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Abstract: Nowadays, the impact of engineered nanoparticles (NPs) on human health and environ-
ment has aroused widespread attention. It is essential to assess and predict the biological activity,
toxicity, and physicochemical properties of NPs. Computation-based methods have been developed
to be efficient alternatives for understanding the negative effects of nanoparticles on the environment
and human health. Here, a classification-based structure-activity relationship model for nanoparticles
(nano-SAR) was developed to predict the cellular uptake of 109 functionalized magneto-fluorescent
nanoparticles to pancreatic cancer cells (PaCa2). The norm index descriptors were employed for
describing the structure characteristics of the involved nanoparticles. The Random forest algorithm
(RF), combining with the Recursive Feature Elimination (RFE) was employed to develop the nano-
SAR model. The resulted model showed satisfactory statistical performance, with the accuracy (ACC)
of the test set and the training set of 0.950 and 0.966, respectively, demonstrating that the model had
satisfactory classification effect. The model was rigorously verified and further extensively compared
with models in the literature. The proposed model could be reasonably expected to predict the
cellular uptakes of nanoparticles and provide some guidance for the design and manufacture of
safer nanomaterials.

Keywords: cellular uptake; metal oxide nanoparticles; cytotoxicity; nano-SAR; norm index descriptors

1. Introduction

In recent years, nanotechnology has been considered as one of the key enabling tech-
nologies for global economic growth. With the continuous development of nanotechnology,
new kinds of nanomaterials are springing up all over the world [1–3]. Nanomaterials
are widely used in traditional materials, catalysis [4], medical devices [5,6], electronic
equipment [7], coatings, and other industries [8–10] owing to their unique properties, such
as excellent optical, electrical, and magnetic properties. More and more attention has been
paid to the inherent disadvantages of nanomaterials and the resulting hazards that may
be exposed in the workplace among consumers and in the environment. Although recent
studies have found that some nanomaterials may have biological hazards, understanding
of the adverse effects of these products is still in its infancy.

In vitro and in vivo studies are commonly used to assess biological or toxic effects [11].
Nevertheless, experimental methods are laborious, time-consuming, and sometimes in-
volve some ethical issues. Thus, there is a strong desire to build a fast and high-throughput
nano-toxicity evaluation system or prediction model as a supplement to traditional ex-
perimental methods. Among different kinds of methods, quantitative structure–activity
relationship (QSAR) is seen as the most promising approach, which was proposed in the
early stages by Corwin Hansch in 1962 and then exploited for developing novel chemicals,
primarily for drugs [12]. QSAR is mainly based on the following hypothesis: the molecular
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structure of a compound contains information that determines its physical, chemical, and
biological properties. These physical and chemical properties further affect the biological
activity of the compounds. That is to say, an association is found between the molecular
structure and biology-related activity of the compounds. A great deal of investigations
indicate that it is very urgent and essential to extend the traditional QSAR paradigm to
nano-sized materials and evolve “nano-(Q)SAR” models to relate the properties of interest
with structure information of novel synthetic nanoparticles, which can provide a theoretical
basis for the design of functionalized nanoparticles with expected characteristics [13].

Pancreatic cancer is the fourth leading cause of cancer death with a survival rate of less
than 5% at five years. At present, many studies [14–17] have reported the inhibitory effect
of some chemical reagents to pancreatic cancer cells, such as gemcitabine, paclitaxel, and
berberine. However, the prognosis is still poor. So far, no chemotherapy has demonstrated
efficacy in terms of survival for this cancer. Nanomaterials are increasingly used in daily
life, but the safety issues they would cause cannot be ignored, especially their biological
toxicity. Due to the intermittent or frequent exposure to the human body, metal oxide
nanoparticles (MNPs) may invade the human body through various accessible paths, such
as inhalation, skin absorption, and ingestion [18]. Once invaded the human body, they may
cause systemic, cellular, or genome toxicity, and of course, it may be exposed to pancreatic
cells. Therefore, researches on PaCa2 cell are still necessary.

Currently, different nano-(Q)SAR researches have been conducted for predicting the
cellular uptake of 109 functionalized magnetic fluorescent MNPs in PaCa2 cell line. All
MNPs possess same superparamagnetic core decorated with different synthetic small
molecules [19–21]. Chau et al. [22] developed a nano-SAR model for predicting the cel-
lular uptake of 105 nanoparticles to pancreatic cancer cell lines with a single metal core.
Four modeling methods were employed to develop candidate models, namely, support
vector machine, k nearest neighbor, Logistic Regression and Naïve Bayes. The eventual
consensus models had a sensitivity of 86.7 to 98.2% and specificity of 67.3 to 76.6%. Kar
et al. [23] developed a more accurate cellular uptake model with six conceptually sim-
ple and computable descriptors through partial least squares (PLS) regression approach.
Winkler et al. [24] calculated two-dimensional Dragon descriptors, then used linear and
nonlinear methods to generate four nano-QSAR models for predicting the uptakes of
PaCa2 and human umbilical vein endothelial cell lines (HUVEC). Ojha et al. [25] predicted
the uptakes of PaCa2, HUVEC, and human macrophage (U937) cell lines by calculating
two-dimensional Dragon descriptors and SiRMS descriptors. Toropov et al. [26] estab-
lished a reliable nano-QSAR model by using the best descriptor based on SMILES, and
then the best parameters were selected using Monte Carlo partial least squares (MC-PLS),
109 datasets were divided randomly into five groups and established QSAR modeling
separately. Ronghua Qi et al. [18] developed two nano-QSAR models to predict the cellular
uptakes of 109 nanoparticles to PaCa2 and HUVEC cell lines.

In this work, the norm index descriptors were firstly used to describe the structural
properties of the MNPs involved. Then, based on the nano-SAR modeling principles of
the Organization for Economic Cooperation and Development (OECD) [21], a nano-SAR
model was developed to predict the cellular uptake endpoints of 109 MNPs with different
surface modification in the PaCa2 cell line. Finally, internal and external verification were
made to strictly verify the developed model and define its applicability domain. The
model contributes to understand nano-SAR and provide theoretical basis for the design
and synthesis of green nanomaterials with high efficiency and harmlessness.

2. Results and Discussion
2.1. Nano-SAR Model Performance

Based on the data of cellular uptakes of 109 magnetic fluorescent MNPs with surface
modification in the PaCa2 line, a nano-SAR model with toxicity endpoint as the dependent
variable is established. The performance of the model on the training and test set is assessed
with the indicators defined in Equations (1)–(4) [27]. True positive (TP) represents that a
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toxic MNP is correctly classified as positive, true negative (TN) represents that a non-toxic
MNP is correctly classified as negative, while false positive (FP) represents a non-toxic
MNP is incorrectly classified as toxic and false Negative (FN) represents a toxic MNP is
incorrectly classified as non-toxic.

SE =
TP

TP + FN
(1)

SP =
TN

TN + FP
(2)

ACC =
TN + TP

TN + TP + FP + FN
(3)

MCC =
TP× TN − FP× FN√

(TP + FN)(TP + FP)(TN + FN)(TN + FP)
(4)

Given the above calculation, the detailed statistical parameters are given in Table 1.

Table 1. Performance matrices of the full model.

Sub-Set n SE SP ACC MCC

Training set 89 0.958 0.976 0.966 0.933
Test set 20 0.909 1 0.950 0.905

Complete 109 0.949 0.980 0.972 0.927

The results of the real label and the predicted label are shown in the confusion matrix
in Figure 1.
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2.2. Model Stability Validation and Results Assessment

The cross-validating process is a statistical method to evaluate the stability of the
models. It is more stable and comprehensive than the method of dividing the training set
and test set in a single way. In this work, the result of five-fold cross-validating process
is 0.909, which demonstrates the good stability and reliability of the model, and can be
reasonably used for predicting the cytotoxicity of MNPs.

The ACC of the test set is 0.950, indicating that the classifier has good classification
effect and predictive ability, in addition, the subtle difference between the ACC of training
and test set (0.966 and 0.950) shows that the model is effective and not subject to overfitting.
Furthermore, the results show that the sensitivity and specificity values are greater than 0.9
in the entire data. Fjodorova et al. [28] recommended that the supervised model should be
high sensitivity and specificity. It should be noticed that sensitivity is a very significant
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parameter in a nano-SAR model. Actually, the low sensitivity value indicates the model
has a low ability to distinguish the toxicity of various compounds. The specificity is
another important indicator. High specificity value means the model has a high ability to
distinguish the false positive compounds [29].

The above results show that the model provides high classification accuracy after
internal and external verification, and can be reliably employed for predicting the cytotoxi-
city of MNPs. Moreover, this work indicates that it is possible to predict the cytotoxicity of
MNPs through the nano-SAR method using norm index descriptors. Once a reliable model
is established, the cytotoxicity of MNPs can be quickly predicted by input of structural
parameters of MNPs.

2.3. Applicability Domain of the Proposed Model

It should be noted that any developed nano-SAR model should have a clear application
domain (AD). As for any nano-SAR model, that only the predictions for materials are within
its AD can make it considered to be reliable. In this study, for each category, all test set
samples are within the application domain, and the model is reliable.

2.4. Comparisons with Other Models in the Literature

The proposed model for predicting cellular uptakes of MNPs in the PaCa2 cell line is
based on identical data set reported in the literature. Comparisons of the present model
with other reported models for the cellular uptake of MNPs was carried out (shown in
Table 2). The external predictability metrics could indicate the prediction performance of
proposed models, it was not hard to find that the performance of the present model outper-
formed those of the previous models proposed by Singh et al. [30]. In particular, it should
be noticed that models of Singh et al. were established using eleven descriptors, while
only five descriptors were employed in our work. Based on a statistical perspective, the
more input descriptors employed in the proposed model, the better statistical parameters
will be obtained. Nevertheless, the basic strategy of nano-SAR analysis is to find optimum
relationship models between the molecular structures and desired properties with selected
descriptors as less as possible. The nano-SAR models with fewer employed descriptors can
be considered to be more robust and simpler to use.

Table 2. Comparison of statistical parameters between present model and past models.

Works Method Sub-Set SE SP ACC MCC

Singh et al.
DTB

Training set 1 0.974 0.988 0.980
Test set 0.882 1 0.926 0.860

DTF
Training set 1 1 1 1

Test set 0.875 0.909 0.889 0.780

This work RF
Training set 0.958 0.976 0.966 0.933

Test set 0.909 1 0.950 0.905

3. Materials and Methods
3.1. Data Set

The dataset of the cellular uptake of 109 nanoparticles was taken from the published
article [19] and presented in Table S1. All nanoparticles had the same metal core with
different surface-modifying organic molecules. Nanoparticles were made magnetofluores-
cent with the addition of fluorescein isothiocyanate (FITC) molecules on their surfaces to
enable measurement of cellular uptake. Compared to other cell lines, it was found that the
cellular uptake in PaCa2 had more obvious diversity and was highly dependent on surface
modifications. Thus in our work, the uptakes data of MNPs in PaCa2 were employed for
the model development. Cellular uptake had the expression to be the logarithm of MNPs
concentration (pM) in each cell, ranging from 2.23 to 4.44.

For binary classification, the standard of Chau and Yap was referred [22]. Due to this
standard, the MNPs achieving cellular uptakes of over 5000 NPs per cell were regarded as
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better cellular uptakes (positive class), while MNPs with cellular uptakes of less than 5000
particles per cell were regarded as poor cell uptakes (negative class). Therefore, 59 MNPs
were in positive class and the end-point values were set at 1, and the rest 50 MNPs were in
negative class and the end-point values were set at 0.

3.2. Dataset Splitting

Dividing the dataset is an indispensable step for the development of nano-SAR study.
Before nano-SAR modeling, all the whole 109 nanoparticles in the data set were randomly
divided into a training set with 89 data and a test set with 20 data. The training set is
applied to develop the nano-SAR model, whereas the test set is employed for evaluating
the performance.

3.3. Molecular Descriptors Calculation

Here, we adopted one novel type of norm index descriptors reported by Yali Wang
et al. [31] to predict the cellular uptakes of MNPs. The detailed calculating procedures
are as follows: Firstly, the 3D structure of each MNP was achieved with Chemdraw
(version 14), with the optimization by complying with the MM2 module (the program of
class 1 Allinger molecular mechanics). Secondly, for further optimization, the GAUSSIAN
(version GAUSSIANVIEW 6.0.16) was employed to carry out Density Functional Theory
(DFT) M06-2X functional calculation on the basis of 6-311+G (d, p). Then, a range of
distance matrices consisting of step matrix DM1 and Euclidean distance matrix DM2 were
retrieved from the optimized structures. The specific calculating procedure is as follows:

DM1 =
[
aij
]
(a = n the path between atom ij is n) (5)

DM2 =
[
bij
]

bij =

{
rij
0

i f i 6= j
i f i = j

(6)

rij denotes the Euclidean spatial distance of atom i and j. Moreover, for introducing the con-
tribution of single atom and enhancing the performance of the approach, here, a property
matrix PM integrated with several atomic properties was proposed and defined as:

PM = [SN EN Ei tanh(ac)] (7)

where, SN, EN, Ei and ac are electron shell number, electro-negativity, ionization energy,
and atom charge, separately.

Next, integrating the matrices DM and the proposed property matrix PM, three extended
matrices were made, and the combinational details are as follows in Equations (4)–(6):

EM1,m,n = [DMm PM(:, n)] (8)

EM2,m,n =
[

PM(:, n)× PM(:, n)T + DMm

]
(9)

EM3,m,n =
[(

PM(:, n)× PM(:, n)T
)
× DMm

]
(10)

With these matrices, we employed the norm indexes consisting of norm (EM, 1), norm
(EM, 2) and norm (EM, 3). Herein, norm (EM, 1), norm (EM, 2) and norm (EM, 3) refer to the
largest column sum, the largest singular value, and the Frobenius norm of the matrix EM,
separately. Therefore, three norm indexes have the definition as Equations (7)–(9):

norm(EM, 1) = max
j

[
p

∑
i=1

∣∣EMij
∣∣] j = 1, . . . , q (11)

norm(EM, 2) =
√

max(λ1(EMH × EM)) (12)
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norm(EM, 3) =

√√√√( q

∑
j=1

p

∑
i=1

EM2
ij

)
(13)

where p and q are the number of rows and columns of matrix EM, respectively. The λi
refers the eigenvalue of the matrix. The EMH refers the Hermite matrix of the matrix EM.

3.4. Descriptor Selection and Modeling

High-dimensional data will not only increase the complexity of calculation, but also
lower the efficiency of the predictive models for classification [32]. In order to establish an
effective and reliable model, it is, therefore, essential to select the most relevant features.
In this study, we decreased the dimension of feature space using the Random forest
algorithm (RF), combining it with the Recursive Feature Elimination (RFE) [33], which
could eliminate data redundancy and generate more compact feature subsets. Figure 2
illustrates the process of the RF-RFE approach. Firstly, we used the RF algorithm to train
our model by complying with the training data, and the importance of each feature was
obtained based on the relevant classification contribution. Then, the features were sorted
based on their importance from high to low. A ranking of features was obtained here.
Finally, we eliminated the least important feature, and then retrained the RF model with the
updated features, and obtained the classification performance with the current feature set.
This is an iterative process until the feature set is empty. As a result, a list of performance
measurement values corresponding to each subset was generated. All these steps above
were carried out by PyCharm software (PyCharm Community Edition 2019.3.4).
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3.5. Model Validation

Model validating process can be absolutely necessary for ensuring reliability of the
developed nano-SAR model. According to the OECD regulations [21], only validated
models can be considered to be reliable. Here, we adopted all kinds of validating methods
to validate the performance of the developed nano-SAR model for its fitness, robustness,
and predictability.
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Firstly, for binary classification, the most commonly used statistical parameters such
as Sensitivity (SE), Specificity (SP), Accuracy (ACC), and Matthews correlation coefficient
(MCC), were used to evaluate the fitness of the nano-SAR model [34].

Secondly, the robustness of the model was represented by the k-fold cross-validating
process (k-CV), k usually takes five or ten, which is the most common method in the
internal validating process [35,36]. The advantage of this method is that it can perform
reliable and fair testing on the dataset [37]. In this way, not only the robustness but also the
internal predictability of the model can be verified.

In addition, the nano-SAR model is often validated in two steps, that is, the internal
validating process and the external validating process. The external validating process
is fairly significant and widely used method to evaluate both the external predictability
and the generalizability of the nano-SAR model for novel compounds. Here, the external
validating process was executed by splitting the available data set into a training set and an
external test set. The training set is used for selecting descriptors and developing models,
while the test set is used to achieve external validation.

3.6. Applicability Domain (AD)

According to the OECD standard 3rd, it is necessary to determine the application
domain of the model when an acceptable (Q)SAR model is proposed. AD describes the
physicochemical space upon which the developed model is trained, and thus can be applied
to make predictions. Merely the structures of the new compounds are “similar” to those in
the training set can obtain an effective prediction result [38]. That is, for each category (toxic
and non-toxic) in this study, if the leverage value of the test set sample is within the range
of the training set, the prediction is considered to be valid. Otherwise, it is considered to be
beyond the application domain of the model, the prediction result is invalid. The leverage
value hi is defined as: hi = xT

i
(
XTX

)−1xi, where xi denotes a row vector of descriptors for
a particular ith MNP and X denotes the m × n matrix of descriptors in all samples.

4. Conclusions

In this work, a new nano-SAR model based on norm index descriptors was developed
to predict the cytotoxicity of 109 functional magnetic fluorescence MNPs to the PaCa2 cell
line. The results indicate that the developed model could provide satisfactory predictions.
Based on several internal and external validating strategies, the robustness and predictivity
of the model were rigorously validated. The main findings of this study include:

• The employed norm index descriptors combining the atomic distance matrices with
the property matrix could accurately and effectively characterize the structural features
of MNPs and lead to a nano-SAR model with satisfactory model performance.

• The Random forest algorithm (RF) combined with the Recursive Feature Elimination
(RFE) method could be successfully employed to explore and describe the internal
relationships between the nanostructure and cytotoxicity of MNPs.

• Since a considerable number of MNPs were involved in the development of the
model, and a rigorous model validating process and extensive model comparisons
were performed, the proposed model in this study could be reasonably considered
as reliable in predicting the cytotoxicity of novel MNPs or other MNPs for which
experimental data are unknown.

Supplementary Materials: The following are available online, Table S1: List of chemicals conjugated
to nanoparticles and their corresponding cellular uptake.
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