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Abstract

Glaucoma is the second leading cause of blindness worldwide, and peripapillary atrophy

(PPA) is a morphological symptom associated with it. Therefore, it is necessary to clinically

detect PPA for glaucoma diagnosis. This study was aimed at developing a detection method

for PPA using fundus images with deep learning algorithms to be used by ophthalmologists

or optometrists for screening purposes. The model was developed based on localization for

the region of interest (ROI) using a mask region-based convolutional neural networks R-

CNN and a classification network for the presence of PPA using CNN deep learning algo-

rithms. A total of 2,472 images, obtained from five public sources and one Saudi-based

resource (King Abdullah International Medical Research Center in Riyadh, Saudi Arabia),

were used to train and test the model. First the images from public sources were analyzed,

followed by those from local sources, and finally, images from both sources were analyzed

together. In testing the classification model, the area under the curve’s (AUC) scores of

0.83, 0.89, and 0.87 were obtained for the local, public, and combined sets, respectively.

The developed model will assist in diagnosing glaucoma in screening programs; however,

more research is needed on segmenting the PPA boundaries for more detailed PPA detec-

tion, which can be combined with optic disc and cup boundaries to calculate the cup-to-disc

ratio.

Introduction

Globally, at least 2.2 billion people have vision impairment, with 1 billion cases classified as

moderate-to-severe. Glaucoma is the leading cause of irreversible vision impairment world-

wide [1]. However, these estimates remain uncertain, because they are associated with a two-
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fold confidence interval difference [2]. Tham et al. [3] estimated that 111.8 million glaucoma

cases will be diagnosed by 2040 (79.76 million with primary open-angle glaucoma and 32.04

million with primary angle-closure glaucoma). In the United States, the prevalence of glau-

coma is expected to increase to 4.2 million by 2030. Researchers have estimated that 50% of

people in the US remain undiagnosed. Thus, if current screening methods are continued, 2.1

million US citizens will remain undiagnosed by 2030 [4]. Telemedicine innovations can over-

come glaucoma screening shortcomings and may facilitate the detection of early-stage cases.

Peripapillary atrophy (PPA) is a morphological symptom of glaucoma, and its presence

may be used to make an early diagnosis of glaucoma. PPA is one of the early clinical signs asso-

ciated with glaucoma; an increase in PPA size is associated with disease progression [5–7].

Thus, automatic detection of PPA will be a valuable technique for diagnosing glaucoma in

early stages in a timely and cost-effective manner, particularly in primary clinics or remote

places where experts and equipment are often lacking. This study was aimed at developing a

deep learning system that functions as a screening and diagnostic tool that can help practition-

ers detect PPA from fundus images.

This paper is organized as follows: the proposed methodology, dataset details, preprocessing

technique, and the proposed convolutional neural network (CNN) model specifications are

presented in Section 2. In Section 3, the protocol for evaluating the implementation details

and evaluation metrics is discussed. The results of the work are presented in Section 4 and dis-

cussed in detail in Section 5. Finally, the study is summarized in Section 6 (Conclusions).

Background

PPA is characterized by morphological changes in the chorioretinal areas surrounding the

optic disc. Two types of PPA can be present: the alpha and beta zones [8]. The beta zone is

seen as a crescent shape, adjacent to the optic disc (OD) temporally. It is characterized by atro-

phy of the pigment epithelium and choriocapillaris, resulting in a visible sclera. The alpha zone

is characterized by irregular pigmentation (hyperpigmentation or hypopigmentation) of the

retinal pigment epithelium (RPE) and thinning of the chorioretinal layer, located further

away from the disc, adjacent to the retina on its periphery and to the beta zone on the central

side [8].

PPA was significantly more prevalent in eyes with glaucoma than in normal eyes and in the

beta zone than in the alpha zone. In early glaucomatous eyes, the alpha zone occupied 23.7%

of the area, while the beta zone occupied 41.7%. In advanced-stage glaucoma, these numbers

increased to 44.4% and 85.7%, respectively [8]. Jonas [5] indicated that observing PPA while

assessing the condition of glaucoma can be useful for distinguishing open-angle glaucoma

types. Additionally, it can be used to differentiate between normal and open-angle glaucoma

because research has shown that the beta zone is usually the largest in those with normal-angle

glaucoma [5]. PPA is a likely indicator of current, past, or future risk of OD splinter hemor-

rhage incidence [9].

PPA can be diagnosed using various imaging techniques, including color fundus photogra-

phy, where a camera attached to a lens system takes a high-quality photograph of the retina,

from which information about the location, size, and color of PPA can be obtained. Optical

coherence tomography (OCT) is another imaging technique that provides cross-sectional

images, which provide information on the size, location, and thickness of the retinal and sub-

retinal layers. However, PPA detection is largely performed using fundus tomography rather

than OCT owing to its ease of use in identifying the PPA region. Color fundus photographs

provide a clearer view of textures due to its color intensity, therefore PPA manifests clearer.

PLOS ONE Peripapillary atrophy classification using CNN deep learning for glaucoma screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0275446 October 6, 2022 2 / 25

https://doi.org/10.1371/journal.pone.0275446


While, cross-sectional images obtained by OCT might introduce difficulty to the problem at

hand, such as PPA detection.

Related work

Many studies on segmenting the OD and optic cup boundaries have been reported, in which

fundus images have been used to calculate the cup-to-disc ratio and traditional image process-

ing techniques and deep learning approaches [10–16] or machine learning approaches [17–20]

have been used to perform glaucoma classification. However, research on PPA is limited.

Cheng et al. [21] designed a model using biologically inspired features (BIFs), which mimics

how the cortex operates for visual perception by including scene classification and gait recog-

nition approaches for the region where PPA acts. The designed model segments the focal

region from retinal fundus images using threshold-based segmentation and detects the pres-

ence of PPA using a support vector machine (SVM). The accuracy was ~90%. Moreover, this

study included a sample of myopic children only, and the detection of negative images (no

PPA) was better than that of positive images (PPA). This is because negative images are fairly

similar because they are from healthy individuals, whereas positive images depend on the

progression of PPA. Septiarini et al. [22] proposed a model in which the ROI was located

and segmented using image processing techniques (thresholding). The model also included

a preprocessing phase, followed by feature extraction. Classification was performed using a

backpropagation neural network (BPNN). This model achieved an overall accuracy of 96%,

whereas in severe cases of PPA, the accuracy reached 100%. Sharma et al. [23] used a combina-

tion of statistical features and ResNet50 to produce a system with an accuracy of 95.83%. An

advantage of their study was that the dataset was relatively large and diverse. Muramatsu et al.

[24] used texture analysis to identify PPA after identifying the ROI using a p-tile thresholding

method. The sensitivity was 73%, because there were only 26 PPA photos, all in moderate-to-

severe stages. A limitation was that the ROI did not always include the full PPA area.

Methodology

Overview

The study was reviewed and approved by the ethics committee of King Abdullah International

Medical Research Center (IRB number RC20/087/R). However, the committee waived consent

because the data were images with anonymized personal data.

The proposed deep learning algorithm consists of two stages: localization of the optic nerve

head (ONH) and classification of the stated region. The developed algorithm automatically

functions for both tasks without the need for handcrafted techniques, Hence, it provides a

fully automatic PPA screening approach. Additionally, while implementing the proposed algo-

rithm, datasets from various distributions were used, which provides the ability to obtain a

general screening software developed with images of different quality and variance PPA states.

The main contributions of this study are as follows.

• Using fundus images from different public sources and a challenging local dataset to provide

a the variety of images quality.

• The images were labeled as either PPA or non-PPA.

• Developing a screening methodology for localizing the region of interest within fundus

images and performing a classification process for detecting PPA with an end-to-end deep

learning algorithm without using any hand-crafted technique.
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• Evaluating the classification algorithm with different performance measures, such as accu-

racy, balanced accuracy, precision, recall, F1-score, and performing ROC analysis.

• Conducting cross-validation evaluation for reliability assessment of the classification

algorithm.

The proposed detection system for the presence of PPA symptoms in fundus images classi-

fies incoming fundus images into two groups: images stated as PPA and those that were not.

Fig 1 outlines the process of designing such systems. The initial step involves data gathering,

followed by a preparation stage in accordance with the system design. A classification process

was then performed in terms of both training and model evaluation. Further discussion

regarding each stage in the stated process flow is presented in the following sections.

Data gathering

Images were obtained from different sources and under various conditions in terms of image

quality and PPA state. As shown in Table 1, five publicly available databases were collected

along with a local dataset, and each is explained in further detail in the following subsections.

Retinal fundus Images for Glaucoma Analysis (RIGA). The dataset provides annota-

tions for the optic cup and disc boundaries by six different ophthalmologists. This dataset con-

sists of three files from three different sources: MESSIDOR, Bin Rushed, and Magrabi. Files

from this dataset consisted of 460, 195, and 95 fundus images from MESSIDOR, Bin Rushed,

and Magrabi, respectively. However, only the Bin Rushed and Magrabi files were used for the

study.

High Resolution Fundus (HRF) database. The obtained dataset contains 45 images: 15

each of healthy persons, diabetic retinopathy patients, and glaucoma patients. The dataset was

provided by the Pattern Recognition Lab (CS5), Department of Ophthalmology, Friedrich-

Alexander University Erlangen-Nuremberg (Germany), and Brno University of Technology,

Fig 1. The process flow of the proposed PPA detection system.

https://doi.org/10.1371/journal.pone.0275446.g001

Table 1. Details of the obtained datasets.

Name Year of Availability Number of Images Format Location

RIGA (Bin Rushed) [25] 2018 195 jpg Saudi Arabia

RIGA (Magrabi) [25] 2018 95 tif Saudi Arabia

HRF [26] 2013 45 jpg Germany, Czech

Kaggle [27] 2018 1,000 jpg China

ORIGA (-light) [28] 2010 650 jpg Singapore

Eyepacs [29] 2015 Around 80,000 jpg X

KAIMRC [30] 2022 2,084 jpg Saudi Arabia

https://doi.org/10.1371/journal.pone.0275446.t001
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Faculty of Electrical Engineering and Communication, Department of Biomedical Engineer-

ing, Brno (Czech Republic).

Publicly available fundus images dataset—Kaggle repository. The fundus images

obtained from the Kaggle repository [27] were made visible to the public. It consists of 1,000

fundus images categorized into 39 classes. This dataset is a subset of a larger database of

209,494 images, and the copyrights for these images belong to the Joint Shantou International

Eye Centre (JSIEC), Shantou City, Guangdong Province, China.

ORIGA (-light). The ORIGA (an online retina fundus image database for glaucoma anal-

ysis and research) [28] is a dataset of 650 retinal images, which are annotated by professionals

from the Singapore Eye Research Institute. These images were collected in a population-based

study, the Singapore Malay Eye Study (SiMES).

Eyepacs. A publicly available database of fundus images, obtained from various sources

and under different acquisition settings and imaging conditions, was provided in the Kaggle

repository [29]. This dataset was created to characterize the competition for developing an

automated grading system for diabetic retinopathy. Images were separated in the form of

training and testing.

King Abdullah International Medical Research Center (KAIMRC). Locally gathered

fundus images were obtained from the King Abdullah International Medical Research Center

(KAIMRC) [30] in the Ministry of National Guard’s local hospital in Riyadh, Saudi Arabia.

This dataset consists of 2,084 fundus images collected from the glaucoma clinic and the retina

clinic were 1,600 and 484, respectively.

Pre-processing

Image labeling and region of interest (ROI) extraction were the two main pre-processing prep-

aration operations performed.

Labeling. Because there is no publicly available fundus image dataset labeled in terms of

the presence or absence of PPA in the fundus images, the images were categorized visually by

certified ophthalmologists and optometrists into two classes: PPA and non-PPA images, with-

out manual annotation of the PPA boundaries. The inter observer variability was considered

between an ophthalmologist and senior optometrist. The first labelling round was conducted

by the ophthalmologist and then the second round was blindly conducted by the optometrist

using Microsoft surface pro with screen size of 12 inches. However, not all the images obtained

from public sources were labeled because of the quality of some images (bad acquisition,

pathological conditions such as cataract). Additionally, some images were not used because

of the mislocalization of the ROI. Table 2 presents the number of images for each class in the

datasets.

Table 2. A summary of the labeled images.

Source Total Number of Images Utilized Number of Images Non-PPA Images PPA Images

RIGA (Bin Rushed) [25] 195 195 57 138

RIGA (Magrabi) [25] 95 94 21 73

HRF [26] 45 45 9 36

Kaggle [27] 1,000 495 244 251

ORIGA (-light) [28] 650 371 49 322

Eyepacs [29] Around 80,000 487 487 x

KAIMRC [30] 2,084 2,084 1,178 906

https://doi.org/10.1371/journal.pone.0275446.t002
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Region of Interest (ROI) extraction. The images were cropped in the region of the ONH

and considered as the ROI to eliminate the effect of any existing artifacts and unnecessary

details for PPA classification and to lower the cost of the computations. The selected architec-

ture is the mask R-CNN [31] modality, which is the new generation of the Faster R-CNN [32]

network i.e. an extra head was added to provide instance segmentation capability. The Mask

R-CNN is widely used as an off the shelf object detection algorithm for a variety of computer

vision applications and it performs well with usually minimal modifications. To perform the

modifications for the ROI extraction, the number of training epochs was empirically set as 15

epochs for considering training the model for a decent amount of epochs as well as not too

many epochs to avoid the problem of overfitting. Additionally, the conducted algorithm was

selected after pretraining it on a large object detection dataset known as Microsoft Common

Objects in Context (COCO) dataset. Therefore, we retrained the downstream task (heads) of

the model to be fine tuned during the pre training to denote the research objective which con-

siders the detection of the Region of Interest (ROI) in the fundus image. There was no need

for more tuning to the model parameters and modifications for further improvement since it

performs well for detecting enough of the denoted regions. As a result, the denoted regions

were prepared for the main objective of the study, which is classifying the ROI into being posi-

tive with the PPA or not.

The architecture of the mask R-CNN consists of a backbone for feature extraction, followed

by a region proposal network (RPN) and three head branches; the first one was for classifica-

tion (providing object classes), the second was for detection (generating bounding boxes), and

the last one was for instance segmentation (creating masks for the object of interest). However,

only the detection head was used to perform the localization operation for the ROI.

All images are from different sources, thus, setting the appropriate bounding box size to

localize the ROI was optimized based on the visibility of the region around the ONH, i.e. to

cover an entire suspected PPA area. The ONH structure varies from case to case. Moreover,

the fundus images with the same resolution have a few differences because of the visual obser-

vation of the cropped images. Hence, the candidate area of the PPA could not be observed.

Therefore, an assessment process was performed to ensure that the required region was

cropped appropriately.

The deep learning approach provides the predicted coordinates for the ROI. The resolu-

tions of the images and their aspect ratios were considered while setting the dimensions of the

cropped regions. However, to maintain the aspect ratio for the cropped images while rescaling

these images in further development stages, an algorithm was developed. The bounding boxes

generated from the object detection network do not have the same resolution. Therefore, the

boxes’ dimensions modified to be squared boxes make them all have the same aspect ratio

equal to one. The process was conducted by stating the required cropped region width and

height in advance prior to the inference of the region coordinates. Therefore, when obtaining

the resultant bounding box, its size is modified to match the specified dimensions by expand-

ing either the x or y dimensions, or both, to denote that specification. Fig 2 presents an exam-

ple of cropping the detected ROI, while Fig 3 presents the proposed algorithm in accordance

with that objective.

All data sets were categorized based on the difference in image resolutions to ease the pro-

cess of localizing the ROI and setting the appropriate cropping dimensions. Table 3 presents

an analysis of the localization model results as follows: localized, multiple localized, and non-

localized. The localized feature refers to the number of images for each dataset where the ROI

was localized, while the multiple localized feature indicates the number of images where more

than one region was localized aside from the localization of the optic nerve head owing to arti-

facts in fundus images and fringe presence. However, from multiple localized regions, a

PLOS ONE Peripapillary atrophy classification using CNN deep learning for glaucoma screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0275446 October 6, 2022 6 / 25

https://doi.org/10.1371/journal.pone.0275446


Fig 2. An example of cropping a candidate ROI from a fundus images following the proposed localization approach. In (a) a fundus image is shown, while (b) and (c)

present the localized image by the deep learning algorithm and the cropped ROI, respectively.

https://doi.org/10.1371/journal.pone.0275446.g002

Fig 3. A proposed algorithm to maintain the aspect ratio for all generated bounding boxes.

https://doi.org/10.1371/journal.pone.0275446.g003

Table 3. A summary of the analysis for the ROI cropping stage.

Source Total Images Used Localized Multiple Localized Not Localized Localization Rate

RIGA–BinRushed [25] 195 195 183 9 3 98.461%

RIGA–Magrabi [25] 95 94 86 8 0 100.00%

HRF [26] 45 45 39 1 5 88.88%

Eyepacs [29] 487 487 451 25 11 97.741%

ORIGA [28] 650 371 350 16 5 98.652%

Kaggle [27] 1000 495 379 108 8 98.383%

Total 2472 1687 1488 167 32 98.103%

KAIMRC–Glaucoma 1600 1600 1388 150 62 96.125%

KAIMRC–Retina 484 484 410 46 28 94.214%

Total 2084 2084 1798 196 90 95.681%

https://doi.org/10.1371/journal.pone.0275446.t003
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manual assessment was performed to eliminate images rather than the ROI (167 images

[0.6%]). The non-localized feature represents the number of images where no region was

detected owing to the unclear conducted image of the ROI. The localization model provides a

localization rate of 98.103% and 95.681% for images obtained from public sources and the

KAIMRC dataset, respectively, which resulted in only 32 missed images out of the used 1,687

public images and 90 images from KAIMRC.

Convolutional neural network classification model

The CNN is the selected deep learning algorithm for the proposed classification system

[33]. CNNs are capable of performing well with challenging computer vision tasks

because they consist of several complex layers that provide these models with the ability to

extract significant features that distinguish different objects [34]. As part of the deep learn-

ing algorithm nature, the top layers of any network can detect general features, such as

edges, corners, and curves, while the deep layers are capable of learning about the specific

features of the dataset in use. However, these types of algorithms require several images to

operate perfectly. Because a lack of data and the cost of labeling large datasets are common

limitations in the design of machine learning algorithms, the transfer learning technique

has been used.

In this study, we used the backbone of the VGG16 [35] network with pre-trained

weights using the ImageNet dataset. Referring to the VGG16 [35] network architecture, its

backbone consists of five blocks. Several layers exist within these blocks, such as convolu-

tion, max pooling, and activation functions. The proposed model architecture consists of

the first four blocks of the backbone, while the first three blocks were kept frozen with the

pre-trained weights of the ImageNet dataset during the training process to use those weights

to extract the general features from the training images in our dataset, while the last block of

the backbone was re-trained on the used dataset for the conducted problem. Additionally,

two fully connected layers were added after the backbone, and each classification layer was

followed by a ReLU activation function. Dropout and batch normalization layers were

added, acting as regularization layers. The final classification layer was changed completely,

as per the problem requirement, into a binary classification layer, followed by a Softmax

activation function. The characteristics of the proposed network architecture are shown in

Fig 4.

Fig 4. The proposed PPA classification model architecture.

https://doi.org/10.1371/journal.pone.0275446.g004
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Evaluation protocol

Performance measures

The classification model was evaluated using five performance measures: precision, recall,

F1-score, accuracy, and balanced accuracy.

The confusion matrix is an evaluation mapping criterion for extracting the required param-

eters to calculate the measured values. The interpreted parameters for calculating these metrics

are true positive, true negative, false positive, and false negative, as shown in Fig 5. The accu-

racy, precision, recall, and F1-score formulas are presented in Eqs 1–4. Additionally, because

the accuracy measure is sensitive to the class imbalance issue, an addendum evaluation, bal-

anced accuracy, was used. and its formula is shown in Eq 5. Additionally, the K-fold cross-vali-

dation approach was used to evaluate the proposed model to assess the reliability of the results.

Accuracy ¼
TPþ TN

TPþ TN þ FP þ FN
; ð1Þ

Precision ¼
TP

TPþ FP
ð2Þ

Recall ¼
TP

TP þ FN
ð3Þ

F1 � Score ¼ 2 �
Precision � Rcall
Precision þ Recall

� �

ð4Þ

Balanced Accuracy ¼
1

2
�

TP
TPþ FN

þ
TN

TN þ FP

� �

ð5Þ

Fig 5. Confusion matrix diagram.

https://doi.org/10.1371/journal.pone.0275446.g005
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Implementation details

Selected parameters. The implementation of the mask R-CNN by Matterport [36] was

the selected approach for the process of localizing the ROI within fundus images. No major

adjustments were made for the network hyperparameters, except for the number of epochs (15

epochs). The top layers of the model were re-trained for the KAIMRC dataset images by ran-

domly selecting 200 images for both training and testing purposes. The required ground truth

for the model to be trained and evaluated with was generated manually using Labelimg soft-

ware by annotating the ROI. The process of creating the ground truth was cautiously per-

formed by observing all images and ensuring that an appropriate region from all sides was

annotated. Additionally, 200 images were used for training the model with 160 images, and

the remaining 40 images were used to evaluate the model. However, because the model perfor-

mance for the prediction states was good, as shown in Table 3, there is no need to further tune

the model and keep improving the results. The model was implemented in the Google Colla-

boratory Cloud platform with the required versions of libraries and platforms, as stated in

Matterpor [36].

To select the best architecture for the classification model, three sets (public sources (better

resolution quality), KAIMRC images (lower resolution quality), and a combined set (public

sources and KAIMRC images) were used to obtain comparison results to analyze the model’s

performance.

Several experiments were conducted to obtain the best model. The architectures of various

models were experimented with the transfer learning method to overcome the limitation of

having small datasets and to use the benefits of having models that are pre-trained with many

images. The models used are VGG16 [35], ResNet50 [37], and InceptionV3 [38]. The layers of

these models were trained as follows: freezing all layers during the training process and only

unfreezing the last few layers.

Additionally, the hyperparameters of the experimented classification models were tuned

during development. The learning rate was tuned using three different values: 0.1, 0.0001, and

0.0000001. The batch size was set to 128. Adam optimizer was used as the learning algorithm,

and the loss function was used as the categorical cross-entropy. All models were trained for

100 epochs to follow the model selection approach, which involved either selecting the best

model across all epochs based on the validation accuracy or the model at the last epoch after all

training iterations were completed.

Regarding the splitting methodology, random and stratified fashions were tested. The 80/20

rule was followed, with 80% of the dataset used for training and 20% for testing. Furthermore,

the training set was divided into a training and validation set using the same approach as the

validation set was used to assess the obtained model before the evaluation stage and to tune the

hyperparameters.

While performing experiments and selecting the best classification model, the cross-valida-

tion evaluation technique is performed by splitting the used dataset randomly into a pre-iden-

tified number of folds. Thus, the model is trained with all folds, except for a reserved fold to be

used as the testing fold. This process is repeated by interchanging the folds used to ensure that

each fold is conducted for both the training and evaluation of the model, which assesses the

reliability of the implemented algorithm.

Classification model selection. The selection of the best model for the assigned problem

was performed after experimenting with three different model architectures. VGG16 [35],

ResNet50 [37], and InceptionV3 [38] architectures were selected as experimental networks.

Images from public sources and the KAIMRC database were used. Fig 6 presents the baseline

architecture for the model selection stage. For the VGG16 [35] model, all layers in the
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backbone were kept frozen with the ImageNet dataset weights, while re-training the last two

fully connected layers. According to He et al. [37], the ResNet50 model consists of only back-

bone architecture layers and no pre-trained dense layers, similar to the InceptionV3 [38]

model. Therefore, two fully connected layers were added for classification with a ReLU activa-

tion function following each layer. Additionally, dropout and batch normalization layers were

added, along with a fully connected layer with two neurons because of the type of problem,

which is a binary classification, followed by a Softmax activation function. In addition to freez-

ing all layers in the backbones of these models, the last few convolution layers were unfrozen.

According to Sharma et al. [23], if the images have different resolutions, all were resized to

224 × 224 for the VGG16 and ResNet50 and to 299 × 299 for the InceptionV3 models after the

ROI extraction stage was performed because the used models were pre-trained for the Ima-

geNet weights with the selected spatial dimensions while using the transfer learning technique.

The model was selected after analyzing the results of the model obtained from the last

epoch and the model with the best validation accuracy during the training iteration. The analy-

sis encountered evaluation measures. The model results were better when the last convolution

layers were unfrozen with all three datasets. The parameters selected for the learning rate and

splitting fashion were 0.0001 and random splitting, respectively. The two fully connected layers

after the backbone of the network were unfrozen in the process to re-train the weights of these

layers for the problem at hand. Additionally, unfreezing the last convolution layers in the

Fig 6. The selected architectures for the performed experiments.

https://doi.org/10.1371/journal.pone.0275446.g006
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network’s backbone, the last block, outperforms the results when all the convolution layers of

the model are frozen.

Finally, the model was simplified into a simpler architecture by removing layers from the

head of the architecture to reduce the number of trainable parameters in the model. The loss

function was changed to hinge loss instead of cross-entropy to mitigate the encountered van-

ishing gradient problem with the base VGG model.

Results

All the aforementioned experiments were used to study a machine with the following specifica-

tions: 3.60 GHz CPU, 64 GB RAM, and an NVIDIA GeForce RTX 2080 GPU. The software

and platforms used for the model implementation are CUDA version 11.0, cudnn SDK 8.0.4,

Python 3.7, TensorFlow, and Keras with 2.4.0 and 2.4.3 versions, respectively.

The results of the best model, as stated for the three datasets (public, KAIMRC, and com-

bined images) are presented in Figs 7–9 and Table 4. The results demonstrate that the VGG16

Fig 7. The resultant accuracy curves while using the hinge loss function for the best model. (a) KAIMRC dataset. (b) Public dataset. (c) Combined dataset.

https://doi.org/10.1371/journal.pone.0275446.g007
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architecture was adjusted by eliminating the top layers and decreasing the number of trainable

parameters, as well as changing the loss function, mitigating the vanishing gradient problem

with VGG models.

An addendum evaluation metric was used to evaluate the selected models, which is

the ROC_AUC. It is typically used as an evaluation metric for binary classification prob-

lems. It also represents the relationship between the true positive rate (TPR) and the false

positive rate (FPR) at various threshold values. It was obtained for the best model, as shown

in Fig 4. Fig 10 presents the resultant ROC_AUC for the test set for each database. The

model yields AUC scores of 0.83, 0.89, and 0.87 for the local, public, and combined datasets,

respectively.

Additionally, because the development process used only one-fold of the datasets, K-fold

cross-validation was used, with a value of three selected for the number of folds. Figs 11–13

Fig 8. The resultant loss curves while using the hinge loss function for the best model. (a) KAIMRC dataset. (b) Public dataset. (c) Combined dataset.

https://doi.org/10.1371/journal.pone.0275446.g008

PLOS ONE Peripapillary atrophy classification using CNN deep learning for glaucoma screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0275446 October 6, 2022 13 / 25

https://doi.org/10.1371/journal.pone.0275446.g008
https://doi.org/10.1371/journal.pone.0275446


present the resulting confusion matrices while training and testing the best model with each

dataset for the three folds. Fig 14 shows the ROC_AUC curves for the three folds while con-

ducting the KAIMRC, public, and combined sets, respectively, and Tables 5–7 show the classi-

fication reports obtained.

Fig 9. The confusion matrices on the test sets. (a) KAIMRC dataset. (b) Public dataset. (c) Combined dataset.

https://doi.org/10.1371/journal.pone.0275446.g009
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Discussion

Because of the similarity in intensity, distinguishing PPA and OD boundaries using fundus

images is difficult. However, the accomplished work for the PPA symptom generally involves

hand-crafted methods, which lack the general feature because different datasets were used

while implementing each algorithm, potentially introducing a performance degradation when

using the same algorithm with different datasets. Nonetheless, incorporating data from multi-

ple sources with varying PPA stages is vital for developing a robust detection algorithm that

has better generalizability. Therefore, we have provided a methodology for PPA detection in

fundus images, which uses complete deep learning approaches without any image processing

or hand-crafted methods using various datasets from both public and local sources.

Performance of deep learning

Current state-of-the-art PPA detection models combine hand-crafted and deep features or suf-

fer from small PPA data that hinder their generalizability [21–24]. Cheng et al. [21] proposed

an algorithm by extracting biologically inspired features from images. A fringe removal-based

approach was applied to localize the OD. A total of 1,584 images from the Singapore Cohort

study of the risk factors for myopia (SCORM) were used to train and test the model. The

model achieved 90% accuracy in detecting the PPA. In this study, the lack of PPA in glaucoma

or adults indicates a lack of diversity in the images. Other signs may be present in the glauco-

matous cup, and the use of this model in glaucoma patients may not be as accurate. However,

such an approach might result in performance degradation while performing the same locali-

zation and detection methods as other images from different datasets. Septiarini et al. [22] pro-

posed a methodology for the PPA classification problem over three different datasets using a

thresholding approach for ROI localization and a backpropagation neural network for image

classification. These datasets were obtained from different sources; however, the number of

images was limited because only 155 fundus images were used. The lack of various images in

terms of quality and clinical conditions would introduce a limitation while performing the

same methodology with other datasets for either ROI localization or classification part of the

system. The accuracy was reported for the stated algorithm as 96% overall, while 100% accu-

racy was achieved with severe cases. Sharma et al. [23] used six public datasets and labeled

them into three categories: healthy, PPA, and others. Only the first two labels were used in

their study. A hand-crafted method was used in parallel with a deep learning model, ResNet50,

which introduced some limitations in the model. The hand-crafted method employs image

features extracted from the gray level co-occurrence matrix (GLCM), as well as their homoge-

neity, correlation, and image contrast. Therefore, even though various images were obtained, a

hand-crafted method was still used to localize the ROI and in the classification part of the

Table 4. The obtained classification reports while evaluating the best model on the testing sets.

KAIMRC Dataset

Class Label Precision Recall F1-Score Accuracy Balanced Accuracy

Non-PPA 0.76 0.77 0.77 0.74 0.73

PPA 0.72 0.71 0.71

Public Datasets

Non-PPA 0.83 0.87 0.85 0.83 0.82

PPA 0.84 0.78 0.81

Combined Datasets

Non-PPA 0.81 0.84 0.83 0.80 0.79

https://doi.org/10.1371/journal.pone.0275446.t004

PLOS ONE Peripapillary atrophy classification using CNN deep learning for glaucoma screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0275446 October 6, 2022 15 / 25

https://doi.org/10.1371/journal.pone.0275446.t004
https://doi.org/10.1371/journal.pone.0275446


Fig 10. The ROC curve on the three used datasets and showing the resultant AUC score. (a) KAIMRC dataset. (b)

Public dataset. (c) Combined dataset.

https://doi.org/10.1371/journal.pone.0275446.g010
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algorithm. The performance was reported with average sensitivity, specificity, and accuracy

values of 95.83%. An addendum study was revised to introduce texture analysis for the PPA

identification objective [24]. A thresholding approach was used to localize the region where

the PPA occurred; however, limited data of only 80 retinal fundus images were available

Fig 11. The confusion matrices for the test sets while performing the cross validation on the KAIMRC images. (a) First Fold. (b) Second Fold. (c) Third Fold.

https://doi.org/10.1371/journal.pone.0275446.g011
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during the experiments. The sensitivity for detecting moderate to severe PPA regions was 73%,

with a specificity of 95%.

Our work presents a two-stage automated end-to-end deep learning system for ROI locali-

zation and PPA classification. Sharma et al. used various datasets with comparable diversity in

their study [23]. Hence, this work overcomes the limitations in the literature, namely, the use

Fig 12. The confusion matrices for the test sets while performing the cross validation on all the obtained public images. (a) First Fold. (b) Second Fold. (c) Third

Fold.

https://doi.org/10.1371/journal.pone.0275446.g012
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of hand-crafted methods and small datasets. A deep learning model of the mask R-CNN archi-

tecture was re-trained for the problem assigned and for the classification part of the method,

because no features were algorithmically extracted from the images. Additionally, a deep learn-

ing model used for both feature extraction and classification stages.

Several performance measures were conducted for the PPA classification stage, which

increased the reliability of the reported performance. Six metrics were obtained for the model.

In addition to these performance measures, the K-fold cross-validation evaluation approach

Fig 13. The confusion matrices for the test sets while performing the cross validation on the combined images from both public sources and KAIMRC database.

(a) First Fold. (b) Second Fold. (c) Third Fold.

https://doi.org/10.1371/journal.pone.0275446.g013
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Fig 14. The ROC curves while performing the cross validation on the three datasets. (a) KAIMRC images. (b)

Obtained Public images. (c) Combined images.

https://doi.org/10.1371/journal.pone.0275446.g014
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Table 5. The obtained classification reports for the test sets after performing the cross-validation on the KAIMRC images.

Fold No. 1

Precision Recall F1-score Balanced Accuracy

Non PPA 0.77 0.81 0.79 0.75

PPA 0.75 0.71 0.72

Fold No. 2

Precision Recall F1-score Balanced Accuracy

Non PPA 0.77 0.85 0.81 0.74

PPA 0.75 0.64 0.69

Fold No. 3

Precision Recall F1-score Balanced Accuracy

Non PPA 0.80 0.73 0.76 0.75

PPA 0.70 0.77 0.73

Average Accuracy = 0.75 (+ - 0.62)

https://doi.org/10.1371/journal.pone.0275446.t005

Table 7. The obtained classification reports for the test sets after performing the cross-validation on the combined images.

Fold No. 1

Precision Recall F1-score Balanced Accuracy

Non PPA 0.77 0.83 0.80 0.76

PPA 0.77 0.70 0.73

Fold No. 2

Precision Recall F1-score Balanced Accuracy

Non PPA 0.80 0.82 0.81 0.79

PPA 0.79 0.76 0.77

Fold No. 3

Precision Recall F1-score Balanced Accuracy

Non PPA 0.77 0.83 0.80 0.77

PPA 0.79 0.72 0.75

Average Accuracy = 0.78 (+ - 0.95)

https://doi.org/10.1371/journal.pone.0275446.t007

Table 6. The obtained classification reports for the test sets after performing the cross-validation on the public images.

Fold No. 1

Precision Recall F1-score Balanced Accuracy

Non PPA 0.80 0.79 0.80 0.79

PPA 0.79 0.80 0.79

Fold No. 2

Precision Recall F1-score Balanced Accuracy

Non PPA 0.90 0.76 0.82 0.83

PPA 0.77 0.90 0.83

Fold No. 3

Precision Recall F1-score Balanced Accuracy

Non PPA 0.77 0.80 0.78 0.78

PPA 0.80 0.77 0.78

Average Accuracy = 0.80 (+ - 1.82)

https://doi.org/10.1371/journal.pone.0275446.t006
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was performed, and no study has been conducted using this approach. Furthermore, as shown

in Table 4, the results for the public datasets were better than either the KAIMRC images or

the combination of all images. This is because public images have better quality than the

KAIMRC. Even when the number of used public images is less than the number of images in

the KAIMRC database, it outperforms its results by a significant margin. When combining all

images into a single dataset called the combined dataset, the results remain lower than the

model with the public images, which is caused by the effect of including the KAIMRC images.

The main contribution of this study is the development of a system by designing the pro-

posed approach through various datasets to provide a more robust and generalized model, par-

ticularly when performing the K-fold cross-validation evaluation methodology because the

variation of the model results across all images in the conducted dataset is reported. Obtaining

such a system to expedite the detection of the progression of glaucoma and other related dis-

eases will aid clinicians, particularly in primary clinics or regions where there are limited clini-

cal experts.

Limitations and future work

This study had some limitations. It used a complex deep learning system to classify PPA versus

non-PPA; therefore, an interpretable surrogate model can be used to explain how it reached its

prediction. In future efforts, one can experiment with the operating point (classification thresh-

old) in the training set to find the optimal threshold that maximizes the Youden index with ROC

curve analysis. Moreover, using more data for the problem at hand can be addressed by either

obtaining more diverse images with PPA states or mitigating the cost of labeling limitation. Fur-

ther improvement of the developed algorithms while performing either localization for the ROI

or the classification model is needed. The number of missed images can also be mitigated to

achieve better results for the identification of PPA features using the classification model.

Conclusion

Early detection of PPA improves the diagnosis of glaucoma using a combination of other clini-

cal indicators. In this study, a PPA detection approach was developed with two deep learning

models operating in sequence to localize the region where the PPA occurs as a preprocessing

stage, thus classifying that area while conducting various dataset images. The implementation

of the localization model was obtained using the Matterport [32] implementation for the mask

R-CNN network. A classification architecture is proposed for classifying localized regions

based on whether a PPA is developed. For the localization stage, the results were reported

while evaluating the experiments performed with images from different distributions. For the

classification network, the transfer learning approach with pre-trained weights on the Ima-

geNet dataset was used. In this study, five public sources were used in addition to the images

gathered from a local source, which resulted in an overall diverse database.

Future work is proposed for the developed system in terms of both localization and

classification methodologies. The localization model results include some duplicated detected

regions, which can be resolved by either tuning the used network or developing an image pro-

cessing approach. Several performance measures have been reported for the classification

model. The results can be improved using different deep learning architectures and more

images.
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