
with a rigid baseline [32] or delayed monocular initialization methods. The above fact allows the
proposed cooperative system to have better performance in environments where landmarks are far
from the measurement system, contrary to SLAM approaches based on depth cameras, stereo systems,
monocular cameras or sonars.

1.3. Paper Outline

The document is organized in the following manner: Section 2 presents the specifications of the
system; Section 3 presents the nonlinear observability analysis that represents the theoretical basis of
the proposed method; Section 4 presents the proposed cooperative approach for monocular-based
SLAM; in Section 5, the results obtained from numerical simulations are presented in order to validate
the proposal, and finally, in Section 6, some final remarks are given.

2. System Specification

In this section, the models used in this work are introduced. The model used for representing the
dynamics of a camera carried by a quadcopter is presented. The representation of the landmarks as map
features is also defined. The camera projection model used in this work is described. The technique
based on homographies that is used for estimating the relative distance between two quadcopters is
introduced, as well.

2.1. Dynamics of the System

Let us consider the following continuous-time model describing the dynamics of the j-th
UAV-camera system (see Figure 2):

ẋ =


ẋj

c

q̇j
c

v̇j
c

ω̇cω̇cω̇c
j

ẋi
a

 =


vc

j

1
2 Ωc

jqc
j

03×1

03×1

03×1

 (1)

where the state vector x is defined by:

x =
[

xc
j qc

j vc
j ωcωcωc

j xa
i
]T

(2)

With i = 1, ..., n1, let n1 be the number of landmarks, and with j = 1, ..., n2, let n2 be the number of
UAV-camera systems.

Additionally, let xc
j =

[
xj

c yj
c zj

c

]T
represent the position of the reference system C of

the j-th camera, with respect to the reference system W. Let qc
j =

[
qj

0 qj
x qj

y qj
z

]T
be a unit

quaternion representing the orientation of the reference system C of the j-th camera, with respect to
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the reference system W. Let vc
j =

[
ẋj

c ẏj
c żj

c

]T
represent the linear velocity of the j-th camera.

Let ωcωcωc
j =

[
ω

j
x ω

j
y ω

j
z

]T
represent the angular velocity of the j-th camera. Finally, let xa

i =[
xi

a yi
a zi

a

]T
be the position of the i-th landmark with respect to the reference system W, defined

by its Euclidean parameterization. Furthermore the next definitions should be considered:

Ωc
j =

[
0 −ωcωcωc

jT

ωcωcωc
j [ωcωcωc

j]×

]
, [ωcωcωc

j]× =

 0 −ω
j
z ω

j
y

ω
j
z 0 −ω

j
x

−ω
j
y ω

j
x 0

 (3)

X
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Z

Z

Y
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Q

j-th UAV−camera system

Figure 2. Coordinate reference systems.

In (1), it is assumed that every UAV-camera is moving freely in the space with six degrees of
freedom: three for translation and three for rotation. Furthermore, note that a non-acceleration model
is assumed for UAV-camera systems, and the landmarks are assumed to remain static.

2.2. Camera Measurement Model

Consider the projection of a specific landmark over the image plane of a camera. Using the pinhole
model [33] (see Figure 3), the following expression can be defined:

izc
j = ihc

j =

[
iuj

c
ivj

c

]
=

1
izj

d

 f j
c

dj
u

0

0 f j
c

dj
v

 [ ixj
d

iyj
d

]
+

[
cj

u + dj
ur + dj

ut

cj
v + dj

vr + dj
vt

]
(4)

Let [iuj
c,ivj

c] define the coordinates (in pixels) of the projection of the i-th landmark over the image
of the j-th camera. Let f j

c be the focal length (in meters) of the j-th camera. Let [dj
u, dj

v] be the conversion
parameters (in m/pixel) for the j-th camera. Let [cj

u, cj
v] be the coordinates (in pixels) of the image

central point of the j-th camera. Let [dj
ur, dj

vr] be components (in pixels) accounting for the radial
distortion of the j-th camera. Let [dj

ut, dj
vt] be components (in pixels) accounting for the tangential

distortion of the j-th camera. All the intrinsic parameters of the j-th camera are assumed to be known

by means of some calibration method. Let ipd
j =

[
ixj

d
iyj

d
izj

d

]T
represent the position (in meters)

of the i-th landmark with respect to the coordinate reference system C of the j-th camera. Additionally,
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ipd
j = WRc

j(xa
i − xc

j) (5)

Let WRc
j(qc

j) ∈ SO3 be the rotation matrix, obtained from the quaternion qc
j, that transforms

the world coordinate reference system W to the coordinate reference system C of the j-th camera.

Z

X

YW

Z

Y

X
C

i-th landmark

j-th UAV−camera system

n-th UAV−camera system

u

v

fc

Q X

Y

Z

Z

Y

X
C

Figure 3. Pinhole camera projection model.

2.3. Relative Distance Measurement Model

To estimate the relative distance between UAV-camera systems, the physical structure of the
aerial robots (quadcopters in this research) is exploited. In this case, the rotors of a quadcopter are
considered as highlighted points in the images captured by another quadcopter (see Figures 1 and 3).
These points can be considered coplanar in the reference system Q of the n-th quadcopter. Therefore,
knowing their geometry, it is possible to formulate a homography [33]. In order to determine the exact
correspondences between the motors’ positions in the image plane and their real positions in reference
Q, it is assumed that one rotor has a distinguishable color or geometry from the other ones. The other
three correspondences can be determined given only the first one because it is also assumed that the
quadrotor will not fly upside down. The homographic process will allow estimating the distance
between the reference system of the camera to the plane to which the four points belong.

According to Equation (4), the following expression is obtained:

jγn
m

 jun
m

jvn
m

1

 =
[

Tc
j 03×1

]
jEc

n


xn

m
yn

m
zn

m
1

 (6)

With m = {1, ..., 4}, let [jun
m,jvn

m] define the coordinates (in pixels) of the projection of the m-th
point of the n-th quadcopter over the image of the j-th camera. Let [xn

m, yn
m, zn

m] represent the position
of the m-th point with respect to the reference system Q of the n-th quadcopter, and let jγn

m be a scale
factor. Additionally, it is defined:
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Tc
j =


f j
c

dj
u

0 cj
u + dj

ur + dj
ut

0 f j
c

dj
v

cj
v + dj

vr + dj
vt

0 0 1

 (7)

jEc
n =

[
jRq

n jdq
n

01×3 1

]
(8)

Let jdq
n be the translation vector from the reference system Q of the n-th quadcopter to the

reference system C of the j-th camera. Let jRq
n ∈ SO3 be the rotation matrix that transforms the

coordinate reference system Q of the n-th quadcopter to the coordinate reference system C of the j-th
camera. The assumption that the four m points are coplanar implies that zn

m = 0; therefore, Equation (6)
can take the following form:

 jun
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jvn
m
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1

jγn
m

[
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j 03×1

]
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m
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0
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 =
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 (9)

where jSc
n is a non-singular homogeneous matrix. In this case, it is allowed to scale the matrix in such

a way that jsn
33 = 1. This fact does not affect the projective transformation [33]. Therefore, the matrix

jSc
n can be redefined as:

jSc
n =

 jsn
11

jsn
12

jsn
13

jsn
21

jsn
22

jsn
23

jsn
31

jsn
32 1

 =
[

js1
n js2

n js3
n
]

(10)

In (10), the values of jSc
n are unknown; therefore, the following equation system can be formed

from (9):
jGn

m
jtc

n = jgn
m (11)

where:
jGn

m =

[
xn

m yn
m 1 0 0 0 −xn

m
jun

m −yn
m
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m

0 0 0 xn
m yn

m 1 −xn
m

jvn
m −yn

m
jvn

m

]
(12)

jtc
n =

[
jsn

11
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12
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13
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21
jsn

22
jsn

23
jsn

31
jsn

32

]T
(13)

jgn
m =

[
jun

m
jvn

m

]T
(14)

Considering the projection of the four points, the solution to the system can be given as follows:

jtc
n = (jGc

n)−1 jgc
n (15)

with:

jGc
n =

[
jGn

1
jGn

2
jGn

3
jGn

4

]T jgc
n =

[
jgn

1
jgn

2
jgn

3
jgn

4

]T
(16)

From the method proposed in [34], where the orthonormality property of a rotation matrix
is exploited and knowing the intrinsic parameters of the camera, jRq

n and jdq
n can be computed

from (15) as follows:
jRq

n =
[

jrn
1

jrn
2

jrn
1 × jrn

2

]
(17)

jdq
n = jrn

3 (18)
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with: [
jrn

1
jrn

2
jrn

3

]
=

1
jδn

c
(Tc

j)−1 jSc
n (19)

and:
jδn

c =
∣∣∣∣∣∣(Tc

j)−1 jsn
1

∣∣∣∣∣∣ = ∣∣∣∣∣∣(Tc
j)−1 jsn

2

∣∣∣∣∣∣ (20)

Finally, the distance between the j-th camera and the n-th camera can be computed from:

jzr
n =j hr

n = xc
n − xc

j = (WRc
j)T(jRq

n dc
n + jdq

n) (21)

where dc
n is the translation vector of the reference system Q to the reference system C of the n-th

UAV-camera system. This parameter is obtained by a camera-robot calibration process. The rotation
matrix WRc

j can be obtained from an Attitude and Heading Reference System (AHRS) or an inertial
measurement unit [35,36] mounted on board the j-th UAV-camera system.

3. Observability Analysis

In this section, the nonlinear observability properties of an aerial multi-robot system are studied.
Observability is an inherent property of a dynamic system and has an important role in the accuracy
of its estimation process; moreover, this fact has important consequences in the context of SLAM.

A system is defined as observable if the initial state x0, at any initial time t0, can be determined
given the state transition and observation models of the system and observations z[t0, t], from time t0

to a finite time t. In [37], it is demonstrated that a non-linear system is locally weakly observable if the
observability rank condition rank(OOO) = dim(x) is verified, whereOOO is the observability matrix.

As previously mentioned, 6DOF-monocular SLAM represents a kind of partially-observable
system with a high number of unobservable modes and states that can be applied to both the
single-robot case and the multi-robot case. The following references are examples of works where the
problem of the observability of 6DOF-monocular SLAM systems has also been studied, such as [26–29].

For the analysis developed in this work, and for the sake of simplicity, the system (1) is redefined as:

ẋ = f(x, t) =


ẋj

c

λ̇cλ̇cλ̇c
j

v̇j
c

ω̇cω̇cω̇c
j

ẋi
a

 =


vc

j

ωcωcωc
j

03×1

03×1

03×1

 (22)

Let λcλcλc
j =

[
φ

j
c θ

j
c ψ

j
c

]T
be the Euler angles of the j-th camera with respect to the coordinate

system W.
The observability matrixOOO can be computed as:

OOO =
[

∂(L0
f (

ihc
j))

∂x
∂(L1

f (
ihc

j))
∂x

∂(L0
f (

jhr
n))

∂x
∂(L1

f (
jhr

n))
∂x

]T
(23)

Let Ls
fh be the s-th-order Lie derivative [38] of the scalar field h with respect to the vector field f.

For example, in (23), the zero-order and first-order Lie derivatives are used for each measurement.
For the measurement given by a monocular camera, according to (4) and (22), the following

zero-order Lie derivative can be defined:

∂(L0
f (

ihc
j))

∂x
=
[

02×12(j−1) Hx
j 02×12(n2−j) | 02×3(i−1) Ha

i 02×3(n1−i)

]
(24)

where:
Hx

j = Hc

[
−WRc

j bipd
j ×c 02×6

]
(25)
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Ha
i = Hc

WRc
j (26)

and:

Hc =
f j
c

izj2
d

[
izj

d 0 −ixj
d

0 izj
d −iyj

d

]
(27)

Note that b· ×c denotes the antisymmetric matrix of the vector (·). The first-order Lie derivative
can also be defined in the following:

∂(L1
f (

ihc
j))

∂x
=
[

02×12(j−1) Hdx
j 02×12(n2−j) | 02×3(i−1) Hda

i 02×3(n1−i)

]
(28)

where:
Hdx

j =
[

Xj Ψj −Hc
WRc

j Hcbipd
j ×c

]
(29)

Hda
i =

[
H1

c H2
c H3

c

]
WRc

j
(−WRc

j vc
j + bipd

j ×cωcωcωc
j)−Hcbωcωcωc

j ×cWRc
j (30)

with:
Xj = −Hda

i (31)

Ψj =
[

H1
c H2

c H3
c

]
bipd

j ×c(−WRc
j vc

j + bipd
j ×cωcωcωc

j)−HcbWRc
j vc

j ×c −Hcbωcωcωc
j ×cbipd

j ×c (32)

and:

H1
c =

f j
c

izj2
d

[
0 0 −1
0 0 0

]
(33)

H2
c =

f j
c

izj2
d

[
0 0 0
0 0 −1

]
(34)

H3
c =

f j
c

izj3
d

[
−izj

d 0 2ixj
d

0 −izj
d 2iyj

d

]
(35)

Considering the case where relative measurements of the distance between robots are available,
the following statement can be defined from (21) and (22):

For the zero-order Lie derivative, if j < n (the index of the observing robot is lesser than the index
of the observed robot):

∂(L0
f (

jhr
n))

∂x
=
[

03×12(j−1) −Mx
j 03×12(n−j−1) Mx

n 03×12(n2−n) | 03n1

]
(36)

On the other hand, if j > n, then:

∂(L0
f (

jhr
n))

∂x
=
[

03×12(n−1) Mx
n 03×12(j−n−1) −Mx

j 03×12(n2−j) | 03n1

]
(37)

and:
Mx

j,n =
[

I3 03×9

]
(38)

where I is the identity matrix.
For the first-order Lie derivative, if j < n:

∂(L1
f (

jhr
n))

∂x
=
[

03×12(j−1) −Mdx
j 03×12(n−j−1) Mdx

n 03×12(n2−n) | 03n1

]
(39)
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On the other hand, if j > n (the index of the observing robot is higher than the index of the observed
robot), then:

∂(L1
f (

jhr
n))

∂x
=
[

03×12(n−1) Mdx
n 03×12(j−n−1) −Mdx

j 03×12(n2−j) | 03n1

]
(40)

with
Mdx

j,n =
[

03×6 I3 03

]
(41)

With the above considerations, the observability matrix for the proposed system (22) can be
defined as follows:

OOO =



02×12(j−1) Hx
j 02×12(n2−j) | 02×3(i−1) Ha

i 02×3(n1−i)
02×12(j−1) Hdx

j 02×12(n2−j) | 02×3(i−1) Hda
i 02×3(n1−i)

03×12(j−1) −Mx
j 03×12(n−j−1) Mx

n 03×12(n2−n) | 03n1

03×12(j−1) −Mdx
j 03×12(n−j−1) Mdx

n 03×12(n2−n) | 03n1
...

03×12(n−1) Mx
n 03×12(j−n−1) −Mx

j 03×12(n2−j) | 03n1

03×12(n−1) Mdx
n 03×12(j−n−1) −Mdx

j 03×12(n2−j) | 03n1


(42)

The maximum rank of the observability matrix (42) is rank(OOO) = 3n1 + 12n2 − 3, where n1 is the
number of landmarks being measured and n2 is the number of robots. n1 is multiplied by three, since
this is the number of states per landmark given by the Euclidean parametrization. n2 is multiplied by
12, since this is the number of states per robot given by its global position, orientation (Euler angles)
and its derivatives. Therefore,OOO will be rank deficient (rank(OOO) < dim(x)).

The unobservable modes are spanned by the right nullspace basis of the observability matrixOOO;
therefore:

N = null(OOO) =



I1
3

01
9×3
...

Ij
3

0j
9×3

I1
3
...

Ii
3


(43)

It is straightforward to verify that the right nullspace basis ofOOO spans for N (i.e.,OOON = 0).
From (43), it can be seen that the system is partially observable and that the unobservable modes

cross with the states that correspond to the global position of the robots and the landmarks; these
states are unobservable. An important conclusion is that all the vectors of the right null space basis are
orthogonal with the rest of the states, and therefore, these states are completely observable.

The results of the observability analysis are summarized in Table 1.

Table 1. Results of the non-linear observability analysis.

Unobservable Modes Unobservable States Observable States

Monocular 5 xc
j, vc

j, xa
i, ψ

j
c, ψ̇

j
c φ

j
c, φ̇

j
c, θ

j
c, θ̇

j
c

Cooperative 3 xc
j, xa

i vc
j, λcλcλc

j, ωcωcωc
j

Some important remarks on the analysis can be extracted:
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• In order to obtain the previous results, it is necessary to link the members of the multi-UAV system
through the measurements (see Figure 4). In other words, (i) a robot needs to share the observation
of at least two landmarks with another robot or (ii) a robot needs to measure its relative distance
with respect to another robot in addition to both observing one landmark in common.

• A single measurement of the relative distance between two robots represents a sufficient condition
to obtain the previous results (see Figure 4).

• Adding Lie derivatives of higher order to the observability matrix does not improve the results.

From the above results, it can be concluded that the proposed cooperative system, although still
partially observable, considerably reduces the unobservable modes and states with respect to the
6DOF-monocular SLAM system. This contribution represents an advantage to improve the accuracy
and consistency in the estimation process.

X
XX

Relative distance

Two Landmarks in common One Landmark in common + Relative distance

Figure 4. Requirements to obtain the results of the observability analysis for the proposed system.

4. EKF-Cooperative Monocular SLAM

In this section, the proposed monocular cooperative SLAM algorithm, based on an Extended
Kalman Filter (EKF), is presented. Figure 5 shows the architecture of the proposed system.

Filter
Prediction

Relative
Distance
Update

Visual
Update

EKF−Cooperative Monocular SLAM

Pseudo
Stereo
System

System
State

Augmentation

Cooperative Landmarks Initialization
Cameras

x^−

ui
j

c ,i j

cv

xa

xa

new

P
new

,

x^−

x^ ui
j

c ,i j

cvx^x^

x^

Figure 5. Block diagram showing the architecture of the system: EKF-cooperative monocular SLAM.

4.1. EKF-SLAM

According to (1), the discrete system state to be estimated is defined by:

xk = f(xk−1, nk−1) =


xc

j
k

qc
j
k

vc
j
k

ωcωcωc
j
k

xa
i
k

 =


xc

j
k−1 + (vc

j
k−1)∆t

qc
j
k−1 × q((ωcωcωc

j
k−1)∆t)

vc
j
k−1 + ζcζcζc

j
k−1

ωcωcωc
j
k−1 + ηcηcηc

j
k−1

xa
i
k−1

 (44)
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nk =

[
ζcζcζc

j
k

ηcηcηc
j
k

]
=

[
ac

j∆t
αcαcαc

j∆t

]
(45)

with system measurements defined according to (4) and (21), as:

zk = h(xk, rk) =

[
ihc

j
k +

i rc
j
k

jhr
n
k +

j re
n
k

]
(46)

rk =

[
irc

j
k

jre
n
k

]
(47)

Let ac
j and αcαcαc

j represent unknown linear and angular accelerations that are assumed to have a
Gaussian distribution with zero mean. Let nk ∼ NNN (0, Qk) and rk ∼ NNN (0, Rk) be the noise vectors that
affect the state and the measurement, which are assumed to be mutually uncorrelated. Let ∆t be the
differential of time and k the sample step. Note that in this work, for simplicity, a Gaussian random
process is used for propagating the velocity of the vehicle. However, a feasible alternative could be to
use the dynamical model of the aircraft instead. However, this approach commonly requires having
considerable knowledge of the specific physics of each aerial vehicle where the proposed method
would have to be applied.

The prediction stage of the EKF is defined by:

x̂−k = f(x̂k−1, 0) (48)

P−k = AkPk−1AT
k + WkQk−1WT

k (49)

The correction stage of the EKF is defined by:

x̂k = x̂−k + Kk(zk − h(x̂−k , 0)) (50)

Pk = (I−KkCk)P
−
k (51)

with:
Kk = P−k CT

k (CkP−k CT
k + VkRkVT

k )
−1 (52)

and:

Ak =
∂f
∂x

(x̂k−1, 0) Ck =
∂h
∂x

(x̂−k , 0)

Wk =
∂f
∂n

(x̂k−1, 0) Vk =
∂h
∂r

(x̂−k , 0)
(53)

P is the covariance matrix of the system state, and K is the Kalman gain.

4.2. Initialization of Map Features

Taking advantage of the multi-UAV cooperative system, the initialization process of new map
features is carried out through a pseudo-stereo system composed of two different UAV cameras that
observe common landmarks. This fact allows initializing the landmarks with less uncertainty since 3D
information of the position of the landmarks is gathered from the beginning. The three-dimensional
data obtained by the pseudo-stereo system can improve the information obtained by other sensors.
For example, the traditional fixed stereo system has a limited operating range due to the fixed baseline
between the cameras.

The process of initialization is carried out when a new landmark is observed by two cameras,
and if this condition is fulfilled, then the landmark can be initialized by means of a linear triangulation.
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In this case, the measurement is computed using the a posteriori values obtained in the correction stage
of the EKF.

According to (4) and (6), the following expression can be defined in homogeneous coordinates:

iγ
j
c

 iuj
c

ivj
c

1

 =
[

Tc
j 03×1

]
Êj

c

[
xa

i

1

]
(54)

where:

Êj
c =

[
WR̂j

c x̂j
c

01×3 1

]
(55)

Using (54) and considering the projection onto two any UAV cameras, a linear system can be
formed in order to estimate xa

i:
Dixa

i = bi xa
i = Di† bi (56)

where Di† is the Moore–Penrose right pseudo-inverse matrix of Di, and:

Di =

[
kj

31
iuj

c − kj
11 kj

32
iuj

c − kj
12 kj

33
iuj

c − kj
13

kj
31

ivj
c − kj

21 kj
32

ivj
c − kj

22 kj
33

ivj
c − kj

23

]

bi =

[
kj

14 − kj
34

iuj
c

kj
24 − kj

34
ivj

c

] (57)

with:

[
Tc

j 03×1

]
Êj

c =

 kj
11 kj

12 kj
13 kj

14
kj

21 kj
22 kj

23 kj
24

kj
31 kj

32 kj
33 kj

34

 (58)

When a new landmark is initialized, the system state x is augmented by: x =[
xc

j qc
j vc

j ωcωcωc
j xa

i xa
new

]T
.

The new covariance matrix Pnew is computed by:

Pnew = ∆J

[
P 0
0 iRj

]
= ∆JT (59)

where ∆J is the Jacobian for the initialization function and iRj is the measurement noise covariance
matrix for (iuj

c,i vj
c).

Map Management

The real-time feasibility of EKF-based visual SLAM systems has been proven since early works
like [39]. Nevertheless, it is well known that due to the nature of the Kalman filter, in SLAM, the system
state can always reach a size that will make it impossible to maintain a real-time performance for a
given hardware. In this sense, this work is mainly intended to address the local navigation problem,
that is the proposed system is intended to be applied in scenarios involving flight trajectories relatively
near the origin of the navigation frame. Therefore, old features can be removed from the system state
and covariance matrix, to prevent the system state from reaching a size that affects the computational
performance.

On the other hand, although large-scale SLAM and loop-closing are not considered in this
work, it is important to note that a SLAM framework that works reliably in a local way can be
applied to large-scale problems using different methods, such as sub-mapping or graph-based global
optimization [12].
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5. Computer Simulations Results

In this section, computer simulation results are presented. The computer simulations
were performed in order to validate the performance of the proposed method. A MATLAB R©

implementation was used for this purpose.
With the intention of making an exhaustive analysis of the performance of the proposed system,

a comparison is carried out with respect to the other three typical single-robot SLAM configurations.
The comparison allows one to note the advantages and drawbacks of multi-UAV systems compared
with single robot systems.

For the computer simulations setup, two quadcopters equipped with an onboard monocular
camera are simulated, while moving maintaining a stable flight formation. In this case, a Quadcopter
(Quad 2) navigates over the other (Quad 1) at an arbitrary relative distance. In the computer
simulations, it is considered that Quad 1 remains all the time inside the visual field of Quad 2. It is also
assumed that there exist some landmarks observed in common by the cameras of both quadcopters.

The characteristics of the three SLAM configurations used for the comparison are described below:

1. The first configuration to be compared is monocular SLAM. In this case, the estimates are
obtained from the monocular camera carried by Quad 1. The Monocular SLAM approach used to
implement this configuration is based on the method proposed in [40]. In this method, the map
features are parametrized with the inverse depth parametrization. Both the initialization and
update process are performed by means of the monocular measurements. The metric scale of
the estimates cannot be retrieved when only monocular vision is used. For this reason, for this
configuration, it is assumed that the position of the landmarks seen in the first frame (at the
beginning of the flight trajectory) is perfectly known.

2. The second configuration to be compared is stereo SLAM. In this case, the estimates are obtained
from a stereo system, with a baseline of 15 cm, carried by Quad 1. In this method, the map
features are parametrized with the Euclidean parametrization. The feature initialization process
is carried out directly by means of the 3D information provided by the stereo system. The state
update is also performed using the stereo measurements.

3. The third configuration to be compared is a hybrid system stereo-monocular SLAM. In this
case, the estimates are obtained from a stereo system, with a baseline of 15 cm, carried by
Quad 1. In this method, the map features are parametrized with the Euclidean parametrization.
The features initialization process is carried out directly by means of the 3D information provided
by the stereo system. Unlike the second configuration, in this case, the state update is performed
through monocular measurements obtained from one of the cameras of the stereo system.

In computer simulations, it is assumed that the initial condition of the quadcopter states is
known with certainty. In order to emulate uncertainty, Gaussian noise with σc = 3 pixels is added
to the measurements given by the cameras. The measurements from the cameras are taken with a
frequency of 10 Hz. The intrinsic parameters used for the cameras are f j

c /dj
u = f j

c /dj
v = 200.1 and

cj
u = cj

v = 500. The environment is composed of 3D points, randomly distributed over the ground.
Furthermore, it is assumed that the camera can detect and track visual features without error, avoiding
the data association problem. Furthermore, the problem of the influence of the estimates on the control
system was not considered. In other words, an almost perfect control over the vehicle is assumed.
The trajectory followed by the vehicles begins near the ground, then it moves away from the initial
position taking a higher altitude as the trajectory progresses.

The average NEES (Normalized Estimation Error Squared [41]) over n3 Monte Carlo runs was
used in order to evaluate the consistency of each method, as proposed in [42]. The NEES is estimated
as follows:

εεεk =
[

xk − x̂k

]T
P−1

k

[
xk − x̂k

]
(60)
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The average NEES is computed from:

ε̄̄ε̄εk =
1
n3

n3

∑
r=1

εεεr
k (61)

Figure 6 shows the real and estimated trajectory obtained from the cooperative system. Figure 7
shows the real and estimated trajectory obtained with all the configurations. Note that in this case,
only the trajectory of Quad 1 is presented. In this simulation, it can be seen that as the trajectory
evolves, the error considerably increases for the single-robot configurations. On the other hand, for the
proposed (cooperative) method, the error is better bounded.

Figure 8 shows the evolution over time of the real and estimated states (position and orientation)
for Quad 1. In this case, the initial results are confirmed. The results of the estimated state of Quad 2
are not shown, but they are closely similar to those presented for Quad 1. Table 2 summarizes the
Mean Squared Error (MSE) for the position in the three axes of Quad 1.

Figure 9 shows the average NEES over 50 Monte Carlo runs obtained for each method. The average
NEES is calculated taking into account the twelve variables that define the complete state of the vehicle
(position, orientation, linear velocity and angular velocity). It is very interesting to note how the
consistency of the filter considerably degenerates in the three cases of the single-robot configurations.
On the other hand, for the cooperative case, the consistency of the filter remains practically stable.
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Figure 6. Estimated trajectories of the Quadcopters (Quad) obtained with the cooperative method.
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Figure 7. Estimated trajectory of Quad 1 obtained with all the configurations.
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Figure 8. Estimated state of Quad 1.
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Figure 9. Average Normalized Estimation Error Squared (NEES) obtained with the four configurations.

Figure 10 shows the relative distances (from Quad 1 to Quad 2) estimated with the method
proposed in Section 2. It can be seen that these measurements are good enough to be used to update
the filter (see Section 4). It is important to remark that the observability results presented in Section 3
depend on these measurements. The lower-right plot of Figure 10 shows an image frame captured
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from the monocular camera carried by Quad 2. In this case, the projection of the landmarks can be
appreciated, as well as the projections of the four rotors of Quad 1 needed to compute the homography.

Table 2. Mean squared error in the position estimation.

MSExMSExMSEx (m) MSEyMSEyMSEy (m) MSEzMSEzMSEz (m)

Cooperative 0.36 0.05 0.008
Monocular 30.31 6.28 2.36

Stereo 28.42 5.33 3.82
Monocular + Stereo 12.64 1.51 2.85
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Figure 10. Estimation of the relative distances between the flying vehicles by means of homographies.

In order to compare the quality of the measurements obtained with the fixed stereo system
and those obtained with the cooperative pseudo-stereo system, some computer simulations were
performed. In this case, the error was computed for the estimated landmarks’ positions, assuming
that the position of Quad 1 was perfectly known along the flight trajectory. For the fixed stereo
system, the camera-camera calibration is perfectly known. For the cooperative pseudo-stereo system,
the camera-camera calibration is obtained from the homography, and therefore, it presents a certain
level of error.

Figure 11 shows the absolute value of the mean error obtained for both methods. In this experiment,
the same measurements were performed for both systems. In the lower-right plot, the number
of measurements per frame is shown. In the case of the fixed stereo system, the accuracy of its
measurements is affected by the small baseline between cameras. This is especially notorious when the
vehicle moves far away from the landmarks (the altitude is increased). In the case of the cooperative
pseudo-stereo system, the error in estimation is much better bounded, although the calibration of
the system is not perfectly known. A suitable explanation has to do with the possibility of having an
arbitrarily greater baseline between the cameras.
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Figure 11. Comparison of the quality of the measurements obtained from a fixed stereo system and
those obtained with the cooperative pseudo-stereo system.

Figure 12 illustrates the above fact. In this case, the statistical results obtained from simulating the
measurement of a single landmark with (i) the cooperative pseudo-stereo system and (ii) a monocular
method are presented. In the simulation, the UAV-Camera 1 system is located at [x, y, z] = [3, 3, 25] at
instant k. The UAV-Camera 2 system is located at [x, y, z] = [4, 3, 30] at instant k. Thus, the baseline in
the cooperative system is equal to 5.09 meters. A landmark is located at [x, y, z] = [3.5, 3, 15]. In order
to model the inaccuracies associated with the cooperative pseudo-stereo approach, the estimated
location of the UAV-Camera 2 system was modeled by adding a Gaussian noise with σ = 50 cm to its
actual location. In order to emulate the monocular measurements, it is assumed that the UAV-Camera 1
system was moved (at some instant k + t) to [x, y, z] = [3.3, 3, 25.1] to generate a parallax with respect to
the landmark. Thus, the baseline in the monocular system is equal to 0.31 meters. The drift associated
with the estimated displacement of the UAV-Camera 1 system is modeled by adding Gaussian noise
with standard deviation σ = 5 cm to the actual location at instant k + t. In all cases, the angular
measurements provided by the cameras are corrupted by Gaussian noise with σ = 3 degrees. Using
the above conditions, a Monte Carlo simulation with 1000 executions has been used to estimate
the landmark position with linear triangulation. In Figure 12, ellipsoids are used to illustrate the
uncertainties in the estimated positions. According to the simulation results, it is better to have a larger
baseline between two cameras with greater position uncertainty (like the cooperative system) than a
small baseline with small uncertainty (like monocular measurements with low parallax).

In practical applications, there are several related factors that can severely also affect the
performance of a system. For instance, in visual SLAM, the data association problem is critical for
these approaches to be reliable. Although currently, there are several methods available for rejecting
outliers, it is difficult to completely eliminate this problem. In addition, in cooperative visual systems,
the data association problem can be extended from the single-image case to the multiple-image case.
Furthermore, a problem that can arise in multi-robot systems, contrary to the mono-robot systems,
is related to the communication issues between robots. This problem can cause loss of information or
even make the interchange of information impossible during certain periods.

In order to take into account the above practical considerations, a set of additional computer
simulations is presented. In this case, based on the same simulation setup used previously, the
following aspects are now added: (i) outliers for the visual data association in each camera; (ii) outliers
for the cooperative visual data association; (iii) outages of communication between robots; (iv) failures
in the homography-based technique used for estimating the relative distance between robots.
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Figure 12. Measurement of a single landmark using: (i) cooperative pseudo-stereo system; and (ii) the
delayed monocular initialization method.

In order to emulate the failures of the visual data association process, 5% of the total number
of visual correspondences are forced to be outliers in a random manner. In this case, each outlier is
modeled by means of a big measurement error of

√
e2

u + e2
v = 56± 14σ pixels. With the objective of

having a good insight into the performance of the proposed method, under the above conditions,
a comparison with a reliable general method is carried out. In this case, the method chosen is
a monocular SLAM system aided by measurements of the position given by a GPS and attitude
measurements obtained from an IMU (monocular SLAM + GPS + IMU).

Table 3 shows the number of failures introduced into the simulation: (i) the number of outliers
introduced in the visual tracking process of Quad 1; (ii) the number of outliers introduced in the
visual tracking process of Quad 2; (iii) the number of outliers introduced in the visual data association
process used for cooperatively measuring the landmarks by means of Quad 1 and Quad 2; (iv) the
number of outages in communication between robots, which result in filter update not being carried
out with the information given by Quad 2; and (v) the number of failures in the homography-based
technique, which result in the filter update not being carried out with the information given by the
relative distance between the Quads.

Table 3. Number of failures introduced into the simulation.

No. of No. of No. of No. of No. of
Quad 1 Quad 2 Cooperative Communication Homography

Visual Outliers Visual Outliers Visual Outliers Outages Failures

Cooperative 9002 8400 1706 210 420
Monocular + GPS + IMU 9535 - - - -

Figure 13 shows the real and estimated trajectory obtained with the two configurations:
(i) cooperative SLAM; and (ii) monocular SLAM + GPS + IMU. Figure 14 shows the evolution over time
of the real and estimated states (position and orientation) of Quad 1 obtained with both configurations.
Note that in this case, only the trajectory of Quad 1 is presented for illustration purposes, but estimates
of Quad 2 are closely similar to those presented for Quad 1. Table 4 summarizes the mean squared
error for the position in the three axes of Quad 1 obtained with both configurations. In this simulation,
both configurations have a good performance, in the case of monocular SLAM + GPS + IMU, this
result was expected, since this system has enough sources of information to determine all the states.
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The cooperative system shows a good performance despite all the failures introduced into the system.
The above study provides a good insight about the robustness of the proposed (cooperative) system.
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Figure 13. Estimated trajectory of Quad 1 obtained with the two configurations.

Table 4. Mean squared error in the position estimation.

MSExMSExMSEx (m) MSEyMSEyMSEy (m) MSEzMSEzMSEz (m)

Cooperative 0.85 0.23 0.07
Monocular + GPS + IMU 0.01 0.04 0.05

Table 5 provides an insight into the performance of the proposed method for estimating the
features map. In this case, the total (sum of all) of the mean squared errors for the estimated position of
the landmarks is presented for both configurations. Furthermore, the total of the mean squared errors
for the initial estimated position of the landmarks is presented. Note that the results are presented for
each coordinate of the reference frame W. The results show that the proposed cooperative system has
a better performance than the monocular SLAM + GPS + IMU system, regarding the error obtained in
the estimation of the position of the landmarks, although the latter has more sources of information
provided by its sensors.

Table 5. Total mean squared error in: (i) the position estimation of the landmarks (MSExm, MSEym,
MSEzm); and (ii) the initial position estimation of the landmarks (MSExmi, MSEymi, MSEzmi).

MSExmMSExmMSExm (m) MSEymMSEymMSEym (m) MSEzmMSEzmMSEzm (m) MSExmiMSExmiMSExmi (m) MSEymiMSEymiMSEymi (m) MSEzmiMSEzmiMSEzmi (m)

Cooperative 7.84 14.87 6.29 74.21 83.72 45.50
Monocular + GPS + IMU 21.80 30.31 13.27 394.05 427.91 193.99
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Figure 14. Estimated state of Quad 1.

6. Conclusions

In this work, a vision-based cooperative SLAM system with application to unmanned aerial
vehicles has been presented. The general idea is to take advantage of a cooperative UAV scheme in
order to improve the accuracy and consistency of the state estimation process of the whole system.
To achieve this purpose, it was proposed to add some relative distances between the robots as system
measurements for updating the EKF. These measures provide metric information to the system, unlike
other configurations where the scale of the system is a problem. Through a non-linear observability
analysis, it is verified that the observability of the cooperative system improves the observability
obtained for a single-robot configuration. In this case, the observability of the system is improved by
adding the measures of relative distances. Sufficient conditions required for obtaining the observability
results were established. In order to infer the 3D knowledge of the position of the landmarks for
initializing the map features with less uncertainty, in the proposed method, pseudo-stereo systems are
formed from pairs of aerial robots.

An extensive set of computer simulations was performed in order to validate the proposed
method. In the computer simulations, the proposed system was compared against four single-robot
configurations of visual SLAM. Based on the results of the simulations, it can be observed how
the proposed method (cooperative) improves the estimation of the state with respect to the other
configurations. The difference in the performance of the systems is especially notorious when the
distance from the cameras to the landmarks increases. Furthermore, it was shown that the consistency
of the filter is improved with the proposed method. Computer simulations also show that the accuracy
of the measurements obtained from the pseudo-stereo system is better than the measurements obtained
from a stereo system with a fixed small baseline.
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In computer simulations, an effort has been made in order to emulate several aspects regarding
applicability in real scenarios of the proposed approach. For instance, the data association problem
has been considered by emulating outliers (mismatches) during the tracking of visual features on each
monocular camera, as well as on the pseudo-stereo matching. Furthermore, issues for the multi-robot
communication were considered, as well as failures on the homography technique used to provide
measurements of the relative distance between robots. However, although computer simulations are
useful for evaluating the full statistical consistency of the methods, they can still neglect important
practical issues that appear when the methods are used in real scenarios. In this sense, it is important to
note that future work should be focused on developing experiments with real data in order to validate
the applicability of the proposed approach fully. Therefore, it should be interesting to investigate more
practical aspects, like the homography-based technique or the pseudo-stereo matching process.
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