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Spinocerebellar ataxia 19/22 (SCA19/22) is a rare neurodegenerative disorder caused

by mutations of the KCND3 gene, which encodes the Kv4. 3 protein. Currently, only 22

KCND3 single-nucleotide mutation sites of SCA19/22 have been reported worldwide,

and detailed pathogenesis remains unclear. In this study, Sanger sequencing was

used to screen 115 probands of cerebellar ataxia families in 67 patients with sporadic

cerebellar ataxia and 200 healthy people to identify KCND3 mutations. Mutant gene

products showed pathogenicity damage, and the polarity was changed. Next, we

established induced pluripotent stem cells (iPSCs) derived from SCA19/22 patients.

Using a transcriptome sequencing technique, we found that protein processing in the

endoplasmic reticulum was significantly enriched in SCA19/22-iPS-derived neurons and

was closely related to endoplasmic reticulum stress (ERS) and apoptosis. In addition,

Western blotting of the SCA19/22-iPS-derived neurons showed a reduction in Kv4.3;

but, activation of transcription factor 4 (ATF4) and C/EBP homologous protein was

increased. Therefore, the c.1130 C>T (p.T377M) mutation of the KCND3 gene may

mediate misfold and aggregation of Kv4.3, which activates the ERS and further induces

neuron apoptosis involved in SCA19/22.

Keywords: KCND3 mutation, SCA19/22, iPS, neuron, transcriptome (RNA-seq), endoplasmic reticulum stress,

PERK-ATF4-CHOP pathway

INTRODUCTION

Spinocerebellar ataxia (SCA) is a group of hereditary neurodegenerative disorders characterized
by progressive cerebellar ataxia and variable pyramidal, extrapyramidal, cerebral, or spinal cord
symptoms in all ages (Durr, 2010), including in people with Parkinson’s syndrome and epileptic
symptoms. SCA has been divided into more than 40 subtypes (Soong and Morrison, 2018), and
the global incidence rate is about 0–5/100,000. The specific mechanism of SCA is not yet clear. At
present, the clinical treatment is mainly symptomatic support, and there is no effective treatment
plan to prevent or slow the progress of SCA.
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Among the ion channels, potassium channels have the most
subtypes and the most complex functions and are the focus
of much clinical and scientific research. For example, research
has been conducted on voltage-gated potassium channels, such
as Kv1, Kv2, Kv3, and Kv4 (Heijman et al., 2021; Ikeno et al.,
2021; Kleis et al., 2022). The Kv family of potassium channels
are glycosylated polypeptide complexes composed of four α-
subunits and four β-auxiliaries. The α-subunit is its central
functional unit; each α-subunit contains one voltage receptor,
and four α-subunits are combined to form a central pore.
Potassium channels are widely distributed in the body and are
related to various neurodegenerative diseases (Priest et al., 2021;
Sancho and Kyle, 2021). Kv4.3 is a potassium channel protein
that is encoded by the KCND3 gene, which expresses in the
deep nucleus, granulosa cells, and Purkinje cells, as well as in
various intermediate neurons in the cerebellum, cerebral cortex,
hippocampus, and pons (Isbrandt et al., 2000; Ohya et al., 2001;
Kollo et al., 2006). Studies have reported that potassium channels
play a role in the postnatal migration of cerebellar neurons (Hsu
et al., 2003). Kv4.3 is activated and inactivated rapidly after
membrane depolarization, promoting the sub-threshold A-type
potassium current that controls the repolarization and frequency
of action potential, thus preventing the excitability of neurons
(Serôdio et al., 1996; Niwa and Nerbonne, 2010). (See Figure 1
for a schematic diagram of the molecular structure of Kv4.3.)

It has been proved that SCA type 19/22 (SCA19/22) is
associated with mutations in the KCND3 gene located in

FIGURE 1 | A schematic diagram of the molecular structure of Kv4.3. A Kv4.3 subunit containing six transmembrane segments (S1–S6). The arrows indicate that 22

variants have been reported worldwide.

1p21-q21 (OMIM:607346) (Lee et al., 2012). Moreover, the
variants of KCND3 are related to sudden unexpected death
syndrome (SUDS) and tardive Brugada syndrome-9 (BRGDA9)
(Giudicessi et al., 2012; Duarri et al., 2015). So far, 22 single-
nucleotide mutation sites of SCA19/22 have been reported
worldwide. The clinical phenotypes of SCA19/22 are complex
and may be related to different mutation sites.

Some research has reported that pathogenic mutations
promoted the misfolding and aggregation of disease-causing
proteins in SCA5 and SCA14 (Armbrust et al., 2014; Takahashi
et al., 2015; Avery et al., 2017), which further activated the
endoplasmic reticulum stress (ERS) pathway and eventually led
to neuronal dysfunction. The endoplasmic reticulum recognizes
correctly folded proteins and transports them to the Golgi
apparatus. ERS is the response of cells to unfolded protein
gathered in the endoplasmic reticulum and calcium ion
disorder, which further activates signal pathways such as UPR,
endoplasmic reticulum overload response, and neuron apoptosis
(Oakes and Papa, 2015). ERS has been associated with various
chronic neurodegenerative diseases and the accumulation of
misfolded proteins accompanied by ERS-induced neuronal
dysfunction (Sprenkle et al., 2017).

Nevertheless, the exact molecular pathophysiology of
SCA19/22 is still unclear due to the scarcity of clinical samples
and the relatively less research in this area. Therefore, we
performed a screening targeting KCND3 in a cohort of
undiagnosed cerebellar ataxia patients. Next, we explored the
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detailed pathogenesis of SCA19/22 with KCND3 loci mutation
by inducing pluripotent stem cells (iPSCs) derived from patients,
which may serve as drug targets for developing potential
SCA19/22 therapeutics.

MATERIALS AND METHODS

Subjects
All of the participants gave their written informed consent, and
the ethics committee of the First AffiliatedHospital of Zhengzhou
University approved this study.

We performed a screening targeting KCND3 in a cohort of
undiagnosed cerebellar ataxia patients, including the families of
115 probands and 67 sporadic cerebellar ataxia patients; all of the
participants were outpatients in the Department of Neurology
at the First Affiliated Hospital of Zhengzhou University. SCA 1,
2, 3, 6, 7, 12, and 17 and dentatorubral–pallidoluysian atrophy
(DRPLA), which are common in China, were excluded in
advance. Two hundred healthy Chinese volunteers were analyzed
as sex- and age-matched controls. The clinical evaluations of
all the participants are shown in Table 1. Peripheral blood
samples were collected from all of the participants. Genomic
DNA was extracted from peripheral blood with a medium
quantity whole blood genomic DNA isolation kit (BioTeke
Corporation, Cat. #DP2102, China). Sanger sequencing samples
were sent to SUNYA Co., Ltd. (http://www.zjsyswjs.com/). All of
the patients underwent a thorough neurological examination by
two professional neurology specialists. The following scales were
used during the clinical evaluation: the Assessment and Rating
of Ataxia (SARA), the International Cooperative Ataxia Rating
Scale (ICARS), the MDS-Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS), and the Mini-Mental State Examination
(MMSE). Magnetic resonance imaging (MRI) was used to
observe the cerebellum structure.

Pathogenicity Assessment and Protein
Model Prediction
Sorting intolerant from tolerant (SIFT) (Kumar et al., 2009)
and PolyPhen-2 (Adzhubei et al., 2010) were used to assess
the pathogenicity of mutations. The protein sequence alignment
and the protein models of conservation analysis were performed
using Molecular Evolutionary Genetics Analysis software and
the ConSurf Server (https://consurf.tau.ac.il). We predicted the
protein structure models using the AlphaFold Protein Structure
Database (https://alphafold.ebi.ac.uk/). The protein model was
based on the prediction, and the figures were prepared with
PyMOL 2.5.2.

Cell Culture and Neuron Differentiation
After local anesthesia, 5-mm diameter biopsy specimens were
obtained from 10 cm above the lateral malleolus of the study
participants. The skin tissues were cultured at 37◦C in a 5% CO2

atmosphere with Dulbecco’s modified Eagle medium (DMEM;
GIBCO, Cat. #C11995500BT, USA) containing 10% fetal bovine
serum (GIBCO, Cat. #10099141C, USA) and 1% penicillin and
streptomycin (Solarbio, Cat. #P7630, China); the culture medium
was changed every 3 days. Fibroblasts were obtained after the

TABLE 1 | The clinical evaluations of all the participants.

Category Patients Healthy controls

Gender (Female/male) 81/101 92/108

Age (year) 45.27 ± 11.69 45.27 ± 11.69

Age of onset (year) 35.18 ± 10.75

Disease duration (year) 8.39 ± 6.84

SARA scores 18.16 ± 9.51

ICARS 32.49 ± 13.02

skin tissues had been cultured for 15 days; the fibroblasts were
cultured using the same method as was used for the skin
tissues. Then, we induced the fibroblasts into iPSCs with a
CytoTuneTM-iPS 2.0 Sendai Reprogramming Kit (ThermoFisher,
Cat. #A16517, USA). Next, neural progenitor cells (NPCs) were
induced from the iPSCs with a STEMdiffTM SMADi Neural
Induction Kit (STEM CELL, Cat. #08581, Canada). Finally, we
obtained neurons from the NPCs with a BrainPhysTM hPSC
Neuron Kit (STEM CELL, Cat. #05795, Canada) following the
instructions provided in the product manual. The neurons were
cultured at 37◦Cwith a 5% CO2 atmosphere using a BrainPhysTM

hPSC Neuron Kit (STEM CELL, Catalog #08581, Canada).

Immunofluorescence
The iPSCs, NPCs, and neurons were cultured on coverslips,
washed with PBS three times for 5min each time, and then
fixed with 4% paraformaldehyde (Service, Cat. #G1101, China)
for 30min. They were then washed with PBS three times for
5min each time with 0.1% Triton X-100 (Solarbio, Cat. #T8200,
China), washed again with permeabilized cells for 15min,
PBS-washed again in 5% bovine serum albumin (Solarbio,
Cat. #A8010, China), and finally blocked for 30min at room
temperature. Primary antibodies were appropriately incubated
overnight at 4◦C. The primary antibodies included OCT4 (1:200;
Cell Signaling Technology), Nanog (1:1,000; Cell Signaling
Technology), TRA-1-60 (1:1,000; Cell Signaling Technology),
NESTIN1 (1:1,000; Cell Signaling Technology), PAX6 (1:200; Cell
Signaling Technology), GFAP (1:200, Proteintech), MAP2 (1:200,
Proteintech), Calnexin (1:200, Sigma-Aldrich), and Kv4.3 (1:500,
Omnimabs). Immunoreactivities were visualized with goat anti-
mouse antibodies conjugated to Alexa Fluor 594 (1:200; Abcam)
and goat anti-rabbit antibodies conjugated to Alexa Fluor 488
(1:200; Abcam). A Nikon laser scanning confocal microscope
(ECLIPSE Ni-U) was used to acquire fluorescence images.

Differential Gene Expression and Pathway
Analysis
We used OmicShare tools to analyze the transcriptome
sequencing result and obtain differentially expressed genes
(DEGs). The gene screening criteria for each sample were as
follows: 1) a |log2 (FC)| >1 and 2) adjusted P < 0.05. The
microarray data are provided in Supplementary Material 1. The
heatmap for the top 100 DEGs was created using R 4.11. We
drew the volcano map and the heatmap of the DEGs using
the OmicShare tools. Gene Ontology (GO) annotation and
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the Kyoto Encyclopedia of Genes and Genomes (KEGG) were
used to conduct pathway enrichment analyses of the DEGs
by annotation, visualization, and integrated discovery (DAVID)
(selected with an enrichment significance evaluated at p < 0.05)
(https://david.ncifcrf.gov/tools.jsp), which revealed the biological
process (BP), cellular component (CC), molecular function (MF),
and pathways.

Western Blotting
Neurons were lysed at 30 days with radioimmunoprecipitation
assay (RIPA) lysis (Solarbio, Cat. #R0010, China), PMSF
(Solarbio, Cat. # P0100, China), and phosphatase inhibitor
(Solarbio, China) in proportions of 100:1:1, respectively. A
BCA Protein Assay Kit (KeyGEN, Cat. #KGP902, China)
was used for protein quantification. The proteins were used
with 4–20% sodium dodecyl sulfate–polyacrylamide gel for
electrophoresis and were transferred into the PVDF membrane
(Merck Millipore, Cat. #ISEQ00010, Germany). They were then
blocked with 5% nonfat milk for 90min and incubated overnight
with the primary antibody at 4◦C. The following day, they were
incubated with the secondary antibody. After that, an Omni-
ECLTM Enhanced Pico Light Chemiluminescence Kit (EpiZyme,
Cat. #SQ101, China) was added to capture the protein with a
ChemiDocTM MP Image System (Bio-RAD, Universal Hood III).
The information about the antibodies is as follows: Kv4.3 (1:200;

Affinity Biosciences); activating transcription factor 4 (ATF4)
(1:200; Cell Signaling Technology); and C/EBP homologous
protein (Bushart et al., 2018) (1:200, Proteintech). Goat anti-
mouse IgG (H+L) -HRP (1:10,000; Bioworld) and goat anti-
rabbit IgG (H+L) HRP (1:10,000; Bioworld) were used for
Western blotting.

Extraction of Neuronal MRNA for
Transcriptome Sequencing and RT-QPCR
The RNA was extracted with TRIzol (ThermoFisher, Cat.
#15596026, USA.). The mRNA was sent to Biomarker
Technologies Corporation (http://www.biomarker.com.cn/)
for full-length transcriptome sequencing. We obtained the
mRNA with a FastPure Cell/Tissue Total RNA Isolation Kit
V2 (Vazyme, RC112-01, China). The cDNA was prepared with
HiScript III RT SuperMix for qPCR (Vazyme, R323-01, China).
Taq Pro Universal SYBR qPCR Master Mix (Vazyme, Q712-02,
China) on a QuantStudio 5 Real-Time PCR Instrument (Applied
Biosystems) was used for quantification. The 2−11Ct method
was used to determine the relative expression of each gene, with
GAPDH as a reference. The primers used to amplify the target
genes by RT-qPCR are as follows: KCND3F (AAGAACAA
GCGGCAGGATGA) and R (GAGGCACAGCTCTTCAGTGT),
CHOP F (TCTGGCTTGGCTGACTGAGGAG) and R (TCTG

FIGURE 2 | Clinical characterization of KCND3 mutations. (A) Pedigree chart: there are four patients in this family. The asterisks indicate that the members have been

sequenced. The arrows denote probands. The filled symbols represent symptomatic members. The open symbols indicate unaffected individuals. The circles indicate

female participants. The squares indicate male participants. The diagonal lines refer to the deceased. WT/WT refers to wild-type, while MT/WT specifies heterozygous

mutation. (B) Sequencing chromatograms. Sanger sequencing verified the c.1130 C>T (p.T377M) mutation of the KCND3 and showed pedigree co-separation in this

family. This mutation of KCND3 was not found in the normal family members. (C) No cerebellar atrophy and white matter abnormalities were found in III-5’s brain MRI.
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ACTGGAATCTGGAGAGTGAGG), ATF4 F (CCCAGCAGA
CTTCACATGT) and R (CCTCCCATTTCCCTCGTTTT), and
GAPDH F (GTGGACCTGACCTGCCGTCT) and R(GGAG
GAGTGGGTGTCGCTGT).

RESULTS

Clinical Investigation of Patients With
Disease-Associated KCND3 Mutations
To investigate the patients with KCND3mutation, we performed
a screening targeting KCND3 in a cohort of undiagnosed
cerebellar ataxia patients, including the families of 115 probands
and 67 sporadic cerebellar ataxia patients. No SCA 1, 2, 3,
6, 7, 12, and 17 or DRPLA-related mutations were detected.
We identified a mutation of KCND3-NM_004890, c.1130 C>T
(p.T377M) in one proband among all the participants. Sanger
sequencing verified the screening results and showed pedigree
co-separation in this family (Figures 2A,B). This mutation of
KCND3 was not found in the normal family members or in
the 200 healthy controls. The proband’s parents (III-4) were not
closely related, and the mother was normal during pregnancy,
delivery, and the perinatal period. The proband (III-4) presented
with a slowly progressive head tremor since the age of 14 years.
At the age of 23 years, he was treated for paroxysmal walking

instability, head tremor, lead-pipe rigidity of the extremities
without cerebellar atrophy, and white matter abnormalities in
his MRI (Figure 2C). His sister (III-3) had been experiencing
intermittent head tremors since the age of 22 years. His father
had started experiencing head tremors at the age of 54 years,
but the symptoms had abated after 4 years. His aunt (II-1) had
experienced similar symptoms as the proband starting at the
age of 52 years, and the head tremor symptom had improved
after 10 years. Other members of this family had no neurological
symptoms. The scale results showed that the proband scored
15/40 points on the SARA, and 10 points on the ICARS. His
sister scored 13/40 points on the SARA, while his father scored
12/40 points, and his aunt scored 10 points. All of the participants
scored 30/30 points on the MMSE, and no degradation of
intellectual ability was found.

Pathogenicity Assessment of KCND3
Variants and Structural Change of Kv4.3
We used SIFT and PolyPhen-2 to confirm the potential
pathogenicity of the KCND3 variants, and the prediction
results showed that the variants of the c.1130 C>T (p.T377M)
mutation of KCND3 were damaging (Table 2). The protein
sequence alignment of multiple species suggests that the variant
site of the c.1130 C>T (p.T377M) mutation of KCND3 was

TABLE 2 | The prediction of pathogenicity at different mutation sites of KCND3.

Transcript ID Variant sequence Functional prediction

Mutation position Amino acid SIFT Polyphen2

NM_004980.4 c.1034 G>T p.G345V Damage(0.045) Benign(0.447)

c.1013 T>C p.V338E Damage(0.000) probably damaging(0.999)

c.1130 C>T p.T377M Damage(0.000) probably damaging(1)

c.1150 G>A p.G384S Damage(0.004) probably damaging(0.995)

c.1121 T>C p.V374A Damage(0.002) probably damaging(0.999)

c.1040 C>G p.S347W Damage(0.004) possibly damaging(0.952)

c.1075 T>G p.W359G Damage(0.000) probably damaging(1)

c.950 G>A p.C317V Damage(0.000) probably damaging(1)

c.1123 C>T p.P375S Damage(0.002) probably damaging(1)

c.641 A>G p.K214R Tolerance(0.326) Benign (0)

c.1348 C>T p.L450F Tolerance(0.177) Benign (0.045)

c.1897 C>T

c.950 G>A

p.P633S

p.C317T

Tolerance(0.214)

Damage(0.002)

Benign (0.002)

possibly damaging (0.912)

c.1094 T>C

c.1291C>T

p.M365T

p.R431C

Damage(0.028)

Damage(0.000)

possibly damaging(0.944)

probably damaging (1.000)

c.1174 G>A p.V392I Tolerance(0.070) probably damaging(0.999)

c.1034 G>T p.S301P Damage(0.003) probably damaging(0.999)

c.1054 A>C p.T352P Damage(0.002) probably damaging(0.997)

c.1119 G>A p.M373I Tolerance(0.165) Benign(0.333)

c.1169 G>A p.S390N Damage(0.003) probably damaging(0.998)

c.679-681 del TTC p.F227del NA NA

c.877-885 dup

CGCGTCTTC

p.A293del NA NA

NM_172198.3 c.1040 C>G p.S347W Damage(0.004) possibly damaging(0.952)

c.1075 T>G p.W359G Damage(0.000) probably damaging(1)
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FIGURE 3 | Conservation analysis and protein model prediction: (A) The protein sequence alignment is shown on the left. (B) The protein model showed that it was

highly conservative. Highly conservative areas are shown in red color; the higher the score, the darker the color. (C) The protein structure model: A Kv4.3 subunit

containing six transmembrane segments (S1–S6). The transmembrane segments are colored in green (S1), blue (S2), red (S3), yellow (S4), orange (S5), and purple

(S6). (D) The AlphaFold Protein Structure Database’s Kv4.3 structure models indicate that replacing polar threonine with nonpolar methionine causes an enlargement

in the mean volume at residue 377 compared with the wild model.

consistent (Figure 3A), and the conservatism analysis showed
that the mutant amino acid of p.T377M was highly conservative
(Figure 3B). The AlphaFold Protein Structure Database’s Kv4.3
structure models indicate that replacing polar threonine with
nonpolar methionine causes an enlargement in the mean volume
at residue 377 compared with the wild model (Figures 3C,D).

Cell Identification and Enrichment Analysis
of Neuron Transcriptome Sequencing
To further understand the pathogenesis of this mutation, we
established a human SCA19/22 neuron disease model in which
the in vitro neuron differentiation of iPSCs derived from
fibroblasts from the proband and his father. Two healthy neuron
lines were used as matched controls. The SCA19/22 patients

(n = 2) and the healthy participants (n = 2) were divided
into two groups. First, we obtained iPSCs from the fibroblasts
(Figure 4A; Liu et al., 2021). Second, NPCs were induced from
the iPSCs (Figure 4B). Finally, the NPCs were differentiated
into neurons (Figure 4C). All the tested iPSC lines expressed
pluripotency-associated markers, such as OCT4, Nanog, and
TRA-1-60 (Figure 4A), while the NSC lines expressed two
markers, namely, NESTIN1 and PAX6 (Figure 4B), and four
neuron lines expressed GFAP and MAP2 (Figure 4C), which
suggested that the skin tissues were successfully induced into
neurons. Colocalization with the endoplasmic reticulum marker
calnexin (in green) revealed that mutant Kv4.3 protein (in
red) was retained in the NPCs, as was shown by the merged
picture (in yellow). The results of fluorescence intensity analysis
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FIGURE 4 | Characterization of representative SCA19/22-iPSCs and control iPSCs. Immunostaining shows (A) pluripotency-associated markers in representative

iPSC colonies; (B) NPC-expressed markers such as NESTIN1 and SOX2; (C) neuron-expressed markers such as GFAP and MAP2. Scale bar: 100µm for panels.

iPSCs: induced pluripotent stem cells; NPC: neural progenitor cell.

showed that more Kv4.3 was trapped in the NPCs in the disease
group (Supplementary Figure 1). Then, the mRNA of neurons
was sent to Biomarker Technologies Corporation for full-length
transcriptome sequencing. Unknown genes in the RNA-sequence
data were removed in advance. The RNA-sequence data of
the two groups were analyzed using the DESeq2 method to
obtain 1,958 DEGs (|Log2FC|>1, p < 0.05), including 929
downregulated and 1,029 upregulated genes. KCND3 was not
significantly changed. This result is shown in the heatmap

and volcano map of the DEGs created using the OmicShare
tools (Figures 5A,B). The DAVID 6.8 online tool was used to
perform functional and pathway enrichment analyses with all
DEGs. The GO and KEGG items, including BP, CC, MF, and
KEGG pathways, were significantly enriched (Figures 5C,D).
The enriched KEGG category contained three pathways, namely,
focal adhesion, protein processing in the endoplasmic reticulum,
and axon guidance (Figure 5D). These pathways were closely
related to ERS, apoptosis, and neuronal growth.
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FIGURE 5 | A visualization of the transcriptome data analysis. The volcano map (A) and heatmap (B) of the gene expression. The red gene is upregulated and the

green gene is downregulated. |log2 (FC)| >1 is considered to be significant. Significant enrichment of GO (BP, CC, and MF) (C); the KEGG pathway showed protein

processing in the endoplasmic reticulum, and focal adhesion was significantly enriched (D).

The Changes in Kv4.3, ATF4, and CHOP in
Neurons
We selected ATF4 and CHOP to verify the function of ERS in
the pathogenesis of SCA19/22. Western blotting showed that the
c.1130 C>T (p.T377M) mutation of KCND3 led to a decrease
in Kv4.3 protein compared with the healthy controls (p < 0.05),
while there was a significant increase in ATF4 and CHOP (p <

0.05; Figures 6B,C). The original exposure picture is provided
in Supplementary Material 3. RT-qPCR showed that the mRNA
level of mutated KCND3 was not significantly different from that
of the healthy controls. However, the mRNA levels of ATF4 and
CHOP were significantly increased (p < 0.05; Figure 6D).

DISCUSSION

Previous case reports of KCND3 variations included 76 patients,
including 16 early-onset patients and 60 late-onset patients
(Pollini et al., 2020; Paucar et al., 2021; Zanni et al., 2021; Ha
et al., 2022). The clinical data of 76 KCND3 mutation carriers
are shown in Supplementary Material 4. The percentage of

symptoms in the early and late cohorts are shown in Figure 7.
The progress of late-onset SCA19/22 is slow, and during the
follow-up of some patients, the SARA score increased by an
average of 0–2 points per year. However, there is a significant
difference in the severity and progression rate of the disease
in early-onset SCA19/22 (Smets et al., 2015; Huin et al., 2017).
Among these patients, cerebellar atrophy (35/35) was the primary
manifestation of brain MRI in late-onset patients, and the brain
MRI of the early-onset patients was found normal (5/6).

Purkinje neuron loss occurred in most SCA subtypes (Chen
et al., 2012; Seidel et al., 2012; Adachi et al., 2015; Koeppen,
2018). The main mechanisms of Purkinje neuron loss include
proteotoxicity (Alves et al., 2014; Ashkenazi et al., 2017), RNA
toxicity (Ishiguro et al., 2017; Zhang and Ashizawa, 2017), and
channel dysfunction (Coutelier et al., 2017; Dell’Orco et al.,
2017). Proteotoxicity is mainly manifested in the formation
and toxicity of abnormal protein aggregates in abnormal cells
(Ashkenazi et al., 2017), or the structure of the mutant protein
changes, which reduces the synaptic stability of Purkinje neurons
(Avery et al., 2017). Channel dysfunction is characterized by
the dysfunction of the electrical activity of Purkinje neurons
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FIGURE 6 | (A) The mutant Kv4.3 instability increased and remained in the endoplasmic reticulum, which may activate the endoplasmic reticulum-associated

degradation (ERAD) pathway and cause ERS. Increased expression of ATF4 and CHOP can eventually lead to neuronal death. (B) Total proteins derived from neurons

were subject to immunoblotting analyses with the indicated antibodies. GAPDH expression was the loading control. (C) The Kv4.3, ATF4, and CHOP levels were

quantified and normalized to the GAPDH. Western blotting showed that the c.1130 C>T (p.T377M) mutation of KCND3 led to a decrease in Kv4.3 protein compared

with the healthy controls (p < 0.05), while there was a significant increase in ATF4 and CHOP (p < 0.05). (D) The mRNA levels of Kv4.3, ATF4, and CHOP were

quantified and normalized to the GAPDH. RT-qPCR showed that the mRNA level of mutated KCND3 was not significantly different from that of the healthy controls.

However, the mRNA levels of ATF4 and CHOP were significantly increased (p < 0.05). Data are expressed as the mean ± SD; The significance was calculated using

Student’s t-test (*p < 0.05; **p < 0.01).

(Duarri et al., 2012). Some studies have revealed that the
related pathological changes of KCND3 variants mainly include
impaired protein trafficking, increased protein degradation, and

reduced outward K+ current (Duarri et al., 2012; Hsiao et al.,
2019). The mutant Kv4.3 instability increased and remained in
the endoplasmic reticulum, which may activate the endoplasmic
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FIGURE 7 | The percentage of symptoms in the early-onset and late-onset cohort. ND, Neurodevelopmental disorders; CI, Cognitive impairment.

reticulum-associated degradation (ERAD) pathway and
cause ERS.

In our study, the c.1130 C>T (p.T377M) mutation of the
KCND3 gene was reported in the Chinese mainland family for
the first time. To further explore the pathogenesis of SCA19/22,
we obtained SCA19/22-iPSC-derived neurons as a patient-
derived neuron model might explain the initial characteristics
of SCA19/22 better than the mouse model and other disease
models of non-human origin and might provide a more detailed
understanding of the pathogenesis of SCA19/22 caused by
the KCND3 c.1130 C>T (p.T377M) mutation. Moreover, we
revealed for the first time the role of ERS in the pathogenesis
of SCA19/22 by the patient-derived iPSCs combined with
transcriptome sequencing.

We summarized 22 KCND3 single-nucleotide mutation sites
of SCA19/22 worldwide (Table 2); the clinical overview is listed
in Table 3. No cerebellar atrophy or white matter abnormalities
in MRI of the proband was observed in this study. The
MMSE evaluation showed no degradation of intellectual ability.
Although no effective treatment had been applied, the head
tremor of II-1 and II-2 had been relieved compared with the onset
of the disease, which was different from previous reports (Lee
et al., 2012; Paucar et al., 2018; Hsiao et al., 2019). It may be that
different mutation loci lead to different changes in the function
and structure of the same protein. The progress of the disease is
related to the mutation type.

Although the pathogenic genes are different in each case, the
SCA subtypes have some common physiological characteristics,
such as protein aggregation, dysregulated autophagy, ion channel
defects, mitochondrial defects, transcriptional dysregulation, and

neuronal cell death (Durr, 2010; Klockgether et al., 2019). The
results of neuronal transcriptome sequencing revealed that the
differential expression of genes was significantly enriched in focal
adhesion, protein processing in the endoplasmic reticulum, and
axon guidance, which were mainly related to ERS, apoptosis,
and neuronal growth (Cance and Golubovskaya, 2008; Hetz and
Saxena, 2017; Howard et al., 2019). In the SCA19/22-derived
neurons, the Kv4.3 protein was decreased, which was consistent
with previous research results (Zanni et al., 2021). However,
there was no significant difference in the mRNA level of KCND3.
The Kv4.3 conservation analysis and protein prediction model
indicated that the KCND3 c.1130 C>T (p.T377M) mutation
led to a polar change in the mutant amino acid site. We also
observed that the mRNA and protein levels of CHOP and
ATF4 were significantly upregulated, suggesting that the UPR
and PERK-ATF4-CHOP pathways were activated. ATF4 and
CHOP played a crucial role in activating the PERK-ATF4-CHOP
pathway and eventually led to Bcl2-mediated neuron apoptosis
(Han et al., 2013; Aimé et al., 2020; Demmings et al., 2021). A
diagram of the unfolded protein response (UPR) pathways in
ERS is shown in Figure 6A. In SCA5 and SCA14, pathogenic
mutations promoted misfolding and aggregation of the disease-
causing proteins (Armbrust et al., 2014; Takahashi et al., 2015;
Avery et al., 2017), and even misfolded proteins may form
inclusion bodies in some SCAs (Seidel et al., 2012). Similar
aggregation phenomena can be found in patient-derived NPCs
(Supplementary Figure 1). The result showed that the mutation
caused the misfolding of the Kv4.3 and further increased protein
degradation. This is consistent with previous reports (Duarri
et al., 2012). At the same time, misfolded proteins activate
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TABLE 3 | Clinical data of KCND3 mutation carriers.

Mutations Country Patients Age of

onset

(years)

SARA MRI Clinical symptoms

p.T377M China 4 14–54 10–15 Normal Episodic ataxia, Head tremor, Dystonia,

Paroxysmal walking instability,

Sweden 7 child-18 5–24 Vermian cerebellar atrophy;White matter

lesions

Somatic ataxia, Cognitive impairment

Japan 4 10–40 29 Mild cerebellar atrophy Episodic ataxia, Dysarthria,Nystagmus,

Tendon hyperreflexia

p.G320L China 1 1 7 Normal Episodic ataxia, Mental retardation,

Dystonia, Tendon hyperreflexia

F227del China 14 15–46 9 Mild cerebellar atrophy Cerebellar ataxia

France 8 24–51 23 Mild cerebellar atrophy Ataxia, Palsy of upper eyelid muscle,

Diplopia, Sensory abnormality, Urinary

incontinence

p.C317V China 1 15 40 Cerebral atrophy; Hemispheric cerebellar

atrophy;Vermian cerebellar atrophy

Ataxia, Dystonia

p.P375S China 1 36 10–15 Cerebral atrophy; Hemispheric cerebellar

atrophy;Vermian cerebellar atrophy

Ataxia, Cognitive impairment

p.S301P Italy 1 3 27 Vermian cerebellar atrophy Episodic ataxia, Dysphonia, Mental

retardation, Neurodevelopmental

disorders,Epilepsy, Parkinson’s syndrome

p.T352P Netherlands 13 1–45 23 Cerebral atrophy; Hemispheric cerebellar

atrophy;Vermian cerebellar atrophy

Episodic ataxia, Cognitive impairment,

Myoclonus, Head tremor, Nystagmus

p.M373I Netherlands 2 44–64 12 Mild cerebellar atrophy Episodic ataxia

p.S390N Netherlands 3 30–35 25 Vermian cerebellar atrophy Spastic ataxia, Dysarthria, Nystagmus,

cognitive impairment, Hearing impairment,

p.G345V Germany 4 35–50 10 Vermian cerebellar atrophy Episodic ataxia, Dysarthria

Japan 4 45–55 11 Vermian cerebellar atrophy Ataxia, Dysarthria

p.V338E Japan 3 51–90 1 NA Ataxia, Dysarthria, Cognitive impairment

R293_F295_dup Belgium 1 3 31 NA Ataxia, Mental retardation, Dysphagia,

Dysarthria, Nystagmus, Epilepsy

p.L450P France 1 39 19 NA Episodic ataxia, Pyramidal sign, Brugada

symptoms

p.K214R France 1 <30 Vermian cerebellar atrophy Intermittent gait disorder, Vertigo, Sensory

abnormality, Hoffmann positive,

Nystagmus

the ERS pathway. Previous research has reported the intrinsic
autonomous firing of cerebellar Purkinje neurons, and the
neuronal inputs to Purkinje neurons were regulated by various
ligand-gated and voltage-dependent ion channels, while the
corresponding channel modulators alleviated the movement
disorder (Hourez et al., 2011; Bushart et al., 2018).

The ERS is also involved in the pathogenesis of many
other neurodegenerative diseases. The increase of many ERS
markers can be detected in chronic traumatic encephalopathies
(CTE) samples, such as CHOP and ATF6. The cognitive
ability of the CTE rat model can be improved by using
ERS inhibitor (Lucke-Wold et al., 2016). It was found
that PERK activity increased in both Alzheimer’s disease
patients and mouse brain tissues (Abisambra et al., 2013).
These findings provide a reference for the treatment
of SCA19/22.

The c.1130 C>T (p.T377M) mutation in KCND3 leads to
neurotransmitter release and neuronal excitability dysfunction

in neurons by affecting the function of potassium channels.
Moreover, misfolded Kv4.3 mediates proteotoxicity and further
activates the ERS pathway to result in neuronal apoptosis.

CONCLUSION

The c.1130 C>T (p.T377M) loci mutation of KCND3
mediated misfolding and the aggregation of Kv4.3, which
activated the PERK-ATF4-CHOP pathway and further induced
neuron apoptosis.
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