
American Journal of Epidemiology
© The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of
Public Health. This is an Open Access article distributed under the terms of the Creative Commons Attribution
Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0), which permits non-commercial re-use,
distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use,
please contact journalpermissions@oup.com.

Vol. 190, No. 8
https://doi.org/10.1093/aje/kwab049

Advance Access publication:
March 2, 2021

Original Contribution

The Early Life Course of Body Weight and Gene Expression Signatures for
Disease

Cecilia Potente∗, Kathleen Mullan Harris, Justin Chumbley, Steven W. Cole, Lauren Gaydosh,
Wenjia Xu, Brandt Levitt, and Michael J. Shanahan∗
∗ Correspondence to Dr. Cecilia Potente, Jacobs Center for Productive Youth Development, University of Zürich, Andreasstrasse
15, 8050 Zürich, Switzerland (e-mail: cecilia.potente@jacobscenter.uzh.ch); or Prof. Dr. Michael J. Shanahan, Jacobs Center for
Productive Youth Development, University of Zürich, Andreasstrasse 15, 8050 Zürich, Switzerland
(e-mail: michael.shanahan.uzh@gmail.com).

Initially submitted January 17, 2020; accepted for publication February 23, 2021.

We examined the way body-weight patterns through the first 4 decades of life relate to gene expression
signatures of common forms of morbidity, including cardiovascular disease (CVD), type 2 diabetes (T2D), and
inf lammation. As part of wave V of the nationally representative National Longitudinal Study of Adolescent to Adult
Health (1997–2018) in the United States, mRNA abundance data were collected from peripheral blood (n = 1,132).
We used a Bayesian modeling strategy to examine the relative associations between body size at 5 life stages—
birth, adolescence, early adulthood, young adulthood, and adulthood—and gene expression–based disease
signatures. We compared life-course models that consider critical or sensitive periods, as well as accumulation
over the entire period. Our results are consistent with a sensitive-period model when examining CVD and T2D
gene expression signatures: Birth weight has a prominent role for the CVD and T2D signatures (explaining 33.1%
and 22.1%, respectively, of the total association accounted for by body size), while the most recent adult obesity
status (ages 33–39) is important for both of these gene expression signatures (24.3% and 35.1%, respectively).
Body size in all life stages was associated with inf lammation, consistent with the accumulation model.

birth weight; cardiovascular disease; gene expression; inf lammation; life course; obesity; type 2 diabetes

Abbreviations: Add Health, National Longitudinal Study of Adolescent to Adult Health; BMI, adult body mass index; CVD,
cardiovascular disease; T2D, type 2 diabetes.

Birth weight is a risk factor for cardiovascular disease
(CVD), type 2 diabetes (T2D) (1), and generalized inflam-
mation in later life (2). These associations likely reflect
diverse mechanisms, including maternal and offspring geno-
type, maternal health, organ remodeling, epigenetic mod-
ifications, and cellular senescence (3–5). Although there
is considerable interest in the long-term consequences of
birth weight, adult body mass index (BMI) is also a well-
established risk factor for such outcomes. Moreover, mount-
ing evidence suggests that obesity and overweight status
across periods of the early life course predict CVD, T2D,
and generalized inflammation (6–8).

The role of body size at different points in the life course in
the development of chronic diseases is not well understood
(9–12). An increasing number of studies examine childhood

and adolescent histories of body weight and their long-term
implications for disease (7, 8). Some research suggests that
a long duration of obesity is a risk factor for diabetes, espe-
cially if it occurs in young adulthood (13, 14), while other
studies emphasize the role of weight gain for diabetes (15).
Researchers have also devoted considerable attention to the
long-term implications of birth weight for inflammation,
CVD, and T2D (16–18). However, the relative contributions
of all of these life-course aspects of body mass for common
forms of morbidity, such as CVD and T2D, have not yet been
studied.

The present paper examines body size at 5 life stages—
birth, adolescence, early adulthood, young adulthood, and
adulthood—to predict mRNA-based signatures of CVD,
T2D, and inflammation. We used 3 different classes of
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life-course models to examine the association between early
life-course patterns of body size and signatures: accumula-
tion, and critical and sensitive periods (19). The accumula-
tion model posits that body size in each life-course phase
contributes equally to health outcomes later in life. The
critical- and sensitive-period models posit increased impor-
tance of body size at specific points in life. The former posits
only 1 significant age period in the life course, while the
latter hypothesizes that some age periods have heightened
salience.

The disease signatures—constructed via empirically de-
rived a priori gene sets—reveal the mRNA abundance levels
for genes that are significantly related to these common
forms of morbidity. As such, the mRNA signatures provide
an opportunity to observe the molecular underpinnings of
disease in the decades before the diseases become prevalent
in the population (and thus during a period when interven-
tions might be feasible). The study of mRNA signatures
aims to better understand the interaction between exposures
and systemic, precursor biology associated with these later
disease states (20, 21). According to the social signal trans-
duction model, increases in body mass (and other exposures)
alter gene expression which, in turn, alters the probability
of diagnosed disease (22). Fallin et al. (23) call for more
such work, which integrates different types of genetic mea-
surements in order to reshape future goals of clinical and
analytical epidemiology. Similarly, Jones et al. (24) call
for a greater integration of life-course approaches into the
understanding of biological mechanisms.

The relevance of the current study is highlighted by the
pronounced secular trend of increasing BMI among the
young in the United States (25) coupled with essentially
steady rates of low birth weight (i.e., less than 5.5 pounds
(2.5 kg)) (26). However, clinical manifestations of T2D and
CVD often take many decades to appear. The average age of
onset for T2D in the United States is approximately 45, and
the risk of stroke, transient ischemic attacks, and diagnosed
heart attacks is also notably increased in the mid-40s (27).
Indeed, studies of these conditions are typically based on
samples of older adults.

Early adulthood in the United States, extending into the
fourth decade of life, is characterized as a period of life
that is generally healthy but vulnerable due to high rates
of obesity. Measuring health in such a population poses
significant challenges but can also reveal important insights
into the human biology underlying different health out-
comes that emerge later in life. Further, the emphasis on
the life-course aspect of obesity in early adulthood fills an
important gap in biomedical research (28). Many studies
analyze the association between early-life conditions and
chronic diseases later in life, but they give limited attention
to the time periods in between, especially young adulthood
(29, 30).

METHODS

Study population

The data used in this study are from the National Longi-
tudinal Study of Adolescent to Adult Health (Add Health),

a representative study of US adolescents in grades 7–12 in
1994–1995 who were followed into adulthood over 5 waves
of data collection (31). Data from all waves are used: waves
I and II (age range 12–18 years; mean age 15.3), wave III
(age range 19–24; mean age 21.7), wave IV (age range 25–
31; mean age 28.1), and wave V, sample 1 (age range 33–39;
mean age 36.4), which was collected in 2016–2017.

The wave V interviews for Add Health were conducted in
2016–2018 and included the collection of mRNA abundance
data from peripheral blood samples. We used data from
1,132 people, the first mRNA data from wave V to have
been released. The final sample size was 788 individuals
after missing data on covariates were removed using listwise
deletion (see Web Table 1 for comparison with the full
sample and Web Figure 1 for flow diagram, available at
https://doi.org/10.1093/aje/kwab049).

Gene expression signature scores

Gene expression data were normalized by applying a
common reference gene technique using 11 housekeeping
genes (32, 33). The gene candidates used to construct the
gene expression signatures were derived from other studies,
including genome-wide association studies, which identified
replicated statistically significant genes: CVD genes from
Nikpay et al. (34), T2D genes from Xue et al. (35), and
inflammatory genes from Fredrickson et al. (36) and Levine
et al. (37). The gene sets included 137 genes related to
T2D, 71 genes related to CVD, and 19 inflammatory genes.
After standard procedures were conducted to correct for
genes with zero counts or insufficient variation, the sets
included 30 genes related to CVD, 67 genes related to
T2D, and 19 related to inflammation (see Web Appendix
1 for details and Web Tables 2 and 3 for gene lists). We
created a gene expression score by averaging the mRNA
abundance data for each outcome. As a robustness check we
considered the direction of the association of each gene by
dividing the gene set into up-regulated and down-regulated
using internal information (see Web Tables 4 and 5 for
details).

Moreover, the validity of these gene signatures was tested
both internally and externally; the results show consistent
patterns for various diseases proxies (see Web Figure 2
for external and Web Figure 3 for internal validation). We
exploited gene expression data from Grayson et al. (38),
which addresses both T2D and CVD clinical diagnosis, to
ask whether there was an association between the clinical
outcome per se and our disease sets. This (omnibus) test
was implemented by simply inspecting whether at least
1 corrected P value in our disease set was significant
within a standard mass univariate linear model framework
supported by limma (see Web Tables 6 and 7 for full
results).

Moreover, we implemented a rotation gene test as sug-
gested by Wu et al. (39), showing how the genes are con-
tributing to the significance of the signatures. This represents
an extensive effort to validate the disease signatures with
clinical outcomes, although we were constrained in perform-
ing an exact validation because of the absence of the same
covariates in external data sets.

Am J Epidemiol. 2021;190(8):1533–1540

https://doi.org/10.1093/aje/kwab049


Body Weight and Molecular Risk 1535

Measurements of body size over the life course

Body size over the life course was measured using 5 in-
dicators covering different life stages. First, body size at
birth was determined using birth weight information pro-
vided in parental reports from wave I, which was supple-
mented with self-reported information from wave V. Two
indicators were constructed: low birth weight (microsomia:
<5.5 pounds (2.5 kg)) and high birth weight (macrosomia:
>8.8 pounds (4 kg)). Only low birth weight was used to
model inflammation (2), whereas a combined measure of
low and/or high birth weight was used for CVD and T2D
signatures because metabolic diseases are sensitive to both
micro- and macrosomia (3, 4). Second, body size over the
other life-course periods was modeled by creating indicator
variables for obesity status (BMI > 30). During waves II,
III, IV, and V, field examiners collected height and weight
measurements for each respondent. Self-reported height and
weight were available for waves I and V (measured height
and weight were also collected during wave V). Four age
categories (in years: 12–18, 19–24, 25–32, and 33–39) were
created to characterize the different life-course periods. Due
to modeling requirements, only individuals with complete
information across waves were included in the analysis.
The reliability of the anthropometric measures collected
for Add Health is high (40). Table 1 shows the increasing
obesity trend over the early life course for this cohort, which
reaches 40% for adults aged 33–39. Comparisons reveal that
the mRNA subsample is similar to the wave V sample 1
(excluding the mRNA subsample) in terms of obesity at ages
33–39, as indicated by a t test.

Other measurements

Based on a literature review we constructed a causal
diagram to assess which variables might confound the rela-
tionship between mRNA signature and obesity over the
life course (see Web Figure 4). As controls, we included
birth year, age at waves I or II, biological sex, region of
residence, and self-reported race/ethnicity, current smoking
status, binge drinking in the past 12 months (>4 (for female
participants) and >5 (for male participants) drinks in a
row), educational attainment at ages 33–39, preterm birth
status, an indicator for pubertal development, and maternal
education. An extensive set of controls referring to the
circumstances of the blood draw was included. Two mRNA
technical controls were also included: sample-specific qual-
ity control measures for mRNA and indicators for assay
batch. Finally, because cell type heterogeneity could be a
potential confounder for our analysis (41), the cell composi-
tion was estimated with CIBERSORT32 (42), and cell type
composition was included as a covariate in the model. Addi-
tional analyses were conducted to explore the distribution of
different cell types using a compositional approach (43).

Statistical analysis

We modeled associations between body size in 5 life
stages bsti (from birth to adulthood t = (1, 2, 3, 4, 5)) and
gene expression signatures mRNAzi with z = (CVD, T2D, Ta
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inflammation). The goal was to estimate the relative con-
tributions of body size in different life-course periods to
gene expression signatures in adulthood. The model was
proposed by Madathil et al. (44) and it was used to estimate
wt, a compositional vector that sums to 1 and represents
the relative importance of various life-course periods. This
kernel permits us to extend the general linear framework in
order to isolate relative (wt) and absolute (δ) effects:

ωi =
5∑

t=1

wt × bsti (1)

mRNAzi = β0 + δωi + λTCi (2)

μi ∼ N (mRNAzi, ζ) (3)

where δ is the lifetime effect for body size and λ is the
column vector of coefficients for the p covariates Ci =
(c1i; c2i; ...; cpi). Our priors are wt ∼ Dirichlet (1); ζ ∼
logNormal (1); δ ∼ Normal (v, σ); and σ ∼ logNormal (1).
The parameters β0, ν, and λ have uninformative priors fol-
lowing a Cauchy distribution. The model assumes the same
direction of associations in all periods and no confounding
by variables that change over time. This modeling allows
for correlations between body sizes over time. Simulations
show that the statistical model can detect the correct life-
course hypothesis even with substantial correlations across
time in body size (results available on request). Moreover,
the reported association between mRNA gene expression
signatures and body size at a certain time period t was
adjusted for body size at each of the other time periods.

Within this framework, we compared the relative weights
wt, which were predicted by the critical-period, sensitive-
period, and accumulation models, with a posteriori weights
derived from the data. The accumulation model posits that
the weights are the same in each life-course period (i.e.,

0.2 for each of 5 measurement occasions), and the critical-
period model holds that only 1 of the life-course periods is
important (only one of the weights is 1 and the others are
zero). The sensitive-period models propose that all periods
matter to some extent, and therefore the weight in each
life-course period is on a continuum between 0 and 1, but
together they must sum to 1.

We tested 3 sets of weights referring to different sensitive-
period hypotheses. In the first, birth is the most prominent
sensitive period (0.5, 0.125, 0.125, 0.125, 0.125). In the
second, birth and adulthood matter most (0.35, 0.1, 0.1, 0.1,
0.35), and in the third, current status is the most impor-
tant (0.125, 0.125, 0.125, 0.125, 0.50). Comparisons were
then made based on the distribution of the metric Aitchi-
son’s distance between the posterior weight distributions and
the theoretically derived weights. Bayesian inference was
implemented in Stan (45). This framework allowed us to
formally examine when, in the life course, body size matters
for mRNA signatures associated with common forms of
adult morbidity.

Additional tests were conducted to understand whether
there was an overrepresentation of certain cell types for
individuals with obesity at ages 33–39 using a compositional
approach (42). Several robustness checks were also carried
out. First, individuals were categorized based on whether
they were overweight or obese (BMI > 25). Second, we
modeled BMI rather than relying on obesity dichotomies.
Third, we performed sensitivity analyses by including only
low or high birthweight (instead of both low and high
birthweight); the results are qualitatively similar, showing
that the different life-course periods have similar degrees of
importance whichever measurement strategy is used. Fourth,
the models were also estimated stratifying the sample by sex.
Fifth, we divided the up-regulated and down-regulated genes
in the CVD and T2D signatures using the information con-
cerning disease proxies in Add Health, and we created 2 new
scores by averaging the up-regulated genes and the down-
regulated ones. Finally, we also replicated the analysis by

Table 2. Means and 95% Credible Intervals of Posterior Distributions of Weights and Lifetime Effects by Outcome (n = 788), National
Longitudinal Study of Adolescent to Adult Health, United States, 1997–2018a

Coefficient
CVD Expression T2D Expression Inflammation Expression

Mean 95% CrI Mean 95% CrI Mean 95% CrI

Lifetime effect, body weight (δ) 0.088 0.02, 0.15 0.090 0.04, 0.14 0.115 0.04, 0.19

Weights (wt)

Birth (low birth weight/high birth weight)b 0.331 0.044, 0.639 0.221 0.014, 0.478 0.243 0.014, 0.540

Obesity, ages 12–18 years 0.214 0.007, 0.539 0.133 0.003, 0.390 0.217 0.011, 0.541

Obesity, ages 19–24 years 0.110 0.003, 0.366 0.098 0.002, 0.321 0.188 0.009, 0.508

Obesity, ages 25–32 years 0.102 0.002, 0.360 0.197 0.009, 0.522 0.196 0.009, 0.518

Obesity, ages 33–39 years 0.243 0.016, 0.572 0.351 0.049, 0.680 0.156 0.005, 0.452

No. of observations 788 788 788

Abbreviations: CrI, credible interval; CVD, cardiovascular disease; T2D, type 2 diabetes.
a Sample-specific quality control measures for mRNA and indicators for assay batch are also included.
b Only low birth weight in the case of inf lammation.
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Table 3. Measures of Posterior Fit Comparing Observed and Theoretical Weights, National Longitudinal Study
of Adolescent to Adult Health, United States, 1997–2018a

Life-Course Model
CVD T2D Inflammation

Mean 95% CrI Mean 95% CrI Mean 95% CrI

Accumulation, all ages 2.40 0.8, 5.0 2.29 0.7, 4.8 2.02 0.6, 4.4

Critical period

1, birth only 3.96 2.6, 6.0 4.46 3.1, 6.7 4.32 2.9, 6.7

2, ages 12–18 years only 4.61 3.0, 7.2 5.10 3.4, 7.8 4.48 2.9, 6.9

3, ages 19–24 years only 5.33 3.5, 8.0 5.40 3.7, 8.0 4.65 3.0, 7.0

4, ages 25–32 years only 5.41 3.6, 8.0 4.65 3.0, 7.1 4.59 3.0, 7.0

5, ages 33–39 years only 4.40 2.9, 6.6 3.86 2.5, 5.8 4.87 3.2, 7.5

Sensitive period

1, mainly birth 2.26 0.7, 4.8 2.47 0.9, 4.9 2.21 0.7, 4.6

2, birth + ages 33–39 years 2.17 0.7, 4.6 2.10 0.6, 4.5 2.45 0.9, 4.9

3, mainly ages 33–39 years 2.51 0.9, 5.0 2.14 0.7, 4.6 2.54 1.0, 5.0

Abbreviations: CrI, credible interval; CVD, cardiovascular disease; T2D, type 2 diabetes.
a Means and 95% credible intervals of posterior distributions of Aitchison’s distances.

removing individuals who reported having been diagnosed
with T2D (61 out of 788) and those who had had a heart
attack or had undergone heart surgery for clogged coronary
arteries (8 out of 788).

RESULTS

Table 2 presents means and 95% credible intervals of
posterior distributions for the parameters resulting from the
Bayesian estimation. The main parameters of interest are the
lifetime effect of body size (δ) and the set of 5 weights for the
relative importance of specific life-course periods estimated
for different models (wt). The lifetime effect reveals that
body size across the early life course is related to the 3
gene expression signatures associated with CVD, T2D, and
inflammation.

The relative importance of the different weights (wt)
shows 3 interesting patterns. First, for genes expression
related to CVD, birth weight played a prominent role,
accounting for 33.1% of the total association between CVD
and lifetime body weight, followed by obesity in the most
recent adulthood period (ages 33–39), which accounted for
24.3%. Second, for the expression of T2D-related genes,
obesity in the most recent adulthood period (ages 33–39)
had the greatest relative importance at 35.1%, followed
by 22.1% for macro- and microsomia at birth. Third, for
the inflammation signature, low birth weight had a more
prominent role (24.3%) than obesity at other points in
the life course (especially at ages 25–31 and 33–39), with
diminishing relative contributions with age.

Given the estimated weights showing the relative impor-
tance of different periods, we can evaluate which life-course
model best describes the association between early life-
course patterns of body weight and the disease signatures.
We made this evaluation by examining the posterior distri-

bution of the Aitchison’s distances between the estimated
weight and each of the hypothesized ones. Table 3 shows
the mean distances such that the life-course hypothesis asso-
ciated with the shortest distance (indicating best fit) is the
one that best describes the data. For CVD- and T2D-related
genes, the sensitive-period model positing that both birth
weight (either low or high birth weight) and adulthood
obesity (ages 33–39) had the highest relative importance was
best supported by the data (for CVD, Aitchison’s distance
2.17, 95% credible interval: 0.7, 4.6; for T2D, Aitchison’s
distance 2.1, 95% credible interval: 0.7, 4.5), although other
time points mattered as well. Finally, in the case of inflam-
mation, the accumulation hypothesis was the best perform-
ing model (Aitchison’s distance 2.0, 95% credible interval:
0.6, 4.4).

The additional tests conducted to understand whether
there was an overrepresentation of certain cell types for indi-
viduals with obesity at ages 33–39 showed that people who
are obese in adulthood (ages 33–39) had a larger proportion
of naive B cells and plasma cells than the nonobese at this
age, controlling for previous obesity (Web Figure 5 and Web
Table 8). Previous research has shown the pivotal role of
B cells for diabetes development and cardiovascular health
(46–48). The results from the overweight or obese classifica-
tion are relatively similar to those reported in Table 2 (Web
Table 9). The sex-specific results showed patterns consistent
with those reported in Table 2, although with less precision
given the smaller sex-specific sample sizes. Similarly, results
remained mostly unchanged by removing individuals who
reported having been diagnosed with T2D and those who had
had a heart attack or had undergone heart surgery for clogged
coronary arteries (Web Table 10). Additional robustness
checks were carried out to understand the sensitivity of
the results to different specifications of birth-weight dis-
advantage (Web Tables 11–14). Despite observing similar
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coefficients across different specifications in the weight
vector, estimates for the weights are compositional and thus
sum to 1. Therefore, different specifications of body size as
well as of age groups (Web Table 15) and priors (Web Table
16) can lead to different distributions of the weight vector
estimates, although they follow similar qualitative patterns.

DISCUSSION

The prevalence of obesity and overweight status among
children and young adults has increased considerably over
the past several decades (49). Obesity and overweight status
have profound consequences for life expectancy and mor-
bidity rates (50–52). Among the diseases related to elevated
BMI, previous research has highlighted the increased risk
for T2D (53), CVD (12, 14, 54, 55), cancer (56), deficits
in physical functioning (57), and systemic inflammation
(58). Moreover, the long-term consequences of birth weight
on cardiovascular and metabolic health outcomes have also
attracted considerable interest (2, 59–61). However, clini-
cally significant indications of these diseases often do not
begin to manifest until the late 40s and 50s. The present
research examines whether birth weight and obesity through
the early life course (from birth through young adulthood)
are associated with the expression of genes (as indicated by
mRNA abundance) related to CVD, T2D, and inflammation
already in the 30s.

Several life-course hypotheses were examined (19, 62–
66): an accumulation hypothesis, a critical-period hypothe-
sis, and several sensitive-period hypotheses. This work finds
support for a sensitive-period model in the case of the CVD
and T2D gene expression signatures. The most relevant life-
course periods for gene expression signatures related to
CVD were found to be birth and adulthood (ages 33–39);
obesity status in adulthood alone is not decisive. While CVD
and T2D gene expression are associated with greater relative
importance of low/high birth weight and adulthood obesity,
low birth weight and obesity status at all ages contribute
to the expression of inflammation-related genes, supporting
an accumulation model. These results contribute to the lit-
erature by suggesting the importance of birth weight (both
micro- and macrosomia) for CVD and T2D (56) and the
prominent role of body size over the entire early adulthood
life course, especially for inflammation (67).

This work is not free from limitations. First, the design
does not allow us to make causal statements about the role
of different life-course periods. Second, the gene expression
scores are markers of pre-disease, but they are probabilistic
markers of disease and the degree of their specificity and
sensitivity is presently unknown. Moreover, the gene sets are
derived from previous studies, which might not necessarily
have identified causal variants. Third, the design does not
allow us to disentangle associations due to recency and
ages 33–39, which are confounded. Finally, recent studies
suggest that visceral adipose tissue and proportionality at
birth, which unfortunately were not measured in Add Health,
play important roles in the development of CVD and T2D
(5, 68). Nevertheless, the present study is the first, to our
knowledge, to examine associations between patterns of
body weight across the early life course and mRNA risk

signatures for major forms of morbidity in a population-
representative study.

Public health research faces the increasing challenge of
integrating proliferating genetic data with data from more
traditional channels (21). Understanding when body size
matters most in pre-disease pathways can inform the design
of effective policy interventions to reduce the impact of
obesity on public health outcomes. This work contributes to
emerging efforts in the literature on integrating life-course
longitudinal studies and gene expression data (69) using a
priori selected gene sets (37, 70). Our study suggests that
efforts to reduce the burden of disease should start from very
early in life with the promotion of healthy birth weights.
Simultaneously, public health measures aimed at reducing
obesity in adolescence and adulthood could represent impor-
tant actions to prevent the development of T2D and CVD and
reduce inflammatory burden.
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