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In the present study, ameliorative capabilities of wuxal amino (bio stimulant) under salt stress has been
investigated through adaptive mechanisms and antioxidant potential in tomato plants. In the experi-
ment, two different concentrations (2 cm L-1 and 3 cm L-1) of wuxal amino through foliar application
and soil irrigation were applied to the salt (150 mM) treated tomato plants and then morphological traits,
photosynthetic pigments, osmolytes, secondary metabolites, oxidative stress and antioxidant enzymes
activity were assessed at 60 days after planting. The results revealed that salt stress decreased the growth
parameters, photosynthetic pigments, soluble sugars and soluble protein whereas, content of proline,
ascorbic acid, total phenols, malondialdehyde, hydrogen peroxide and the activity of antioxidant
enzymes activity increased under salt stress. Moreover, Wuxal amino application through foliar or soil
to salt stressed plants improved morphological traits, photosynthetic pigments, osmolytes, total phenol
and antioxidant enzymes activity. Interestingly, the deleterious impact of salinity on tomato plants were
significantly reduced and it can be evident from reduced MDA and H2O2 levels. These responses varied
with the mode (foliar or soil) of application of Wuxal amino under different concentrations (2 cm L-1

and 3 cm L-1). It was concluded that application of Wuxal amino (2 cm L-1, foliar) and (3 cm L-1; soil)
proved best and could be commercially used as eco-friendly tool for the protection of tomato plants
grown under salinity stress.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

One of the most daunting challenges for farmers is to feed the
ever-increasing global population, that is currently growing at a
rate of about 1.05% per year, under the increasingly globalized cli-
matic and natural disturbances (Loudière and Gourbesville, 2020).
To cope with these challenges, researchers estimated that by 2050,
it might be necessary to shift the maximum output of important
food crops by about 87 percent (Fróna et al., 2019; Loudière and
Gourbesville, 2020). As these climatic conditions are often linked
with major abiotic constraints including drought, heat, cold, and
salt stress that cause significant loss to plant growth, production,
yield and food quality (Ahanger et al., 2018; Ahmad et al., 2018a;
Soliman et al., 2019; Kaya et al., 2020; Kononenko et al., 2020;
Soliman et al., 2020a). Among the abiotic stresses, soil salinization
is most detrimental to crops in terms of plant growth, develop-
ment, and ultimate crop productivity and food security (Ahmad
et al., 2014; Kumar et al., 2015; Sharma et al., 2016; Acosta-
Motos et al., 2020; Soliman et al., 2020a). The soil salinization
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issues are increasing by about 20%, nationally and globally, for the
agricultural land and this increase is continuous (Gupta and Huang,
2014; Gharsallah et al., 2016). As a consequence, for maintaining
global food security and minimizing economic losses it is necessary
to understand crop resilience against multiple stresses in order to
optimize better yields and reduce agronomic performance (Gupta
and Huang, 2014; Gupta et al., 2015).

Salinity stress also indirectly induces the accumulation of ROS,
such as singlet oxygen, superoxide radicals, and H2O2 (Ahmad
et al., 2018b; Mir et al., 2018). Increased oxidative stress limits vital
processes such as transpiration (Abdallah et al., 2020), water
absorption and nutrient uptake dynamics as well as chlorophyll
biosynthesis (Cendrero-Mateo et al., 2015; Rizwan et al., 2015;
Ma et al., 2020) which collectively cause reduction in plant growth
and yield (Sehar et al., 2019; Alhaithloul et al., 2020; Senousy et al.,
2020). Plants have developed adaptive responses to survive under
salt stress which include development of morphological, physio-
logical and metabolic adaptations (Shahid et al., 2020). Improve-
ments of photosynthetic machinery and the accumulation of
osmoprotectants may be useful strategies and may play a support-
ive role in preserving salt-induced changes (El-Beltagi et al., 2020;
Osman et al., 2020). Nevertheless, antioxidant defence modulation,
either enzymatic or non-enzymatic (Latif and Mohamed, 2016;
Agathokleous, 2020; Senousy et al., 2020; Soliman et al., 2020b)
also play a crucial role in alleviating salt-induced oxidative stress.

Over-accumulation of ions such as calcium (Ca2+), magnesium
(Mg2+), sodium (Na+), sulphates (SO42�), and chlorides (Cl-) with
a special abundance of Na+, creating soil salt toxicity. The accumu-
lation of these ions increase alkalinity and creating a problem asso-
ciated with soil salinity in Egypt and therefore induce osmotic,
oxidative and ion stress that lead to destructive cellular activity
(Naveed et al., 2020). To date, many management activities have
suggested to enhance the salt tolerance underlying mechanisms,
however, environment-friendly approaches and successful use of
treatments is an innovative strategy to ensure crop yields in such
stressful circumstances (AbdElgawad et al., 2016; Singh et al.,
2018) much needed.

Several studies evaluating the impact of organic or synthetic
chemical materials as effective strategies to minimize salinity-
induced damage so as to increase the crop production and ability
to cope with stresses (Yakhin et al., 2017; Carillo, 2018). Bio-
stimulants are kind of bioactive molecules with rich ingredients
and seeking eco-friendly and sustainable ways to promote plant
growth and development when applied in a small amount
(Kumar et al., 2015; Xu and Geelen, 2018). Bio-stimulants increase
soil nutrient absorption and improve nutrient quality and thereby
contributing to growth improvement and stress tolerance in plants
(Nephali et al., 2020). Wuxal Amino meets the requirements of the
European Union for admission as working fonds of ecological farm-
ing. Previous research is mixed in terms of the impact of Wuxal
Amino, as a biofertilizer containing NPK and 9% organically fixed
nitrogen and many more effective amino acids forms (proline, ala-
nine, glycine and threonine). In addition, WUXAL Amino contains a
variety of different amino acids forms, could effectively enhance
the vegetative growth of woody plants (Pfeiffer et al., 2008;
Szabó et al., 2014).

Tomato (Solanum lycopersicum L.) is a major vegetable crop
affected by various abiotic stresses throughout the globe. It is well
known for its edible fruits as a rich source of antioxidants, phyto-
chemical, antimicrobial and anti-inflammatory contents
(Chaudhary et al., 2018). Tomato fruit is rich in vitamin C, vitamin
A and energy (Raiola et al., 2014; Ayenan et al., 2019). Tomato is a
moderately salt-tolerant crop mostly cultivated in areas with cool
and dry climatic conditions (Raza et al., 2017). Salt stress has been
reported to have significant impact on the growth, physiology and
yield of tomatoes (Bacha et al., 2017). Keeping above reports in
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mind, present study was designed to dissect the effect of wuxal
amino on growth performance of tomato plants through different
mode (foliar and root) of application and also investigate wuxal
amino mediated amelioration of salt stress in tomato plants
through modulating vegetative growth and physiological traits.
2. Materials and methods

2.1. Experimental site and bio-stimulant treatment

The experiment was conducted at the experimental farm of AL-
SALAM International for Development & Agriculture Investment,
Egypt. Wuxal Amino as a bio-stimulant obtained by AL-SALAM
International for Development & Agriculture Investment, Egypt
from Aglucone Fertilizers GmbH & Co. KG (AGLUKON Spezialdün-
ger GmbH & Co.KG), Düsseldorf, Germany. Wuxal� Amino contain
a mixture of nitrogen and amino acids as follows: Total nitrogen
110 g�1/L, total amino acids (mainly proline, alanine, glycine and
threonine) 648 g�1/L and pH value 7.0.
2.2. Experimental design

Four week old tomato seedlings (Solanum lycopersicum L. var.
023) were obtained from Agriculture Research Centre, Giza, Egypt.
Uniform seedlings were transplanted into plastic pots (40� 40 cm)
containing mixture of sand and clay (1: 3), total 7 kg, in a plastic
greenhouse. Pots were kept in the greenhouse maintained at
22/18 �C day/night temperature and 70–85% relative humidity.
After transplant, plants were irrigated normally for five days.
Thereafter, salt solution (150 mM NaCl) was administered three
times (after 5 days gap). The wuxal amino was applied for three
times (once in a week) before and after flowering. Wuxal was given
either through foliage or soil. The details of treatments include set
I-control; set II- 150 mMNaCl; set III- NaCl + wuxal amino (2 cm /L,
through root irrigation); set IV- NaCl + wuxal amino (2 cm /L,
though foliar); set V- NaCl + wuxal amino (3 cm /L, through root
irrigation) and Set VI- NaCl + wuxal amino (3 cm /L, though foliar).
Sixty days after planting (60 DAP) plants were carefully uprooted
and analysed for the different parameters described below.
2.3. Vegetative growth parameters

Growth parameters including shoot fresh weight and root fresh
weight were estimated immediately after harvesting. Dry weight
of shoots and roots was determined by oven-drying samples at
70 �C for 24 h. Moreover, plant height (cm�1), root length (cm�1)
and number of leaves per plant were also recorded.
2.4. Photosynthetic measurements

For estimation of pigments fresh 0.5 g leaf tissue was ground in
acetone (80%) using pestle and mortar. After centrifuging for 5 min
at 10,000 g absorbance of filtrate was measured at 470, 652 and
665 nm to estimate chlorophyll a, chlorophyll b (Vernon and
Seely, 1966) and carotenoid (Lichtenthaler and Buschmann, 2001).
2.5. Estimation of stress biomarkers

2.5.1. Lipid peroxidation
Malondialdehyde (MDA) content was measured using the thio-

barbituric acid (TBA) method according to Heath and Packer (1968)
and Kamyshnikov (2002) with slightly modification. The MDA con-
tent was determined according to its molar coefficient of absor-
bance of 155 mmol �L�1 �cm�1 and expressed as nmolg�1 FW.
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2.5.2. Hydrogen peroxide (H2O2) content
Hydrogen peroxide levels were determined according to

Velikova et al. (2000). Fresh leaf was homogenised in 2 mL of
0.1% trichloroacetic acid (TCA) solution. After centrifugation at
12,000 � g for 15 min, 0.5 mL of the supernatant was added to
the reaction mixture containing 0.5 mL of 10 mM K phosphate buf-
fer (pH 7.0) and 1 mL of 1 M KI. Absorbance was determined at
390 nm. The blank was prepared in the same manner except that
1 mL of 10 mM K phosphate buffer (pH 7.0) instead of the sample.
The amount of H2O2 was calculated from calibrated samples using
(1, 5, 10 mM H2O2) standard solutions, each standard solution was
added to the reaction mixture containing 0.5 mL 10 mM K phos-
phate buffer (pH 7.0) and 1 mL of 1 M KI. Absorbance was deter-
mined at 390 nm.

2.5.3. Estimation of total phenols
Total phenolic content was determined using the process

described by Dai et al. (1993), with minor modifications. A
100 lL extract volume was added to the 1.5 mL Folin–Ciocalteu
reagent solution and incubated at room temperature for 1 min.
Subsequently, 1.5 mL of sodium carbonate solution was added
and left at room temperature for 90 min in the dark. Absorbance
was checked at 765 nm. Total phenolic content was determined
by the gallic acid calibration curve and expressed as mg g�1 dry
weight.

2.5.4. Determination of the content of osmolytes (Total Soluble Protein,
Proline and Soluble Sugar)

Content of soluble protein was estimated following Lowry et al.
(1951) using Folin phenol reagent and absorbance was recorded at
700 nm using bovine serum albumin as standard. Method of Bates
et al. (1973) was used for estimation of proline. Briefly, 0.5 g dried
leaves were extracted in 3% sulphosalicylic acid. After centrifuga-
tion at 10.000g for 10 min, supernatant was mixed with ninhydrin
reagent and absorbance was taken at 520 nm. For measuring sol-
uble sugar content, anthrone method was used and absorbance
was measured at 625 nm (Irigoyen et al., 1992).

2.5.5. Estimation of ascorbate (Ascorbic acid content)
The ascorbic acid (AsA) was determined according to Jagota and

Dani (1982). Leaf samples (0.2 g) were ground with liquid N2 and
suspended in 2 mL of 5% TCA. The homogenate was centrifuged
at 10,000g for 15 min at 5 �C. AsA extraction solution was mixed
with 10% TCA which was vigorously shaken and then placed in
an ice bath for 5 min. 0.5 mL of the extract was diluted to 2.0 mL
using double distilled water, and 0.2 mL of diluted Folin-
Ciocaiteu reagent was added to the previous mixture, and the
absorbance of the blue colour developed was measured after
10 min at 760 nm. The AsA content was calculated using a standard
curve of ascorbic acid.

2.5.6. Antioxidant enzymes assay
Fresh tomato (1.0 g) leaves were extracted in 100 mM phos-

phate buffer (pH 7.8) containing PVP and EDTA where the homoge-
nate was centrifuged at 15,000g for 10 min and the supernatant
was used for assaying enzyme activity. The activity of superoxide
dismutase (SOD; EC 1.15.1.1) was assayed following Marklund
and Marklund (1974), and the ability of enzyme to auto oxidize
epinephrine was recorded at 480 nm. Catalase activity (CAT; EC
1.11.1.6) was determined by Aebi (1984) and the disappearance
of H2O2 was monitored at 240 nm for 3 min. The method of
Bergmeyer (1974) was used for determination of the activity of
POD (EC 1.11.1.7) and rate of guaiacol oxidation was monitored
at 470 nm. Polyphenol oxidase (PPO/EC.1.10.3.1) activity was
detected by a protocol of Lavid et al. (2001). The purpurogallin pro-
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duction was monitored at 495 nm and the enzyme activity was
expressed in U mg�1 protein�1 min�1.

2.6. Statistical analysis

The results presented in the graphs are the means ± standard
error of three replicates (n = 3). The results were statistically con-
firmed by analysis of variance (ANOVA). Tukey’s HSD test was
applied to find means are significantly different from each other
at p � 0.05 level using Minitab 17 Statistical Software. Means that
do not share a letter are significantly different at p � 0.05 signifi-
cance level.

3. Results

3.1. Growth biomarkers

It is evident from the Fig. 1. that various growth parameters
(plant height, fresh mass of shoot and root, and dry mass of shoot
and root) were significantly affected by the treatments (Fig. 1A-E).
The plants raised in the soil treated with 150 mM of NaCl showed
significant loss of plant height and reduced the fresh and dry mass
of shoot and root. Moreover, the loss of plant height (25.4%), shoot
and root fresh mass (34.9% and 24.1%), and shoot and root dry mass
(34.8% and 35.2%) in comparison to control plants. On the other
hand, stressed plants treated with wuxal amino (2 cm L-1 and
3 cm L-1) through different modes i.e. soil and foliar spray showed
promising recovery. On comparing two modes and concentrations,
it was found that wuxal amino (2 cm L-1) through foliar spray suc-
cessfully recovered the loss of plant height whereas; wuxal amino
(2 cm L-1) through soil recovered the fresh and dry mass of shoot
and root.

3.2. Physiological traits

Physiological traits (Chl a, Chl b, and carotenoids) exhibited a
decline in plants grown on the soil amended with 150 mM of NaCl.
Out of three physiological traits, carotene contents showed maxi-
mum loss (66.5%) in comparison to control plants. However, when
plants were treated with wuxal amino (2 and 3 cm L-1) through dif-
ferent modes, a promising recovery response in comparison to
stressed plants was observed. Wuxal amino (3 cm L-1) through
foliar spray successfully recovered the loss of Chl. a and carotene
contents whereas wuxal amino (2 cm L-1) through soil recovered
the loss of Chl. b (Fig. 2).

3.3. Stress biomarkers

The plants exposed to 150 mM of NaCl showed contrasting
response for MDA and H2O2 content. It decreased MDA content
whereas, enhanced the H2O2 content in comparison to non-
treated control plants. However, wuxal amino (2 and 3 cm L-1)
through different mode of application did not show any significant
response for the H2O2 content whereas, 3 cm L-1 through soil sig-
nificantly increased the MDA content but 2 cm L–1 through soil
reduced the MDA content (Fig. 3A and B).

3.4. Total phenol content

The presence of NaCl (150 mM) in the soil caused a significant
increase in the total phenol content in the plants compared to con-
trol plants (Fig. 3C). The plants grown under normal conditions
showed minimum values for total phenol content in comparison
to NaCl treated ones. However, total phenol content increased in
wuxal amino treated plants and maximum values for total phenol



Fig. 1. Effect of wuxal amino (2 and 3 cm L�1) under different mode (foliar and soil applied) on the salinity induced changes in (A) plant height, (B) shoot fresh weight, (C)
Root fresh weight, (D) shoot dry weight, and (E) root dry weight of tomato plants at 60 days after planting. Data are means ± standard error of the three replicates (n = 3).
Means that do not share a letter are significantly different at P � 0.05 level according to Tukey’s test. [T1- Control; T2- NaCl (150 mM, through soil); T3- Wuxal amino (2 cm
L�1
, through soil) + NaCl (150 mM, through soil); T4- Wuxal amino (2 cm L�1

, foliar spray) + NaCl (150 mM, through soil); T5- Wuxal amino (3 cm L�1
, through soil) + NaCl

(150 mM, through soil); T6- Wuxal amino (3 cm L�1
, foliar spray) + NaCl (150 mM, through soil).
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content was observed in pants treated with wuxal amino (2 cm L-1)
through foliar application then followed by wuxal amino (3 cm L-1)
through soil (Fig. 3C).
3.5. Soluble sugar, soluble protein and proline contents

The soluble sugar and protein content increased significantly
by the wuxal amino treatments irrespective of the concentration
and mode of application over the control plants (Fig. 3E and F).
However, the plants raised in the presence of NaCl (150 mM)
showed reduction of total soluble sugar and proteins content,
compared with the control. Furthermore, the plants raised from
seeds treated with wuxal amino (2 cm L-1) through foliar applica-
tion neutralised the damaging effect cause by NaCl (Fig. 3E
and F).

The plants developed in the soil administered with NaCl,
showed maximum accumulation of proline irrespective of the
treatments (Fig. 3D). However, treatment of wuxal amino (2 and
3 cm L-1) through different mode of application showed similar
response and it decreased the accumulation of proline in compar-
ison to control plants.
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3.6. Ascorbic acid

The leaves of plants treated with wuxal amino had higher
ascorbic acid and the maximum content has been reported in
the plants treated with wuxal amino (2 cm L-1) through foliage
in comparison to control plants. Additionally, plants grown on
the soil amended with NaCl (150 mM) also exhibited increased
ascorbic acid but this increase was less than the wuxal amino
(2 cm L-1; through foliage) and (3 cm L-1; through soil) treat-
ments (Fig. 4A).
3.7. Antioxidant enzymes activities

3.7.1. Activity of superoxide dismutase (SOD)
It is evident from graph 4B, that activity of SOD showed differ-

ential changes under various treatments. The maximum activity
of SOD was reported in the plants grown under the influence
of NaCl (150 mM) over the treatments. However, this suite fol-
lowed by the application of wuxal amino (3 cm L-1) through soil
and also proved best among other concentrations and mode of
application.



Fig. 2. Effect of wuxal amino (2 and 3 cm L�1) under different mode (foliar and soil applied) on the salinity induced changes in (A) chlorphyll A, (B) chlorophyll B, and (C)
carotene content of tomato plants at 60 days after planting. Data are means ± standard error of the three replicates (n = 3). Means that do not share a letter are significantly
different at P � 0.05 level according to Tukey’s test. [T1- Control; T2- NaCl (150 mM, through soil); T3- Wuxal amino (2 cm L�1

, through soil) + NaCl (150 mM, through soil); T4-
Wuxal amino (2 cm L�1

, foliar spray) + NaCl (150 mM, through soil); T5- Wuxal amino (3 cm L�1
, through soil) + NaCl (150 mM, through soil); T6- Wuxal amino (3 cm L�1

, foliar
spray) + NaCl (150 mM, through soil).
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3.7.2. Activity of catalase
Plants grown on NaCl treated soil possessed higher CAT activity

over the control plants. The activity of CAT showed dual response
in the presence of wuxal amino and maximum increase was shown
by the wuxal amino at concentration of 3 cm L-1 through soil and
minimum due to 2 cm L-1 through soil (Fig. 4C).
3.7.3. Peroxidase and polyphenol oxidase activity
It is evident from Fig. 4D and E that a significant increase in the

activity of peroxidase and polyphenol oxidase in response to the
NaCl and/or wuxal amino was observed. Control plants possessed
minimum activity of peroxidase and polyphenol oxidase. More-
over, the application of wuxal amino at 3 cm L-1 to NaCl treated
plants significantly increased the activity of peroxidase and
polyphenol oxidase in comparison to control plants (Fig. 4D and E).
4. Discussion

Salinity stress is considered as one of the most damaging abiotic
factors for crop growth and loss of yield. Efficiency of several man-
agement techniques has been exploited to lessen the damaging
effects by mediating either quick removal of toxic ions from the
soil solution or their sequestration into the less sensitive organelles
concomitant with strengthening of the existing tolerance mecha-
nisms. In this connection, the introduction of novel mitigating
agents can improve the growth and yield of plant species under
saline conditions. Despite the extensive study of NaCl, two essen-
tial unaddressed questions remain: salt-alkaline stress (SAS) and
salt-alkali stress (SAS). Salinization and alkalization can often occur
together and in the process causing extensive harm (Kawanabe
and Zhu, 1991). Salt stress mainly causes water deficiency and
ion toxicities (Munns, 2002; Parida and Das, 2005; Munns et al.,
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2020). Alkali-stress is induced by the same stress factors as salt
stress, but the influence of high pH stress is added. The high pH
environment surrounding the roots can directly cause other ions
(e.g. Ca2+, Mg2+, and others) to precipitate (Shi and Sheng, 2005).
High pH can also result in a loss of protons, the degradation or sup-
pression of transmembrane electrochemical potential gradients in
plant roots, as well as the loss of normal physiological root func-
tions including ion uptake and water absorption (Yang et al.,
2007). Under salinity stress, plant survival depends not only on
the ability to cope with water stress and ion toxicity, but also on
high pH tolerance.

In the present study a novel supplement, wuxal amino was
tested for its effectiveness on mitigating the damaging effects of
salinity on tomato plants. Wuxal amino is an organic bio-
stimulant contains 9% nitrogen not only rich in essential amino
acids like proline, alanine, threonine, and glycine but also buffering
agents used to improve the quality of liquid fertilizers for increase
its effectiveness when it combines with pesticides and micronutri-
ents (Liu et al., 2016). It is vital for plants to adjust the extracellular
pH that damages the roots ability to resist salt stress (Yang et al.,
2009). In the present study, both foliar and root applied wuxal
amino showed ameliorative effect in growth inhibition at lower
concentrations (2 cm/L). Growth in terms of plant height, root
length, fresh and dry weight was significantly enhanced due to
application of wuxal amino under salinity stress. Salinity drasti-
cally declined the plant height and weight in present study that
corroborates with the results of (Chung et al., 2019; Hasan et al.,
2020; Soliman et al., 2020b). The decline in morphological attri-
butes and biomass accumulation due to salinity stress is cumula-
tive effect on the key metabolic and assimilatory attributes like
uptake, transport and assimilation of mineral elements (Ahanger
and Agarwal, 2017; Ahanger et al., 2019; Osman et al., 2020),
enzyme functioning (Elkelish et al., 2020), photosynthesis and



Fig. 3. Effect of wuxal amino (2 and 3 cm L�1) under different mode (foliar and soil applied) on the salinity induced changes in (A) MDA content (B) H2O2 content (C) Total
phenol content, (D) proline content, (E) total soluble sugar content, and (F) total soluble protein of tomato plants at 60 days after planting. Data are means ± standard error of
the three replicates (n = 3). Means that do not share a letter are significantly different at P � 0.05 level according to Tukey’s test. [T1- Control; T2- NaCl (150 mM, through
soil); T3- Wuxal amino (2 cm L�1

, through soil) + NaCl (150 mM, through soil); T4- Wuxal amino (2 cm L�1
, foliar spray) + NaCl (150 mM, through soil); T5- Wuxal amino (3 cm

L�1
, through soil) + NaCl (150 mM, through soil); T6- Wuxal amino (3 cm L�1

, foliar spray) + NaCl (150 mM, through soil).
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redox homeostasis (Ahanger et al., 2019; Shah et al., 2020). All
these interruptions are regulated genetically (Ogawa et al., 2011)
besides stresses hampering the cell cycle progression (Qi and
Zhang, 2020). Using Bio stimulants for improving growth has been
proposed as promising management technique for crop improve-
ment (Yakhin et al., 2017).

Reports on the beneficial effects of Wuxal amino on plants are
very rare. In the proposed technique, the application of wuxal
amino significantly increased the levels of chlorophyll as well as
improved plant growth under salinity stress. Synthesis of pigments
can increase the production of energy and serve as a source for
necessary cellular functions (Ali and Ashraf, 2011; Li et al., 2018).
Decline in photosynthesis and growth under salinity results
directly from the excess accumulation of Na altering the integrity
of photosystems hence lessening their performance (Osman
et al., 2020; Yang et al., 2020). Recently Kwon et al. (2019) have
demonstrated declined chlorophyll synthesis in salt stressed Dia-
nthus caryophyllus resulting in reduction in photosynthesitic and
hence growth. However, in present study it was observed that
application of wuxal amino proved beneficial in enhancing the syn-
thesis of chlorophyll pigments. The observed improvement in the
photosynthetic pigments by WUXAL Amino is an organic bio-
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stimulant and contains 9% organically fixed nitrogen, which is
totally offered to plants. WUXAL Amino contains amino acids
(648 g/l) as well as polypeptides. Increased synthesis of carote-
noids due to wuxal application may have contributed to photosyn-
thetic protection by mediating ROS scavenging and contributing to
redox maintenance (Hashimoto et al., 2016). Increased synthesis of
chlorophyll and carotenoids due to application of biostimulators
have been reported by Alam et al. (2014) and Szabó et al. (2014)
in Tagetes Erecta and Prunus mahaleb respectively. However, the
effectivity of wuxal amino biostimulator under salinity stress is
largely unknown.

It was observed that the activity of antioxidant enzymes like
SOD, CAT, POD and PPO significantly higher due to salinity stress.
Such enhancement in the activities of antioxidants have been
reported by others as well (AbdElgawad et al., 2016; Elkelish
et al., 2019; Alhaithloul et al., 2020; Soliman et al., 2020c; Zaheer
et al., 2020). Up-reguated antioxidant functioning assists to coun-
teract the damaging effects of salinity induced oxidative damage
to membranes, lipids and proteins (Ellouzi et al., 2011; Ahanger
and Agarwal, 2017). Application of wuxal amino bio-stimulant
resulted in further enhancement in the activities of the antioxidant
enzymes. SOD provides first line defence against the toxic superox-



Fig. 4. Effect of wuxal amino (2 and 3 cm L�1) under different mode (foliar and soil applied) on the salinity induced changes in (A) ascorbic acid (B) SOD activity (C) CAT
activity, (D) peroxidase activity, and (E) polyphenol oxidase activity of tomato plants at 60 days after planting. Data are means ± standard error of the three replicates (n = 3).
Means that do not share a letter are significantly different at P � 0.05 level according to Tukey’s test. [T1- Control; T2- NaCl (150 mM, through soil); T3- Wuxal amino (2 cm
L�1
, through soil) + NaCl (150 mM, through soil); T4- Wuxal amino (2 cm L�1

, foliar spray) + NaCl (150 mM, through soil); T5- Wuxal amino (3 cm L�1
, through soil) + NaCl

(150 mM, through soil); T6- Wuxal amino (3 cm L�1, foliar spray) + NaCl (150 mM, through soil).
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ide radical thereby leading to protection of major cellular path-
ways like photosynthetic electron transport (Abdallah et al.,
2016; AbdElgawad et al., 2016). In addition, the optimal function-
ing of other enzymes like CAT or any other H2O2 scavenging
enzyme is important for oxidative damage amelioration (Zhou
et al., 2018). It was interesting to observe that activity of CAT
and POD increased significantly due to application wuxal amino.
Earlier the application of bio-stimulant has been reported to
improve the antioxidant functioning of plants like tomato
(Boeckx et al., 2015; Sidhu et al., 2017) and bean (Kocira et al.,
2020). Reports regarding the influence of wuxal amino bio-
stimulant on the antioxidant functioning are not available there-
fore present study makes an important mark towards the sustain-
able approach for crop stress tolerance. ROS including H2O2, O2

–, OH
etc are extremely dangerous for normal cellular functioning and
their quick elimination due to up-regulation of antioxidant system
significantly contributes to plant growth regulation under extreme
conditions (Zhou et al., 2018; Ahmad et al., 2019b; Hasanuzzaman
et al., 2019). Up-regulated functioning of antioxidant enzymes con-
tributes to protection of photosynthesis, enzyme functioning and
membrane protection hence plant performance is maintained
(Huseynova, 2012; Yakhin et al., 2017; Ahanger et al., 2019). Both
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modes of application showed significant effect however foliar
applied wuxal proved more beneficial at both concentrations.
Peroxidases mediate elimination of H2O2 at membranes while as
CAT neutralises cytosolic H2O2 making cellular functioning to con-
tinue uniformly (Ahmad et al., 2010; Das and Roychoudhury, 2014;
Ahmad et al., 2019a; Kohli et al., 2019). In addition to this the con-
tent of ascorbic acid was significantly improved due to wuxal
application thereby protecting the cellular functioning and hence
contributing to plant performance. Ascorbic acid and glutathione
form a typical component of key ROS scavenging pathway– the
ascorbate glutathione pathway operating in chloroplast and mito-
chondria for better energy generation and hence plant functioning
(Akram et al., 2017). Ascorbic acid is essential non-enzymatic
antioxidant helping in redox homeostasis maintenance, enzyme
functioning and stress tolerance (Dolatabadian and Jouneghani,
2009; Das and Roychoudhury, 2014; Shereefa and
Kumaraswamy, 2016; Osman et al., 2020). Besides this, the appli-
cation of wuxal amino resulted in increased accumulation of phe-
nol content which was correlated with increased PPO activity in
the present study. Increased PPO activity mediates oxidation of
phenolic compounds to reactive o-quinones that interact with oxy-
gen and proteins (Boeckx et al., 2015). PPO has both pro- as well as
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antioxidant functioning. Phenolic compounds have key roles in cell
division, hormonal and photosynthetic regulation, nutrient miner-
alization and reproduction, and can have potential role in stress
signalling (Sharma et al., 2019). Application of weed extract rich
in amino acid significantly improved the antioxidant functioning
in bean thereby contributing to enhanced accumulation of phenols,
flavonoids and anthocyanins (Kocira et al., 2020).

Secondary metabolites like phenols can also contribute to
osmoregulation and strengthen the effect of compatible osmolytes
like proline. Greater accumulation of compatible solutes is an
important strategy to counteract the damaging effects of stresses
including salinity. Salinity mediated accumulation of proline
observed in present study corroborate with earlier findings
(Hmidi et al., 2018; Soliman et al., 2020a). Proline accumulation
assists in osmoregulation, stabilization of key cellular structures
and their functioning, enzyme functioning, ROS scavenging and
redox homeostasis maintenance (Meena et al., 2019; Osman
et al., 2020). Wuxal mediated enhancement in the proline content
may have contributed to growth and cellular functioning mainte-
nance through greater stabilization of cellular structures and
enzyme functioning involved in key metabolic pathways (Yang
et al., 2009). The accumulated proline may distribute in the cyto-
plasm to balance the osmotic pressure from vacuoles and to pro-
tect biomacromolecules. Under salinity stress, proline
accumulation depends on the alkali-resistant traits of plant (Shi
and Sheng, 2005; Yang et al., 2007). Buffering agent is closely cor-
related with the mechanism of plant resistance to salt stress.
Increased proline accumulation has been reported to protect pho-
tosynthesis by actively protecting the functioning of Rubisco
(Soshinkova et al., 2013; Azooz et al., 2015; Abdel Razik et al.,
2020). Accumulation of proline is regulated by modulation of the
gene functions involved in its synthesis and catabolism (Kovács
et al., 2019). Reports discussing the effect of wuxal amino on pro-
line accumulation under salinity are not available therefore further
studies are required to study the exact mechanisms involved.
Besides this, wuxal application induced the synthesis of proteins
thereby lessening the salinity mediated decline in protein accumu-
lation. Plants improve the expression of genes coding for specific
proteins involved in regulation of various functions (Witzel et al.,
2009; Razzaque et al., 2019; Qin et al., 2021).
5. Conclusion

It is concluded that salt administered through soil triggered
oxidative damage and resulted into the reduced growth and
declined physiological performance. Application of wuxal amino
to salt stressed tomato plants either through foliage or through soil
induced ameliorative response owing to pH adjustment and up-
regulation of antioxidant enzymes. Beside this, plants treated with
wuxal amino also showed enhanced accumulation of osmoprotec-
tant (proline) and phenols that also act as a scavenging tool to
remove the excess ROS under salt stress. This study advocates
the beneficial use of wuxal amino application in protecting tomato
plants under salinity stress, however, further studies are required
to unravel actual mechanisms.
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