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Cyclin-dependent kinases (CDKs) play significant roles in numerous physiological, and are
considered an attractive drug target for cancer, neurodegenerative, and inflammatory
diseases. In the present study, we have aimed to investigate the binding affinity and
inhibitory potential of selonsertib toward CDK6. Using the drug repurposing approach, we
performed molecular docking of selonsertib with CDK6 and observed a significant binding
affinity. To ascertain, we further performed essential dynamics analysis and free energy
calculation, which suggested the formation of a stable selonsertib-CDK6 complex. The in-
silico findings were further experimentally validated. The recombinant CDK6 was
expressed, purified, and treated with selonsertib. The binding affinity of selonsertib to
CDK6 was estimated by fluorescence binding studies and enzyme inhibition assay. The
results indicated an appreciable binding of selonsertib against CDK6, which subsequently
inhibits its activity with a commendable IC50 value (9.8 mM). We concluded that targeting
CDK6 by selonsertib can be an efficient therapeutic approach to cancer and other CDK6-
related diseases. These observations provide a promising opportunity to utilize selonsertib
to address CDK6-related human pathologies.

Keywords: drug repurposing, cyclin-dependent kinases, anticancer therapy, MD simulation, molecular docking,
drug design and development
INTRODUCTION

Cyclin-dependent kinases (CDKs) are a large family of heteromeric serine/threonine protein kinases
that play a crucial role in cell cycle progression (1). CDKs are involved in different biological
processes, including transcription, translation, neurogenesis, and apoptosis (2). Dysregulation of
CDKs is directly associated with oncogenesis (3, 4). The transient activation of CDKs by forming a
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complex with different cyclin proteins regulates cell cycle
progression (5). About 20 CDKs and 30 cyclins have been
reported so far. CDK1, CDK2, CDK4, and CDK6 are involved
in the transition of cell cycle phases, whereas CDKs 7-11 regulate
the transcription (6).

The CDK6 gene is located on Chromosome 7 and translates
into a 326 amino-acids protein (7). The CDK6-cyclin D complex
phosphorylates retinoblastoma (Rb) protein leading to E2F
transcription factors activation (8). Activated E2Fs trigger the
regulatory genes, including cyclin E, which ensure the
irreversible transition of G1 to S phase in cell-cycle progression
(9). In addition, CDK6 plays a transcriptional role in tumor
angiogenesis and phosphorylates nuclear factor kappa-B (NF-
kB), thereby linking cancers to inflammation (7, 10). Different
components of the CDK6-cyclin D complex are altered in
various malignancies and neurodegenerative disorders (11, 12).

Studies have reported an increased expression of CDK6 in
leukemia, T-cell lymphoblastic lymphoma, and B-lymphoid
malignancies (13–15). Increased activity of CDK6 is
responsible for the metabolic switching in energy consumption
pathways, leads to activation of alternative pathways that inhibit
the production of reactive oxygen species (ROS), and prevents
apoptosis in cancer cells (16–19). The overexpression of CDK6
initiates the multidrug-resistant gene that favors the growth and
development of cancer cells and protects the cells from apoptosis
(20, 21). The studies confirm the crucial role of CDK6 in cell
cycle regulation and metabolism. Furthermore, the
overexpression of CDK6 is also widely investigated to be
associated with diabetes and inflammatory diseases (22). All
the research findings favor the targeting of CDK6 for the
successful management of various diseases, which led to the
discovery of reliable CDK6-targeted drugs (23, 24). Palbociclib,
ribociclib, and abemaciclib are highly selective and reversible
inhibitors of CDK6 that interact with the ATP binding pocket of
CDK6 and form hydrogen bonds and are used for the treatment
of cancer (25). In enzyme assays, all three compounds show
different potency in the activity against CDK6. Palbociclib,
Ribociclib, and abemaciclib showing IC50 values 16 nM, 39
nM and 10 nM, respectively.

Selonsertib is a recently developed potential and selective
inhibitor of apoptosis signal-regulating kinase-1 (ASK-1) with
efficient anti-inflammatory, anti-fibrotic, and anti-neoplastic
activities (26–28). It plays a key role in hepatocyte injury,
inflammation, cellular proliferation, and fibrosis in non-
alcoholic steatohepatitis (NASH). However, recent studies have
shown that selonsertib failed to show an anti-fibrotic effect in
NASH during clinical trials (26, 29). Selonsertib is a serine/
threonine-protein kinase inhibitor that reverses the multidrug
resistance properties of cancer cells by inhibiting the
overexpression of ATP-binding cassette (ABC) transporters
and reducing the proliferation of cancer cells (30). When orally
administered, selonsertib binds competitively (ATP-competent)
to the catalytic domain of ASK1, thus averting its
phosphorylation and activation (28, 31). Further, the binding
inhibits the phosphorylation of downstream kinases, viz. p38
mitogen-activated protein kinase (p38 MAPK) and c-Jun
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N-terminal kinases (JNKs) (28). CDK6 has involved cancer
progression via (RB)-E2F signaling. An uncontrolled regulation
of the cyclin D-CDK4/6-INK4-RB pathway has been reported in
cancer which causes uncontrolled cell cycle and cell growth.
Although selonsertib had dose-dependent effects indicating good
pharmacodynamic activity, we can employ its excellent drug-like
features to treat other diseases. However, selonsertib has not
been investigated for its inhibitory potential against CDK6 (32).

Since CDK6 is considered an attractive drug target for cancer
therapy, we aimed to see the CDK6 inhibitory potential of
Selonsertib (33). We hypothesized that selonsertib binding to
CDK6 may be a reasonable therapeutic approach toward cancer
management. Our group has been working toward developing
new therapeutics and exploring the possibility of repurposing
existing molecules as a CDK6 inhibitors (34). Here, we used
computational and experimental methods to investigate the
binding affinity and enzyme inhibitory potential of selonsertib
against CDK6. Thus, we report Selonsertib as a CDK6 inhibitor
for the first time, which may be implicated in cancer control and
prevention. Our findings have great potential in designing and
developing a new class of potent CDK6 inhibitors from an
already available pool.
MATERIALS AND METHODS

Molecular Docking
Molecular docking studies were carried out to better understand
the binding mode and the binding affinity of selonsertib against
CDK6. The crystal structure of human cyclin-dependent kinase 6
complexes with a flavonol inhibitor, fisetin, was downloaded
from the RCSB protein data bank (1XO2) (35). On the other
hand, 3D structure of selonsertib was retrieved from the
PubChem compound database (PubChem id: 71245288). The
molecular docking was performed using InstaDock (36). Before
conducting the molecular docking experiment, all the HETATM
and water molecules already present within the structure of
CDK6 were removed. A total of 20 runs were performed using
the Lamarckian genetic algorithm. Of the 20 conformations
generated, the best one was selected based on binding free
energy. The visualization of the complex was done
using PyMOL.

Molecular Dynamics Simulations
To better understand the binding of selonsertib within the active
site of CDK6, we performed a 100 ns molecular dynamics (MD)
study for this complex (37, 38). The docked complex of CDK6-
selonsertib prepared using molecular docking was taken as a
starting point for MD study as described (39, 40). We used the
GROMACS 4.6.7 package with the gromos96 force field to
perform the MD simulation (41). GROMACS is a widely used
tool for performing MD simulation studies, and its utilization in
protein-ligand simulation has been reported in many studies (42,
43). The CDK6-selonsertib complex was solvated within the
dodecahedron box of an explicit SPC water model with 0.1 nm
margin between the box walls and solute. Na+ or Cl−
May 2022 | Volume 12 | Article 865454
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counterions were added to neutralize the system charge. The
particle-mesh Ewald method (cutoff distance of 0.1 nm) was
employed to calculate long-range electrostatic interactions.
Lennard-Jones 6–12 potential was used for evaluating the van
der Waals interactions. For this calculation, the cutoff distance
was set to 0.1 nm. The LINCS algorithm constrains bond lengths
while setting the time step to 0.002 ps.

Further energy minimization was performed using the
steepest-descent method for 10,000 steps to remove the steric
clashes between atoms. The whole system was further subjected
to equilibration for 1 ns. To maintain the system at 300 K and 1
atm, Berendsen weak coupling systems were utilized. Maxwell
Boltzmann distribution was used for randomly generating the
Initial velocities. The final 100ns production run was performed
at 300 K in NPT ensemble. Furthermore, xmgrace was used to
generate graphs (http://plasmagate.weizmann.ac.il); PyMol and
VMD were utilized for further graphical inspections
and analysis.

Principal Component Analysis
Principal component analysis (PCA) was performed and
analyzed to investigate the collective motions in protein (44).
The covariance matrix, C, was calculated using the following
equation:

Cij =< (xi− < xi > )(xj− < xj > )

Where xi and xj are the instant coordinates of the ith and jth
atoms of the system, while <xi> and < xj> represent an
ensemble average.

Free Energy Landscape
The Free energy landscape (FEL) was analyzed to understand the
stability of docked complex (45). The FEL was depicted as:

DG(X) = KBT  In P(X)

Where Boltzmann constant is denoted by KB, T is the
absolute temperature, while the probability distribution of the
molecular system along the Pc is denoted by P(X).

Binding Free Energy Calculation
Molecular mechanics (MM)-Poisson–Boltzmann surface area
(PBSA) (MM-PBSA) approach plays a more efficient role in
drug discovery than the traditional free energy calculations (46,
47). The binding free energy was calculated by considering the
vacuum potential energy and solvation free energy (polar and
nonpolar). The polar and nonpolar solvation energy terms were
estimated using the Poisson–Boltzmann equation and solvent
accessible surface area (SASA) methods. The Poisson–
Boltzmann equation approximates the electrostatic component
of biological macromolecules and helps study the ligand-binding
affinity of the protein. The SASA method helps identify the
protein’s surface with van der Waals contact probed by the
solvent sphere. The MMPBSA.py module was used to perform
the MM-PBSA calculations using the AMBER software.

This approach calculates the binding free energy (DGbinding)
according to the following equations:
Frontiers in Oncology | www.frontiersin.org 3
DGbinding = DGMM(Potential energy in vaccum) 

+ DGsol (solation effects) (1)

where

DGMM = DGcoulomb (electrostatic interaction)  + DGVdw (2)

and

DGsol = DGpolar + DGnonpolar

Expression and Purification of
Recombinant CDK6
The CDK6 gene was cloned successfully within the pET28a+
vector, confirmed by the gene-sequencing method. We have
cloned the CDK6 gene in the pET28a+ vector and
subsequently transformed the Codon+ competent cells to
express CDK6 protein induced by IPTG. The overexpressed
protein was purified using our optimized protocol using Ni-
NTA column chromatography (48, 49). Purified protein was
confirmed by 12% SDS-PAGE and Western blot as
described (50).

Measurement of Binding Affinity of
Selonsertib With CDK6
Fluorescence measurements were performed on Jasco
spectrofluorimeter (Jasco, Tokyo, Japan Model FP-8250) at 25 ±
0.1°C maintained by an external thermostat Peltier device.
Selonsertib was initially dissolved in DMSO and then diluted 100
times to make a working solution of 50 mM concentration 50 mM
Tris buffer containing 150mMNaCl.Wemade a protein solution of
4 mM and titrated it with successive addition of selonsertib in 1 cm
quartz cuvette. The protein solution was excited at 280 nm, and the
fluorescence emission spectrum was recorded in the range of 300-
400 nm. After deducing the corresponding concentration of
selonsertib as blank, the resultant fluorescence emission spectra
were taken for the subsequent calculation. We have plotted
fluorescence intensity at lmax [Selonsertib, mM] and fitted it to
the modified Stern-Volmer equation to obtain binding constant
(Ka) and the number of binding sites (n) per molecule as described
in our previous communications (51, 52).

Enzyme Inhibition Assay
ATPase assay measured the free form of phosphate release after
the hydrolysis of ATP as described (34, 53). At the same time, the
kinase assay measured the protein kinase activity. A protein
kinase can transfer an inorganic phosphate from ATP to another
specific molecule. This study demonstrates the effect of
selonsertib on CDK6 kinase activity and found that selonsertib
significantly inhibits the CDK6 kinase activity. The enzyme
activity of CDK6 was confirmed by a Malachite green-based
microtitre-plate assay (BIOMOL® Green reagent, Enzo Life
sciences). About 2 mM of CDK6 protein was incubated with
assay buffer (20 mM Tris-HCl and 100 mMNaCl; pH 8.0 with 10
mMMgCl2 and increasing concentrations of ATP at 25°C for 30
minutes. After adding the Malachite green reagent to the reaction
May 2022 | Volume 12 | Article 865454
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mixture, the system was incubated for 20 minutes until the
appearance of color was measured at 620 nm on a multiplate
ELISA reader. The free inorganic released from ATP was
estimated for kinase activity using the standard phosphate
curve. After confirming the CDK6 activity, a similar
experiment set of 2 mM protein was incubated for 60 minutes
with an increasing concentration of selonsertib in a 96-well plate
at 25°C. Subsequently, 10 mM MgCl2 and 150 mM freshly
prepared ATP was added to the protein solution. After 30
minutes, BIOMOL® reagent was added to the reaction to
terminate the enzyme reaction, and absorbance was measured
at 620 nm after 20 minutes. All reactions were performed in
triplicates. The inhibitory enzyme potential of selonsertib was
calculated in terms of % inhibition using our previously
described protocol (34, 49). In brief, the raw data were
converted to % inhibition values using the formula 100 – (A/
A0 × 100) where A0 and A represent enzyme activity of CDK6 in
the absence and presence of Selonsertib. The percent inhibition
in kinase activity was plotted against log [compound], and data
were fitted to estimate the value of IC50 (50% of ATPase
inhibition) for Selonsertib using GraphPad Prism 5.0.
RESULTS

Molecular Docking
The molecular docking method helps predict a compound’s
binding orientation within the receptor’s binding pocket and
its consequent binding affinity (54–56). Docking of selonsertib
with the CDK6 shows a promising score and excellent binding
affinity. To get atomistic insights into the binding pattern of
selonsertib with the CDK6, we performed a structural analysis of
docked complex. The analysis of the docked complex of CDK6-
selonsertib shows that selonsertib is tightly bound within the
active site cavity of CDK6. The estimated binding affinity of
selonsertib was −10.9 kcal/mol (Table 1). In the CDK6-
selonsertib complex, we observed the active site residues of
CDK6, Ala17, Ile19, Val27, Ala41, Lys43, Val77, Val101,
Gln103, Ala162, Lue152, and Asp163 are prominently involved
in selonsertib binding (Figure 1). These residues are mainly
Frontiers in Oncology | www.frontiersin.org 4
involved in the ATP binding and kinase activity of CDK6.
Interestingly, the CDK6-selonsertib complex was stabilized by
several hydrophobic interactions, while Asp163 was the active
residue of CDK6, making a hydrogen bond with the selonsertib.
Thus, the formation of a strong complex of selonsertib with the
CDK6 interferes with the substrate accessibility and thus
predominantly inhibits its kinase activity.

Molecular Dynamics Simulation
To gain insights into the structural fluctuations of CDK6 upon
binding selonsertib, we performed MD simulation studies. The
structural features that were evaluated during MD analysis are
root mean square deviation (RMSD), root mean square
fluctuation (RMSF), and radius of gyration (Rg) as described
(40, 57, 58). MD simulations of CDK6 in the free and complex
with selonsertib were performed for 100 ns. Figure 2A shows
that the CDK6-selonsertib complex form is almost stable
throughout the 100 ns trajectory. After the binding of
selonsertib, the RMSD of backbone atoms of CDK6 was more
stabilized. When evaluating the distributions between ligand and
protein, initial 10ns of trajectory are sufficient for the complex’s
equilibration. A little fluctuation was recorded, but these minute
fluctuations in small globular proteins are negligible. The RMSD
was less than 0.3 nm for the complex for the total trajectory
analysis. The average RMSD for the unbound and complexed
was also evaluated. The average RMSD was 0.33 nm for the
unbound form, which was reduced to 0.23 nm for the selonserib
bound complex. The complex’s RMSD suggests the complex’s
stability during the entire simulation period (59). Moreover, the
fluctuations in the RMSF values were found during simulation in
the structure containing CDK6 bound to selonsertib (Figure 2B).

The Rg value defines the atom distribution around a given
protein axis, which is an important parameter to determine the
backbone atom’s stability and integrity (60–62). We calculated
Rg values of CDK6 in the presence and absence of selonsertib.
Figure 3A shows the fluctuation in the Rg of CDK6 in the free
and selonsertib bound form, indicating a stable complexation
throughout the simulation trajectory. A close analysis shows that
the selonsertib bound form of CDK6 was shown comparatively
less fluctuation in the Rg. The average Rg values of both
structures were evaluated. It was found that the selonsertib
TABLE 1 | List of interactions of selonsertib against CDK6.

Interactions Distance Interaction Category Interaction Type

LIG301:H21 - ASP163:OD2 2.61641 Hydrogen Bond Carbon Hydrogen Bond
VAL101:O - LIG301:F1 2.44786 Halogen Halogen (Fluorine)
GLN103:O - LIG301:F1 3.60412 Halogen Halogen (Fluorine)
ALA17 - LIG301 4.92137 Hydrophobic Alkyl
LIG301 - ILE19 4.98136 Hydrophobic Alkyl
LIG301:C14 - VAL27 4.63574 Hydrophobic Alkyl
LIG301 - ILE19 5.29688 Hydrophobic Pi-Alkyl
LIG301 - VAL27 3.80786 Hydrophobic Pi-Alkyl
LIG301 - ALA162 4.06387 Hydrophobic Pi-Alkyl
LIG301 - ALA41 3.72959 Hydrophobic Pi-Alkyl
LIG301 - VAL77 5.47874 Hydrophobic Pi-Alkyl
LIG301 - LEU152 5.27223 Hydrophobic Pi-Alkyl
LIG301 - ALA162 4.75756 Hydrophobic Pi-Alkyl
May 2022 | Volu
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bound structure of CDK6 has an average Rg value of 2.11 nm2,
which was comparatively less than its free form (2.03 nm2). This
clearly shows CDK6 becomes more compact after the binding of
selonsertib. The findings of this study indicate the stable binding
of the CDK6-selonsertib complex with negligible atomic
fluctuations, exhibiting the complex to be stable.

Furthermore, the solvent-accessible surface area (SASA) was
studied to evaluate the protein’s structural folding–unfolding
dynamics under the solvent environment by studying its
hydrophobic core and solvent accessibility (63). We plotted the
SASA to investigate the effect of selonsertib on the solvent
Frontiers in Oncology | www.frontiersin.org 5
accessibility of CDK6 (Figure 3B). The SASA plot shows that
the binding of selonsertib affects the SASA value significantly
compared to unbound systems. The average SASA value for
CDK6 was 157.74 nm2, while for the CDK6-selonsertib complex,
it was 151.38 nm2. The decrease in the SASA after the binding of
selonsertib signifies the stabilized protein structure after the
binding of selonsertib (Figure 3B). Overall findings of the MD
simulation studies indicate that CDK6 forms a stable complex
with selonsertib.

Although various interactions facilitate ligand binding to its
target protein, hydrogen bond formation is a crucial role player
A B

FIGURE 2 | Structural fluctuations in the CDK6 was evaluated by MD simulation. (A) Backbone RMSD values of the unbound CDK6 protein and CDK6 protein
complexed with selonsertib. The RMSD of selonsertib is shown in the inset (B) RMSF value of the unbound CDK6 protein and CDK6 protein complexed with selonsertib.
A B

FIGURE 1 | (A) The docked complex of selonsertib within the active site of CDK6. (B) Showing interactions of active site residues of CDK6 with the selonsertib.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Baig et al. Exploring Mechanism of CDK6 Inhibition by Selonsertib
in complex stabilization (40, 64, 65). The higher number of
hydrogen bonds in the ligand-protein complex is responsible for
the stability of complex and strong ligand affinity. Selonsertib
forms an average of one bond throughout the simulation period.
This indicates that the binding was governed mainly by
hydrophobic interactions (Figure 4).

Principal Component Analysis
We performed principal component analysis (PCA) to evaluate
and discriminate the conformational changes resulting from
pressurization and thermal fluctuations (66–68). The biggest
eigenvectors from PCA depict the rigorous atomic motion in
the protein (69–71). We investigated the projection of eight
eigenvectors for the PCA of CDK6 bound with selonsertib
(Figure 5A). The trajectory suggested largely similar atomic
Frontiers in Oncology | www.frontiersin.org 6
motions during the simulation. The PCA plot of eigenvalues
along the eigenvectors was projected. The results show that the
selonsertib bound structure of CDK6 occupies a smaller
conformational space, indicating higher structural stability
than its apo form (Figure 5A). Further, to understand the
protein-folding pattern differences between the apo and
selonsertib bound form of CDK6, we plotted the free energy
landscapes (Figures 5B, C) and found that most of the
simulation ensembles in the selonsertib bound structure are
concentrated to a narrow range of conformational space. These
observations suggest a better stability and compact packing of the
selonsertib bound structure.

Molecular Mechanics Poisson–Boltzmann
Surface Area
We further performed Molecular mechanics Poisson–Boltzmann
surface area (MM-PBSA) analysis for the selonsertib bound
CDK6 complex (57). The MD trajectories were used to
calculate various thermodynamics parameters involved in the
complex formation. The most important parameter was
calculating the binding free energy of the complex during the
simulation period (Table 2). The binding free energy of
selonsertib against CDK6 was −18.09 (± 0.36) kcal/mol,
indicating a strong binding affinity.

Expression and Purification of
Recombinant CDK6
The recombinant CDK6 protein expressed in E. coli (codon+) cells
induced by the IPTG. The overexpressed protein in the form of
inclusion body was solubilized by N-Laurosyl sarcosine. After
centrifugation, the supernatant was subjected to Ni-NTA affinity
chromatography and bound protein was eluted with the help of
increasing concentrations of imidazole. CDK6 protein was eluted at
500mM imidazole concentration. The purity of CDK6 was
confirmed by SDS-PAGE, which showed a single protein band
FIGURE 4 | Intermolecular H-bonds in the Selonsertib-CDK6 complex during
MD simulation.
A B

FIGURE 3 | (A) Rg of the backbone carbon alpha for the unbound CDK6 protein and CDK6 protein complexed with selonsertib. (B) The SASA (nm2) for the
unbound CDK6 protein and CDK6 protein complexed with selonsertib during the 100 ns.
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A

B C

FIGURE 5 | (A) Projections of the eigenvectors for PCA analysis of CDK6 complexed with selonsertib. Free energy contour for the (B) CDK6 and (C) selonsertib
bound structure of CDK6.
TABLE 2 | Binding free energy and interacting amino acid residues in the docked CDK6 and selonsertib complex.

Molecule DG VDWAALS EEL DGgas DGsolv
Avg (Std. Err. of Mean)

(kcal/mol)
Avg (Std. Err. of Mean)

(kcal/mol)
Avg (Std. Err. of Mean)

(kcal/mol)
Avg (Std. Err. of Mean)

(kcal/mol)
Avg (Std. Err. of Mean)

(kcal/mol)

CDK6-
selonsertib

-18.09 (± 0.36) -44.87 (± 0.33) -26.29 (± 0.69) -71.16 (± 0.72) 53.07 (± 0.66)
Frontiers in Onco
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at∼37 kDa (data not shown). Further, the enzymatic activity of
recombinant CDK6 protein was performed by ATPase assay
suggesting the excellent activity in refolded purified
protein (Figure 6).

Fluorescence Measurements
We estimated the binding affinity of selonsertib with CDK6 using
standard fluorescence measurements. The CDK6 concentration
was optimized at 4 µM and titrated with increasing Selonsertib
concentrations from a solution of 1.0 mM stock. The
fluorescence emission spectra were recorded at 300-400 nm by
keeping the excitation wavelength fixed at 280 nm. The final
concentration of selonsertib was varied from 1 to 8 mM to
achieve the saturation point. Figure 7 shows a significant
decrease in fluorescence emission spectra of CDK6 with
increasing concentrations of selonsertib (Figure 7A). A notable
decline in fluorescence intensity with each titration step indicates
a significant binding affinity of selonsertib with the CDK6. The
fluorescence quenching data were fitted to the modified Stern-
Volmer equation to obtain the binding constant (Ka) and the
number of binding sites per CDK6 molecule (n) (Figure 7B).
The obtained binding constant values were 1.8x105 M-1, and the
number of binding sites per CDK6 molecule (n) was 1.

Enzyme Inhibition Assay
The kinase activity of CDK6 was measured with increasing
concentrations of selonsertib to calculate the IC50 value.
Figure 8 shows the amount of inorganic phosphate released by
CDK6 with increasing \selonsertib concentration. We observed
that the binding of selonsertib to CDK6 inhibits its kinase
activity (Figure 8). The data of enzyme inhibitory potential of
selonsertib with increasing concentration were plotted to
calculate the IC50 value. We estimated the IC50 value of
selonsertib with CDK6 as ~9.8 mM using AATBioquest
software. These findings clearly indicate that the strong
binding affinity of selonsertib to the CDK6 causes a significant
decrease in its enzyme activity. Thus, selonsertib could be
implicated as a potential CDK6 inhibitor.
Frontiers in Oncology | www.frontiersin.org 8
DISCUSSION

The activation of signaling cascades is an anomalous recurrent
event occurring in a range of human cancers (72, 73). Since most
protein kinases are fundamental components of nearly all
signaling pathways, the development of anticancer therapies
targeting these vital enzymes has always gained interest among
researchers (74–76). The majority of protein kinases, when
amplified, over-expressed, or constitutively active, stimulate the
proliferation, growth, survival, and migration of cells, thereby
assuming the oncogenic properties. CDKs, along with their
analogous cyclin, orchestrate the complex events regulating the
cell cycle (2, 77). Usually, in cancer cells, the activity of CDK-
cyclin complexes is deregulated, thereby resulting in
uncont ro l l ed ce l l g rowth owing to inc rea sed Rb
phosphorylation (Rb inactivation) and transcriptional activity
(78, 79). Thus, targeted kinase inhibition is a reasonable
therapeutic approach (80–82).

In the last few decades, various efforts have been devoted to
developing small molecules that selectively/specifically inhibit
protein kinases (83, 84). Rapidly emerging data with selective
inhibitors of cell cycle kinases have corroborated them as
anticancer drug targets, upholding enduring preclinical
prediction. Selonsertib, a selective inhibitor of ASK-1, possesses
efficient anti-inflammatory, anti-fibrotic, and anti-neoplastic
activities (28). It plays a vital role in preventing inflammatory
cytokine production, down-regulation of the fibrotic gene
expression, inhibition of cellular proliferation, and suppression
of excessive apoptosis (85).

Our molecular dynamics simulation study focused on the
dynamic state of CDK6 in the apo form and the effect of
selonsertib binding (Figures 2, 3). The RMSD values, which
measure the structural stability, came out to be 3Å for the CDK6
protein. We further analyzed the performance of the ligand at the
binding pocket and found it to be highly stable in the complex.
Selonsertib, the proposed lead, when bound to CDK6, showed an
RMSD value below 1.5Å. Residual RMSF analysis for the
unbound and bound form follows the same trend as RMSD.
A B

FIGURE 6 | (A) Phosphate release (pMol) with increasing concentrations of protein (0-1000 nm) at fixed ATP concentration (20 µM). (B) With increasing concentrations
of ATP (0-100 µM) at constant protein concentration (500 nM).
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The residues fluctuation for the protein in the complex form
showed reduced movement consistently and homogeneously.
We measured the difference in compactness by measuring the
radius of gyration throughout dynamics. The CDK6 protein
complex with Selonsertib has a radius of gyration values lower
than the protein alone.

The essential dynamic plot of eigenvectors for the bound and
unbound states drew parallelism with our previous biophysical
results. As evident from Figure 5, the CDK6 in the bound state
has reduced dynamic behavior, having ensembles concerted
defined by well-defined minima. To understand the packing
behavior of the protein in both states, we measured the
intramolecular hydrogen bond. The difference was not
significant, suggesting no major secondary structural shift. The
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intramolecular hydrogen bonds between the CDK6 residues and
the selonsertib were found at an average of one formed by the
residues D163. Most of the binding interactions were nonionic,
involving residues A17, I19, V27, A41, V77, V101, N103, L152,
and A162. These biophysical results suggest Selonsertib is an
effective inhibitor against the inflammatory cytokine of
interest, CDK6.

Here, we evaluated the inhibitory potential of selonsertib on
CDK6. It was observed from the fluorescence binding studies
that the binding affinity of selonsertib toward CDK6 was
efficient. Selonsertib is reported as a potent and highly selective
ATP-competitive inhibitor ASK1 with a pIC50 value of 8.3 (86).
The role of selonsertib as a CDK6 inhibitor was further evaluated
by ATPase activity. ATPase activity of CDK6 in the presence of
Selonsertib shows an IC50 of 9.8 mM. Previously, we reported
some natural products as CDK6 inhibitors and found the IC50
value of Selonsertib with CDK6 is quite comparable with these
natural products, such as vanillin, quercetin, and ellagic acid (34,
49). Selonsertib significantly decreases the substrate accessibility
of CDK6 by acting as a competitive inhibitor which eventually
results in enzyme inhibition. Selonsertib may be considered as a
drug of interest to target CDK6 for the therapeutic management
of associated diseases.
CONCLUSION

In conclusion, our study signifies that selonsertib could be a
potent inhibitor of CDK6. It shows strong binding affinity, kinase
inhibition, and several non-covalent interactions with the
substrate-binding pocket are formed. Targeting CDK6 by
selonsertib could be a promising therapeutic approach for
cancer and other CDK6 associated disease therapy. Overall,
our results encourage future researchers to explore using
selonsertib in developing potent and selective CDK6 inhibitors
for the clinical management of related anomalies. This study can
be a stepping stone for further evaluation to explore the
FIGURE 8 | Kinase activity of CDK6 with increasing concentrations of
selonsertib. The kinase activity of CDK6 was measured in the form of ATP
release (ATPase activity).
A B

FIGURE 7 | Fluorescence binding studies of selonsertib with CDK6. (A) Fluorescence emission spectra of CDK6 with increasing concentrations of selonsertib (1–8 mM).
(B) Modified Stern–Volmer plots to estimate the binding affinity of selonsertib with the CDK6.
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possibility of using selonsertib to address CDK6-related
human pathologies.
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