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Abstract

Many studies have focused on understanding memory processes due to their importance in

daily life. Differences in timing and power spectra of brain signals during encoding task have

been linked to later remembered items and were recently used to predict memory retrieval

performance. However, accuracies remain low when using non-invasive methods for acquir-

ing brain signals, mainly due to the low spatial resolution. This study investigates the predic-

tion of successful retrieval using estimated source activity corresponding either to cortical or

subcortical structures through source localization. Electroencephalogram (EEG) signals

were recorded while participants performed a declarative memory task. Frequency-time

analysis was performed using signals from encoding and retrieval tasks to confirm the

importance of neural oscillations and their relationship with later remembered and forgotten

items. Significant differences in the power spectra between later remembered and forgotten

items were found before and during the presentation of the stimulus in the encoding task.

Source activity estimation revealed differences in the beta band power over the medial pari-

etal and medial prefrontal areas prior to the presentation of the stimulus, and over the

cuneus and lingual areas during the presentation of the stimulus. Additionally, there were

significant differences during the stimuli presentation during the retrieval task. Prediction of

later remembered items was performed using surface potentials and estimated source

activity. The results showed that source localization increases classification performance

compared to the one using surface potentials. These findings support the importance of

incorporating spatial features of neural activity to improve the prediction of memory retrieval.

Introduction

Memory processes have been widely studied due to their importance in daily life. Memory not

only allows us to store information and retrieve it as required, but also to learn from past expe-

riences to modify or guide our behavior [1]. Previous studies have concentrated on under-

standing brain mechanisms involved in memory processes, such as changes in brain activity

and neural oscillations related to later remembered items [2, 3] and, more recently, in the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0274101 September 8, 2022 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kalafatovich J, Lee M, Lee S-W (2022)

Decoding declarative memory process for

predicting memory retrieval based on source

localization. PLoS ONE 17(9): e0274101. https://

doi.org/10.1371/journal.pone.0274101

Editor: Vilfredo De Pascalis, La Sapienza University

of Rome, ITALY

Received: September 7, 2021

Accepted: August 22, 2022

Published: September 8, 2022

Copyright: © 2022 Kalafatovich et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data necessary to

replicate the results reported in this article can be

found at https://figshare.com/s/

3c5d586da8e44e8251e0.

Funding: This work was partly supported by

Institute for Information & Communications

Technology Promotion (IITP) grant funded by the

Korea government (No. 2017-0-00451,

Development of BCI based Brain and Cognitive

Computing Technology for Recognizing User’s

Intentions using Deep Learning) and Institute of

Information & communications Technology

https://orcid.org/0000-0001-7930-0484
https://doi.org/10.1371/journal.pone.0274101
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274101&domain=pdf&date_stamp=2022-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274101&domain=pdf&date_stamp=2022-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274101&domain=pdf&date_stamp=2022-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274101&domain=pdf&date_stamp=2022-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274101&domain=pdf&date_stamp=2022-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274101&domain=pdf&date_stamp=2022-09-08
https://doi.org/10.1371/journal.pone.0274101
https://doi.org/10.1371/journal.pone.0274101
http://creativecommons.org/licenses/by/4.0/
https://figshare.com/s/3c5d586da8e44e8251e0
https://figshare.com/s/3c5d586da8e44e8251e0


prediction of remembered items in the retrieval task using information obtained prior and

during the presentation of the stimulus (learning or encoding task) [4]. Prediction of later suc-

cessfully remembered items can be used for enhancing learning efficiency; and early diagnosis

and treating diseases that impair memory abilities [1]. Classifying which items are going to be

remembered or forgotten can be simply seen as a binary classification problem [5]; however, it

is more complicated than that because the information used for prediction and its results

belong to different tasks. Therefore, it is important to extract relevant features from one task

that reflects the performance of the other task.

Changes in brain activity between later remembered and forgotten items have been studied

before [6]. These differences are present prior to and during the presentation of a stimulus.

Differences in event-related potentials (ERP) were found between 400 and 800 ms during the

presentation of the stimulus [7]. Additionally, a negative activity around 250 ms was found in

frontal areas prior to stimulus onset [8]. Some studies showed that neural oscillation differ-

ences in different frequency bands are correlated with the later remembering and forgetting of

a stimulus. Increased activity was found in the theta frequency band during pre-stimulus [9],

especially in medial temporal areas [10]. Other studies showed that an increase in low beta

power prior to the presentation of the stimulus was related to the ability to form new memory

traces [2]. An increase in gamma band power related to remembered items was also found

during the presentation of the stimulus in the encoding task [11]. In contrast, a decrease in

alpha and beta band power after stimulus onset was found to be related to successfully remem-

bered items [12]. Salari and Rose [13] found that an increase in theta and beta power was

related to the likelihood of remembering the presented stimulus. These changes in power were

applied to a brain-computer interface; the presentation of the stimulus was modulated by the

participant’s state (a stimulus was either presented during a period of increase in theta or beta

power). It was found the memory performance only increased when the stimulus was pre-

sented during a high beta state, suggesting that the increase in beta power is highly related to

memory encoding and formation.

Many studies revealed that structures such as the hippocampus [14], thalamus [15], anterior

cingulate, and medial prefrontal cortex [16, 17] and others contained relevant information for

the formation of a memory. This phenomenon was observed through electrocorticography

(ECoG) or functional magnetic resonance imaging (fMRI). However, their use involves inva-

sive procedures or high cost, respectively. In contrast, electroencephalogram (EEG) is practical

and more convenient to use due to its low cost and the fact that involves non-invasive proce-

dures. EEG signals have been successfully used in many paradigms (e.g., motor imagery classi-

fication, cognitive state recognition, and sleep monitoring) [18–20], proving its feasibility.

Previous studies have explored the possibility of predicting later successfully remembered

items in different memory paradigms such as working memory and declarative memory tasks

[4, 21, 22]. Working memory retains and manipulates information over short periods of time

(sec) [23]. Meanwhile, declarative memory can store information for later recall [24]. The dif-

ference between declarative memory and working memory tasks is reflected in the time

between the encoding and retrieval tasks and the number of presented stimuli [25].

An EEG study combined temporal and spectral features for the prediction of successfully

remembered images in a declarative memory paradigm [4]. Temporal features were extracted

during the presentation of the stimulus and classified using linear discriminant analysis

(LDA). Simultaneously, spectral features were extracted using the common spatial pattern

(CSP) prior and during the presentation of the stimulus, and support vector machine (SVM)

was used for classification. An average accuracy of 59.6% was obtained after combining the

classifiers. In Höhne et al. [26], intracranial EEG data from the medial temporal lobe was ana-

lyzed to predict successful memory encoding. The experimental paradigm consisted of the
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presentation of 300 German nouns for 300 ms. They analyzed the significant phase clustering

of different time windows and frequencies across participants; later they identified the time

windows and frequencies for which the phases differed depending on the remembered and

forgotten trials per participant. SVM was used as a classifier, an average classification accuracy

of 69.2% was obtained. As observed, high accuracies were obtained in studies using ECoG

[26]; however, EEG studies present a dramatic decrease in accuracy [4]. This phenomenon can

be explained by the high noise-to-signal ratio characteristic of EEG and also by the fact that

EEG signals measure cortical brain activity.

In this work, we propose a framework for predicting later remembered items during the

encoding task of a declarative memory paradigm. In order to increase prediction accuracy, we

estimated source activity through source localization and used it for classification. Estimated

source activity can provide the spatial location of the measured signal. Signals were divided

into theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–40 Hz) bands due to

the importance of neural oscillations changes related to successfully remembered and forgot-

ten stimuli [11, 27, 28]. We compared prediction accuracies when using surface potentials and

estimated source activity data. We hypothesized that higher accuracy can be obtained when

using estimated signals due to the use of reconstructed spatial features. Our framework could

be applied in systems that attempt to increase memory abilities connected to memory-related

diseases.

Materials and methods

Participants

Thirteen healthy participants were recruited to participate in the experiment (five women, 24–

31 years of age). All had a normal or corrected-to-normal vision and no history of neurological

disease. Participants had more than 10 years of English education; recruitment was performed

among university students. Experiments were conducted according to the principles described

in the Declaration of Helsinki. This study was reviewed and approved by the Institutional

Review Board at Korea University (KUIRB-2019–0269-01). Written informed consent was

obtained before the experiment.

Experimental design

Fig 1 illustrates the experimental paradigm, which consisted of encoding and retrieval tasks.

The experimental paradigm was implemented using Psychophysics Toolbox. All presented

words were chosen randomly from a pool of the 3,000 most commonly used words according

to Oxford University. In total, 250 words were shown during the encoding task (50% were

concrete and 50% were abstract), divided into five lists of 50 words each. A black screen was

presented between lists for 5,000 ms. A trial consisted of the presentation of the fixation cross

on the monitor for 1,000 ms followed by a stimulus (a word, specifically an English noun) for

2,000 ms. Finally, participants were asked to choose, using the keyboard, if the presented word

was abstract (e.g., happiness, anger) or concrete (e.g., paint, house) or NA (subjects can select

these options whenever they are not sure if the presented word was abstract or concrete)

within 2,000 ms after which the next trial started. Semantic judgment of words was shown

high memorability compared to other judgments or the words presented without any judg-

ment [26]. The total duration of the encoding task was 21 m.

During the retrieval task, 400 words were presented, in which 250 words presented in the

encoding task and 150 new words were included. A trial consisted of the presentation of a fixa-

tion cross for 1,000 ms followed by the presentation of the stimulus for 2,000 ms. Finally, par-

ticipants were asked to select a recognition confidence level from 1 to 4 (1: new word, 2:
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maybe new, 3: maybe old, 4: old word—for classification purposes, new word and maybe new

were chosen, it was considered that the subject perceived the presented word as new, same was

considered for old words). There was no time limit for selecting the recognition confidence;

therefore, the duration of the retrieval task varied among participants (average time: 27 m).

Encoding and retrieval tasks were separated by a distraction task. Participants were asked to

count backward from 1,000 to zero in steps of seven for 20 m. This aims to prevent the

rehearsal of previously presented words.

Data acquisition and preprocessing

Data were recorded from 62 Ag/AgCl electrodes applied to the scalp using Brain Vision/

Recorder (BrainProduct GmbH, Germany). Electrodes were placed following the international

10–20 system with a sampling rate of 1,000 Hz. Reference and ground electrodes were placed

at the FCz and FPz positions, respectively. Prior experiment, all electrode impedances were

measured and set below 10 kO using EEG gel. Participants sat in a comfortable chair, facing a

19-inch liquid crystal display monitor.

EEG signals were down-sampled to 250 Hz and band-pass filtered using a fifth-order But-

terworth filter from 0.5 to 40 Hz. These were performed to reduce computational time and

reduce the noise-to-signal ratio, respectively. Data was re-referenced to the average of all chan-

nels. For encoding epochs, data were separated into later remembered (selected 3: maybe old

or 4: old in the retrieval task), forgotten items (selected 1: new word or 2: maybe new in the

retrieval task). For decoding task, data were separated into remembered (words that appeared

during the encoding phase and were labeled as maybe old or old by the subject during the

retrieval task); forgotten items (words that appeared during the encoding phase and were

labeled as a new word or maybe new by the subject during the retrieval task); and false remem-

bered items (words that did not appear during the encoding task but were labeled as maybe

old or old by the subject during the retrieval task). Trials were epoched in relation to stimulus

onset in intervals of 1,000 ms prior stimulus (pre-stimulus) and 1,000 ms during stimulus (on-

going stimulus). All epochs were baseline corrected over the whole period. Channels were

interpolated using the spherical method and epochs were rejected when the amplitude value

exceeded a threshold of ± 200 μV, this was done to remove artifacts from the muscles and eye

movements. After trial rejection, a total of 2395 trials ranging from 40 to 100 trials per class

were kept and analyzed. Data were preprocessed using MATLAB and EEGLAB toolbox [29].

Fig 1. Experimental timeline of the declarative memory paradigm. (a) Encoding task: 250 words are presented in five lists of 50 words each. (b)

Retrieval task: 400 words (250 old words and 150 new words) are presented. Participants have to select whether the presented stimulus is an old or new

word, depending on the stimulus presented in the encoding task. These two tasks are separated by an arithmetic distraction task.

https://doi.org/10.1371/journal.pone.0274101.g001
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Feature extraction

Feature extraction was performed for surface potentials and source activity. For surface poten-

tials, we extract time-frequency features, while for source activity additional spatial features are

computed.

Surface potentials. The signal processing was performed using the multitaper method. A

Hanning window, which is a bell-shaped curve, was used as the taper, with a window length of

100 ms (overlap of 50%). Frequencies were chosen from 4 to 40 Hz in bins of 1 Hz.

SL;kxj ¼ jFTWL
k xj
ðf Þj2=Fs; f 2 ½0; Fs�Hz ð1Þ

where FTðWL
k xjÞ
ðf Þ is the Fourier transform of WL

kxj, which defined the window. Finally, power

was averaged in theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–40 Hz)

bands due to their relevance to memory processes [13]. Delta activity is not directly related to

memory processes [30]; therefore, we excluded it from the analysis. This analysis was per-

formed over pre-stimulus and on-going stimulus segments for encoding task and during the

presentation of the stimulus for the retrieval task.

Source activity. Source activity was estimated using Brainstorm software [31]. First,

EEGLAB files were imported into the Brainstorm environment. A head model was then com-

puted using OpenMEEG BEM software [32] and EEG channel information (a file with the

electrode location was shared for all participants and corrected to fit Brainstorm anatomy).

The minimum norm imaging method was used to estimate the sources. It finds the cortical

current that fits the data through the forward model, which requires the noise and source

covariance matrix. Therefore, the noise covariance matrix of the EEG signal was calculated for

the inverse estimation. The standardized low-resolution brain electromagnetic tomography

(sLORETA) [33] was used to normalize the estimated current density at each source location,

resulting in 15,002 voxels.

Time-frequency analysis of the estimated source activity was calculated using Brainstorm

software. The power was averaged for theta, alpha, beta, and gamma bands as with surface

potentials.

Classification

As mentioned before, we tried to predict which items would be successfully remembered dur-

ing the retrieval task, using signals prior to or during the presentation of the stimulus in the

encoding task. Fig 2 shows the framework used; different classifiers were trained for each sub-

ject (subject-dependent classification). We reported macro-area under the receiver operation

characteristic curve (AUC).

We trained different classifiers using the different feature extraction methods, to be specific

we used shrinkage regularized linear discriminant analysis (rLDA) and a deep learning model.

rLDA uses shrinkage to modify the covariance matrices, which can become an optimal classifi-

cation method for high dimensional features. Covariance S is replaced by S(γ) = (1- γ) S + γ
vI where γ2 [0, 1] and is the tuning parameter; and v define the average of eigenvalues trace

(S)/d of S (d: dimensionality of the feature space). The eigenvalue decomposition of S is

define as follow: S = VDVT with orthonormal V and diagonal D; then S(γ) = V((1-γ) D + γ vI)

VT [33]. Signals (channels × time, ]channels = 62) are concatenated into a one-dimension vec-

tor along time points and input to the model. Deep learning has been applied successfully to

different EEG studies [34–36]. We used a one-layer convolution neural network (CNN) and a

fully connected layer as our deep learning model. The CNN layer used a kernel of (1, 3) with

ELU as the activation function. Dropout (p = 0.25) and batch normalization were used at the
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output of the CNN layer. Adam was used to optimize all parameters, and cross-entropy was

used as the loss function. The learning rate was set to 0.005 and the batch size to 25. The CNN

model takes as input a two-dimension matrix (channels × time). Grid search was used to select

hyper-parameters.

Prediction was performed using surface potentials and estimated source activity data. To

evaluate the model, cross-validation was used. Cross-validation is widely used in EEG studies,

its advantage is that all samples are used in training and validation, as a result, the variance of

the estimated model performance is reduced [37]. Due to the data size, we used five-cross vali-

dation (80% is used as training set and 20% as validation set). Data were divided into five folds.

Each fold was used as test data, while the remaining four were used to train the model. Samples

were randomly assigned to a certain fold and the model was trained. Due to the nature of the

task, subjects tend to remember more items than the forgotten ones, this results in a class

imbalance. To address this problem, we used synthetic minority oversampling technique

(SMOTE) over the training set and maintain the original test set. SMOTE has been used before

to alleviate the class imbalance effects on the model performance [38], this method uses the

feature space of the given data to generate synthetic samples. Results over the test set were

averaged. In order the have a fair comparison between different feature selection methods, the

same samples (trials) were used to train the model in each of the cases; even when the samples

were chosen randomly, the use of “seeds” allowed us to reproduce the randomness.

Statistical analysis

In the behavioral analysis, a paired t-test was used to investigate the difference between

remembered and forgotten items associated with the selection of its nature (i.e., abstract or

concrete). Differences in reaction times of remembered, forgotten, and falsely recognized

items in the retrieval task (time that participants took to choose recognition confidence levels)

were analyzed using repeated analysis of variance (ANOVA), and paired t-test was used as

post-hoc. Reaction times during the encoding task (time that participants took for classifying a

word as abstract or concrete) for remembered and forgotten items were also analyzed.

Fig 2. Signals analysis framework. Raw EEG data are preprocessed, after which source localization is conducted. Relevant features are extracted from

surface potentials and estimated source activity, data is randomly split in five-folds. Four-folds are used as training data and the remaining one as

validation data, this is repeated for each fold. The classifier aims to predict which items are going to be remembered or forgotten during the retrieval

task in a declarative memory paradigm (F: forgotten items, R: remembered items).

https://doi.org/10.1371/journal.pone.0274101.g002
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Statistical analyses were performed in MATLAB. All significance levels were set to 0.05 with

Bonferroni correction.

To evaluate the significant difference between remembered and forgotten activity in the dif-

ferent frequency bands, statistical analyses of surface potentials and estimated source activity

were performed. To compare remembered and forgotten activity in different frequency bands,

a parametric test (paired Student’s t-test) was performed. Due to the multiple comparisons

(frequency × time), there is the possibility to observe increased rates of false positive cases;

therefore, we implemented false discovery rate correction (Benjamini–Hochberg step-up pro-

cedure). To compare classification accuracy when using different feature extraction methods,

a two-way repeated ANOVA was performed; one factor was frequency (theta, alpha, beta, and

gamma bands), and the other factor was features (surface potentials or source activity). Paired

t-test was used as a post-hoc test with Bonferroni correction. All significance levels were set to

0.05 with Bonferroni correction.

Results

Behavioral performance

Participants were able to remember on average 81.20 ± 9.00% of the items presented during

the encoding task, and falsely recognized 20.80 ± 12.00% of the new words as previously pre-

sented items (false remembered items). During the encoding task, 94.76 ± 5.31% of the

remembered items were classified either as abstract or concrete, while 82.58 ± 17.42% of the

forgotten items were classified as either abstract or concrete. There was a significant difference

between the number of items classified either as abstract or concrete for later remembered and

forgotten items (t(12) = -3.00, p = 0.012).

Reaction times in the encoding task (time that participants take to select if the word is con-

crete or abstract) were 784 ± 173 ms and 761 ± 160 ms for later remembered and forgotten

items, respectively; no significant difference was found between reaction times in the encoding

task (t(12) = 1.086, p = 0.302). Reaction times in the retrieval task (time that participants take to

select recognition confidence levels) were 483 ± 143 ms, 1223 ± 797 ms, and 736 ± 415 ms for

remember, forgotten, and false remember items, respectively. Repeated ANOVA revealed sig-

nificant differences between the reaction times (df = 2, F = 5.84, p = 0.006). Significant differ-

ences were found in reaction times for remember vs. forgotten items (t(12) = -4.758, p< 0.001)

and remember vs. false remember items (t(12) = -2.89, p = 0.014) when performing post-hoc

test (paired t-test). No significant difference was found for forgotten and false remember items

(t(12) = 2.32, p = 0.040). Fig 3 shows the reaction times in the retrieval task for all participants

and the results of the statistical analyses.

Differences for encoding task

ERP at Cz over all the subjects was calculated for encoding and decoding tasks (see S1(a) and

S1(b) Fig, amplitude: μV and time: ms). Statistical analyses revealed significant differences

between remembered and forgotten items at different time points for Cz. High GFP (global

field power) coefficients have been associated with a high signal-to-noise ratio [39]. GFP is cal-

culated per conditions for encoding and decoding task following [40] since numbers of trials

differ per condition. dGFP (difference GFP) wave is shown in S1(c) and S1(d) Fig along with

the statistical results (amplitude: μV and time: ms). High values of GFP were obtained and sta-

tistical differences were present at different time segments for both tasks.

Surface potentials. Statistical results of comparing later remembered and forgotten items

are shown in Fig 4. Frequency-time analysis and statistical comparison revealed differences

between conditions. For pre-stimulus segments there was a significant difference in the theta
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band over frontal region; in alpha and gamma band over right temporal region. For on-going

stimulus, a significant difference was found in beta band over left temporal region. A fre-

quency-time analysis revealed significant differences during -300–0 ms and 400–800 ms seg-

ments. As a result, these time windows were used for the analysis of reconstructed source

activity.

Source activity. Reconstructed signals were averaged over -300–0 during pre-stimulus

and statistical analysis was conducted. Fig 5 illustrates the statistical difference when compar-

ing later remembered and forgotten items during -300–0 ms in the encoding task (pre-stimu-

lus). For the encoding task, a decrease in the alpha band power was found for pre-stimulus

segments related to later remembered items. Additionally, results showed an increase in the

beta and gamma band power. Significant differences were found in the right parietal region

for the alpha band power, and in the left parietal region for the beta and gamma band power.

Differences in the right temporal region for the beta band power and in the left and right tem-

poral regions for the gamma band power were found to be significant. Cuneus and lingual

regions showed a significant decrease for the theta band power. Alpha band power showed a

significant decrease in the parahippocampal regions. For beta and gamma band power, there

Fig 3. Reaction time of remember, forgotten, and false remember items for all participants and their mean value.

Participants took more time to select the recognition confidence levels of forgotten words during the retrieval task.

Boxplot indicates the mean, while the error bars indicate the standard deviation (� p< 0.05 with Bonferroni

correction).

https://doi.org/10.1371/journal.pone.0274101.g003
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was a significant increase in the medial parietal and medial prefrontal regions and an addi-

tional increase of the beta band power in the posterior cingulate and anterior cingulate.

Reconstructed signals were averaged over 400–800 during on-going stimulus and statistical

analysis was performed. Results showed a decrease of the alpha band power and an increase of

the beta and gamma band power. Statistical results showed significant differences in the fron-

tal, temporal, and occipital regions for the alpha band power. Additionally, there was a signifi-

cant difference in the temporal regions for the beta and gamma band power, and in the

parietal regions for the beta band power. Subcortical activity decreased for theta band and

alpha band power; specifically, in the cuneus and lingual regions. Fig 6 depicts the statistical

results when comparing later remembered and forgotten items in the encoding task during

400–800 ms.

Differences for retrieval task

We also evaluated the changes in the decoding task for estimated source activity data; an

increase in the theta, alpha, beta, and gamma band power was found over 700–1000 ms. A sig-

nificant difference was found in the frontal, parietal, temporal, and occipital regions for the

theta band; in the temporal region for the alpha band; and in the right occipital region for the

gamma band. Additionally, significant differences of the theta band power data were identified

in the medial parietal, precuneus, parahippocampal, and lingual regions. Regarding gamma

Fig 4. ERSP (event-related spectral perturbation) and statistical results of comparing surface potentials between later remembered items and

forgotten items during encoding task for channel FT7 and Fz. Signals were separated per conditions and time-frequency analysis was performed.

Statistical analysis revealed differences between conditions (� p< 0.05 with Bonferroni correction).

https://doi.org/10.1371/journal.pone.0274101.g004
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band power, there was a difference in the lingual and medial prefrontal regions. Fig 7 shows

the difference when comparing remember and forgotten trials for the decoding task during

700–1,000 ms.

Classification performance

Table 1 shows results of pre-stimulus segments when using LDA and CNN models for differ-

ent frequency bands and feature extraction methods. While Table 2 shows results of on-going

segments. Since statistical differences were found at -300–0 ms and 400–800 ms, data points

from these windows were used during classification. CNN outperformed LDA model for all

cases. The highest value for surface potentials was obtained using the theta band power,

64.81 ± 5.23% and 63.43 ± 4.99% for pre-stimulus and on-going stimulus segments, respec-

tively. The highest value for source activity was obtained using the alpha band power for pre-

stimulus (67.15 ± 4.87%) and the gamma band power for on-going stimulus (67.15 ± 6.27%).

Table 3 shows the statistical results of the ANOVA test for the CNN model. No significant

difference was found when comparing prediction accuracies for different frequency bands.

However, a significant difference was found when comparing the prediction accuracy of sur-

face potentials and source activity for pre-stimulus and on-going stimulus (F(1) = 11.48,

p = 0.001; and F(1) = 8.78, p = 0.003). Post-hoc test results showed that there was a difference

when comparing classification accuracies of surface potentials and source activity for pre-stim-

ulus segments in all frequencies (alpha band: t(12) = 2.526, p = 0.015; beta band: t(12) = 2.386,

p = 0.034; gamma band: t(12) = 2.422, p = 0.032) except for theta band (t(12) = 1.108, p = 0.289).

Additionally, there was significant difference in the alpha, beta and gamma band for on-going

Fig 5. Significant difference between power of later remembered items vs. forgotten items during encoding task

prior to the presentation of the stimulus. The t-values in theta, alpha, beta, and gamma bands when comparing

remembered items to forgotten items during -300–0 ms prior to the presentation of the stimulus (two-tailed paired t-
test, p< 0.05 with Bonferroni correction). LL = left lateral view; RL = right lateral view; LM = left medial view;

RM = right medial view.

https://doi.org/10.1371/journal.pone.0274101.g005
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stimulus segments (t(12) = 2.81, p = 0.011; t(12) = 3.95, p = 0.002; t(12) = 2.45, p = 0.032; respec-

tively); however, there was no significant difference in theta band (t(12) = 1.042, p = 0.182).

Finally, there was no interaction effect between frequency and features for both pre and on-

going stimulus segments during the encoding task. Fig 8 depicts the receiver operating charac-

teristic curve for pre-stimulus and on-going stimulus segments.

Hierarchical linear regression (HLR) has been used to analyze EEG signals and reveal the

effects of different parameters of the model [41]. We used HLR to compare the two different

feature extraction methods and specified surface potentials and spatial features (source activ-

ity) as the independent variables. Results showed that R2-values were higher for all subjects

when including spatial features (see S1 Table). For pre-stimulus segments, average R2-values

across all participants were 0.57 and 0.66 for surface potentials and spatial features (source

activity) respectively. For on-going stimulus segments, average R2-values across all participants

were 0.61 and 0.67 for surface potentials and spatial features (source activity) respectively. Sta-

tistical results showed that the changes in R2 and F-values were significant for pre-stimulus

(t(12) = -11.45, p< 0.001; t(12) = -9.94, p< 0.001) and on-going stimulus (t(12) = -5.83,

p< 0.001; t(12) = -6.11, p< 0.001).

Fig 9 illustrates the normalized average confusion matrix for pre-stimulus and on-going

segments. The model showed higher sensitivity than specificity, in other words, the percentage

of later remembered samples classify correctly is higher than the later forgotten samples. This

trend is present for both source activity and surface potentials, however, when comparing clas-

sification accuracies per class for different features extraction methods, source activity per-

formed better.

Fig 6. Significant difference between the power of later remembered items vs. forgotten items during stimulus

presentation for encoding task. The t-values in theta, alpha, beta, and gamma bands when comparing the power in

later remembered items and forgotten items at 400–800 ms during the presentation of the stimulus (two-tailed paired

t-test, p< 0.05 with Bonferroni correction). LL = left lateral view; RL = right lateral view; LM = left medial view;

RM = right medial view.

https://doi.org/10.1371/journal.pone.0274101.g006
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Discussion

Our results show that it is possible to predict retrieval task performance in a declarative mem-

ory task using the reconstructed source activity data with higher accuracy than using surface

potentials. Changes in frequency bands have been used to identify later remembered or forgot-

ten items presented during the encoding task [2]. Therefore, we evaluated the differences in

Fig 7. Significant difference between power for later remembered items vs. forgotten items during stimulus

presentation for retrieval task. The t-values of the power over theta, alpha, beta, and gamma bands when comparing

later remembered items to forgotten items at 700–1,000 ms during the presentation of the stimulus (two-tailed paired

t-test, p< 0.05 with Bonferroni correction). LL = left lateral view; RL = right lateral view; LM = left medial view;

RM = right medial view.

https://doi.org/10.1371/journal.pone.0274101.g007

Table 1. AUC (%) for pre-stimulus segments.

Feature Model Frequency

Theta Alpha Beta Gamma

Surface Potentials LDA 54.71 ± 4.86 59.47 ± 5.46 60.30 ± 5.68 56.68 ± 4.62

CNN 64.81 ± 5.23 63.02 ± 6.77 61.88 ± 3.97 61.37 ± 5.13

Source activity LDA 54.96 ± 4.45 59.78 ± 6.38 59.00 ± 6.01 57.32 ± 6.31

CNN 66.87 ± 6.04 67.15 ± 4.87 67.04 ± 6.31 67.09 ± 5.51

https://doi.org/10.1371/journal.pone.0274101.t001

Table 2. AUC (%) for on-going stimulus segments.

Feature Model Frequency

Theta Alpha Beta Gamma

Surface Potentials LDA 55.45 ± 6.31 57.81 ± 6.63 60.57 ± 5.61 59.55 ± 4.89

CNN 63.43 ± 4.99 62.31 ± 5.51 61.34 ± 4.55 61.17 ± 6.12

Source activity LDA 54.60 ± 5.72 56.17 ± 5.68 64.93 ± 5.98 59.38 ± 4.76

CNN 66.49 ± 3.97 66.91 ± 4.21 66.85 ± 4.87 67.15 ± 6.27

https://doi.org/10.1371/journal.pone.0274101.t002
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classification performance using signals from four different frequency bands. The highest

accuracy for the pre-stimulus segment was 67.15 ± 4.87% using the alpha band and

67.15 ± 6.27% for the on-going stimulus segment using the gamma band when both used

source activity and the CNN model. There was no significant difference when compared with

the results of other frequency bands. However, a significant difference was found when com-

paring the AUC of surface potentials and source activity. Moreover, during the hierarchical

linear regression analysis, a statistical difference was found between the changes in R2 and F-

values of surface potentials and spatial features. Therefore, adding spatial features explains a

significant amount of unique variance above of the already explained by surface potentials.

Previous studies found changes in neural oscillations during the encoding task related to

later remembered items. The decrease in alpha and beta power have been related to the

retrieval of long term memory; this change in power reflects the reactivation of the sensory fea-

tures of a memory trace; decreased power over frontal, parietal, and left temporal electrode

sites was linked to object retrieval, and the level of decrease varied in relation to the retrieval

performance [30]. Hanslmayr et al. [27] reported a difference in brain oscillations between

semantic and non-semantic encoding of episodic memories. Increased theta band power was

linked to successfully remembered items during the non-semantic task, whereas decreased

alpha and beta band power was linked to the semantic task (over the left frontal and right

occipital, and left frontal and parietal regions, respectively); therefore, it was concluded that

decrease in alpha and beta band power was related to the processing of objects’ semantic fea-

tures. Salari and Rose [13] found a significant difference in theta and beta band power over the

frontal and temporal regions prior to the presentation of the stimulus; this was applied later to

Table 3. Statistical results for classification performance.

Factor Pre-stimulus On-going stimulus

df F p-value df F p-value

Frequency 3 0.63 0.599 3 0.59 0.625

Feature 1 11.48 0.001 1 13.28 <0.001

Frequency × Feature 3 0.54 0.655 3 0.48 0.694

https://doi.org/10.1371/journal.pone.0274101.t003

Fig 8. ROC AUCs (receiver operating characteristic area under curves for (a) pre-stimulus and (b) on-going stimulus segments. ROC curve was

calculated when using source activity and surface potentials, for each case we use the frequency band that produce higher results.

https://doi.org/10.1371/journal.pone.0274101.g008
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modulate the presentation of the stimulus (previous studies found a decrease in beta band

power). In line with previous research, we found significant differences in the power spectra,

especially a decrease in the alpha band power and an increase in the beta and gamma band

power in the pre-stimulus period. For the on-going stimulus period, there was a decrease in

the alpha power and an increase in the beta band power. Increases in the beta and gamma

band power have been related to attention and short and long term memory [42, 43]. Gamma

frequency synchronization in visual areas can promote synaptic changes in areas responsible

for encoding long-term memory [44].

For the retrieval task, we found changes in neural oscillations, especially in theta and

gamma bands. Many studies have reported an increase in gamma band power related to selec-

tive attention and visual perception [11]. In contrast, an increase in theta band power has been

related to reflecting neuronal dynamics that are optimal for synaptic plasticity, which facilitates

memory encoding [11]. Additionally, increased theta band power has been found to reflect

mental effort [28].

Analysis of the source localization data resulted in the increase of power over the medial

parietal areas, medial prefrontal, anterior and posterior cingulate regions, and a decrease over

lingual and precuneus was present prior to the presentation of the stimuli related to success-

fully remembered items. Greater activation over frontoparietal regions, anterior and posterior

middle frontal cortex, left frontopolar cortex, medial prefrontal cortex, and anterior cingulate

cortex during successful retrieval has been previously reported [16]. In addition, the increase

in theta and alpha power over medial temporal regions before the presentation of the stimulus

has been suggested to reflect the activation of contextual information and preparatory pro-

cesses [45]. In this regard, we found a similar pattern on the reconstructed signals using source

localization that fMRI and ECoG studies related to memory process by estimating the source

of cortical activity measured at the scalp [46]. These results show the importance of spatial fea-

tures related to memory mechanisms.

We used signals from different frequency bands and performed classification using surface

potentials and source activity. A significant difference was found in both cases; however, the

highest results were obtained when using source activity data, especially when using a CNN

network. This can be explained by the use of spatial features obtained through source localiza-

tion. As mentioned before, previous ECoG and fMRI studies reported changes in subcortical

structures [16, 45], which could provide additional information for classification. In other

words, we used source localization to reconstruct the source of the cortical response, which

provides spatial information. As a result, We achieve a 5% improvement in performance com-

pared to the obtained performance using surface potentials, which was almost the same as

Fig 9. Normalized averaged confusion matrix for surface potentials and source activity when using CNN. (a) Confusion matrix for pre-stimulus

segments and (b) on-going stimulus segments were presented. R = remembered items; F = forgotten items.

https://doi.org/10.1371/journal.pone.0274101.g009
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classification performance with ECoG signals reported by previous studies. It has also been

noticed that different frequency bands can provide different features and are related to differ-

ent mechanisms involved in memory, such as attention and semantic processing. This is sup-

ported by the obtained results. The confusion matrix revealed that high sensitivity is present

for both source activity and surface potential. Even though the specificity was higher than the

chance level and increase for source activity, it is lower than the sensitivity. This could affect

the future use of our method in memory-related applications. For example, if we were to apply

our method to increase memory efficiency a high true negative rate is necessary since this

could detect correctly the items that need be learned again. Similarly, for memory-related diag-

nosis disease, we could detect if the forgotten rate is within normal range or not.

One limitation of this study is the imbalance between remembered and forgotten trials; this

can be explained by the nature of the task (usually remembered items are greater than forgot-

ten ones). We tried to address this limitation using SMOTE. Another limitation is the type of

stimulus provided; the task difficulty could have varied because stimuli were randomly selected

from a pool of the most commonly used words. Additionally, in this study, participants were

24–31 years old with no known memory-related problems. It is intuitive to assume that

depending on the age group to be analyzed; features related to the memory process could

change, therefore we can not generalize our findings to older age groups. In future work, we

will apply our method to data from older adults and test whether classification is possible or

not and whether source localization could increase performance. We decided to further imple-

ment other classification methods in order to increase the true negative rate, as mentioned

before this has an important role for future use in memory-related applications. Furthermore,

methods for better source estimation from surface potentials need to be studied. Finding opti-

mal activity sources would directly help improve performance.

Conclusion

Our study investigated the prediction of successful item recall using reconstructed activity

through source localization during declarative memory, which can be used to enhance learn-

ing efficiency and diagnose and treat diseases that impair memory abilities [1]. Enhancement

of memory abilities has been attempted before. Previous studies used current or magnetic

stimulation or neurofeedback to modulate brain activity [47, 48]; however, the effects of such

approaches have varied from study to study, and it is hard to measure their effectiveness. Our

study proposed the possibility that depending on the brain state of when the stimulus is pre-

sented, that stimulus is more likely to be remembered or forgotten [49]. Our findings can also

help to explore the neural correlates of the memory process by proposing the use of spatial

information through source localization. Moreover, the prediction of successful item recall

was studied in working memory paradigms and a higher prediction accuracy was achieved

due to the nature of the task. Therefore, it is necessary to prove our approach’s validity in dif-

ferent memory paradigms and improve the prediction accuracy.

Supporting information

S1 Fig. ERP at Cz over all subjects for a) encoding and b) decoding task. dGFP was calcu-

lated for all channels for c) encoding and d) decoding task (amplitude: μV and time: ms). Sta-

tistical analyses revealed significant differences between remembered and forgotten items at

different time points. Additionally, the dGFP coefficients showed a high signal-to-noise ratio.

(TIF)
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S1 Table. R2 and F-values for pre-stimulus and on-going stimulus segments. Hierarchical

linear regression was computed to compared the effects of using surface potentials alone or

including spatial features trough source localization.

(TIF)
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