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Abstract

The pathophysiology of cognitive dysfunction in multiple sclerosis (MS) is still unclear.

This magnetoencephalography (MEG) study investigates the impact of MS on brain

resting-state functional connectivity (rsFC) and its relationship to disability and cognitive

impairment. We investigated rsFC based on power envelope correlation within and

between different frequency bands, in a large cohort of participants consisting of 99 MS

patients and 47 healthy subjects. Correlations were investigated between rsFC and out-

comes on disability, disease duration and 7 neuropsychological scores within each

group, while stringently correcting for multiple comparisons and possible confounding

factors. Specific dysconnections correlating with MS-induced physical disability and dis-

ease duration were found within the sensorimotor and language networks, respectively.

Global network-level reductions in within- and cross-network rsFC were observed in

the default-mode network. Healthy subjects and patients significantly differed in their

scores on cognitive fatigue and verbal fluency. Healthy subjects and patients showed

different correlation patterns between rsFC and cognitive fatigue or verbal fluency, both

of which involved a shift in patients from the posterior default-mode network to the lan-

guage network. Introducing electrophysiological rsFC in a regression model of verbal flu-

ency and cognitive fatigue in MS patients significantly increased the explained variance

compared to a regression limited to structural MRI markers (relative thalamic volume

and lesion load). This MEG study demonstrates that MS induces distinct changes in the

resting-state functional brain architecture that relate to disability, disease duration and

specific cognitive functioning alterations. It highlights the potential value of electrophys-

iological intrinsic rsFC for monitoring the cognitive impairment in patients with MS.
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1 | INTRODUCTION

Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory,

demyelinating but also degenerative disorder that affects both the

white and gray matters of the CNS (for reviews, see,

e.g., Compston & Coles, 2008; Geurts, Calabrese, Fisher, &

Rudick, 2012; Ciccarelli et al., 2014). MS is the leading cause of non-

traumatic neurological disability in young adults, especially in women.

Neurological deficits are typically heterogeneous across patients, but

usually affect motor, sensory, and autonomic functions (Compston &

Coles, 2008).

More than 50% of patients with MS are also affected by cognitive

impairments (CIs) and fatigue. CIs are mainly characterized by alter-

ations in executive, attentional and memory functions, and are

encountered throughout all disease stages (for a review, see,

e.g., Chiaravalloti & DeLuca, 2008). Fatigue is defined as a lack of

motivation, an overall feeling of exhaustion and behavioral perfor-

mance decrements. It is divided into motor, psychosocial, and cogni-

tive fatigue (for a review, see, e.g., Linnhoff, Fiene, Heinze, &

Zaehle, 2019). Both CI and fatigue are important contributors to

employment status, quality of life, and social functioning in patients

with MS. Pharmacological and rehabilitation strategies are currently

insufficient to alleviate these symptoms and require the development

of novel therapeutic approaches (for a review, see, e.g., Benedict &

Zivadinov, 2011). Providing a better understanding of the mechanisms

involved in CIs and fatigue in MS is therefore of major importance

(Di Filippo, Portaccio, Mancini, & Calabresi, 2018).

Although structural neuroimaging based on, for example, cerebral

MRI, has been used extensively in the diagnosis and monitoring of MS

(Polman et al., 2011), it has failed at explaining the degree and the

variety of CIs observed in this disorder (Mollison et al., 2017). Apart

from a link with gray matter atrophy, only weak associations have

indeed been reproducibly found between structural MRI parameters

and CIs/fatigue (Andreasen et al., 2019). Functional neuroimaging

therefore offers a unique opportunity to better understand the patho-

physiology of cognitive and fatigue symptoms in MS (for a review, see

Van Schependom & Nagels, 2017).

MS has traditionally been considered as a disease affecting white

matter tracts forming the structural connections between CNS gray

matter structures (Compston & Coles, 2008). MS-related gray matter

involvement has also been clearly established (Mandolesi et al., 2015).

To characterize the functional changes that accompany MS-related

alterations in structural white matter connectivity and gray matter

lesions, imaging functional brain connectivity appears highly relevant

to better understand the brain-behavior relationship in this major

brain disorder (Di Filippo et al., 2018). In a clinically heterogeneous

disorder like MS, investigating functional brain connectivity at rest

(i.e., in the absence of any goal directed task) has some key advan-

tages over task-based studies, that is, it is free of any performance

bias and requires minimal patient cooperation, no task-related training

beforehand, and no complex experimental paradigm. Furthermore,

previous studies have demonstrated a strong anatomical correspon-

dence between task-based and resting-state functional connectivity

(rsFC) (Cole, Bassett, Power, Braver, & Petersen, 2014; Mennes, Kelly,

Colcombe, Xavier Castellanos, & Milham, 2013).

Functional MRI (fMRI) is the most widely used technique to inves-

tigate rsFC both in healthy subjects and patients with brain disorders.

Previous fMRI studies have demonstrated that, at rest, the human

brain is characterized by a high degree of spatial organization into seg-

regated resting-state networks (RSNs) (for a review, see, e.g., Deco &

Corbetta, 2011). In MS, alterations in two RSNs have mainly been

reported, that is, the default-mode network (DMN) and the sensori-

motor network (SMN). Several resting-state fMRI (rs-fMRI) studies

have indeed shown changes (either increases or decreases, see Sec-

tion 4 for further details) in DMN fMRI rsFC that were related to

altered cognitive performance (Faivre et al., 2012; Hawellek, Hipp,

Lewis, Corbetta, & Engel, 2011; Leavitt, Wylie, Girgis, DeLuca, &

Chiaravalloti, 2014; Louapre et al., 2014; Rocca et al., 2010). Some

studies have also shown altered fMRI rsFC within the SMN (Eijlers

et al., 2017; Faivre et al., 2012; Janssen, Boster, Patterson, Abduljalil, &

Prakash, 2013; Richiardi et al., 2012; Rocca et al., 2012; Roosendaal

et al., 2010; Sbardella, Petsas, Tona, & Pantano, 2015), with some

relationship between patients disability and SMN fMRI rsFC (Eijlers

et al., 2017; Janssen et al., 2013).

While these results are valuable, MS-related alterations in cere-

brovascular reactivity might impact the neurovascular coupling at the

basis of the fMRI signal (Marshall et al., 2014), potentially limiting the

usefulness of fMRI in this disorder. Its low temporal resolution also

precludes the study of neural oscillations, which support short- and

long-range functional brain connectivity and underlie a wide range of

cognitive functions (for a review, see, e.g., Siegel, Donner, &

Engel, 2012). Furthermore, fMRI failed to demonstrate alterations in

neural network organization in patients with early MS, while electro-

physiological investigations did in the same patients (Tewarie

et al., 2015). For these reasons, investigations of electrophysiological,

spectrally-resolved rsFC with magnetoencephalography (MEG) or

electroencephalography (EEG) have become increasingly popular

(Hall, Robson, Morris, & Brookes, 2014). Previous EEG (Gschwind

et al., 2016; Leocani et al., 2000; Van Schependom et al., 2014) and

MEG (Cover et al., 2006; Schoonheim et al., 2013; Tewarie

et al., 2013, 2014, 2015) studies have investigated rsFC alterations in

patients with MS using phase-based measures (i.e., synchronization

between neural populations as assessed through the time-delayed

correlation of their oscillations or closely-related measures, see

Figure 1). Although a few studies suggested that phase-based rsFC is

related to fMRI-based RSNs (Tewarie et al., 2016; Vidaurre

et al., 2018), their main electrophysiological correlate is rsFC based on

band-limited power envelope correlation, that is, synchronization

between neural populations as assessed through the correlation of

the amplitude of their oscillations (Brookes et al., 2011; Colclough

et al., 2017; de Pasquale et al., 2010; Garcés et al., 2016; Hipp,

Hawellek, Corbetta, Siegel, & Engel, 2012; Hipp & Siegel, 2015; Liu,

Farahibozorg, Porcaro, Wenderoth, & Mantini, 2017; Liu, Ganzetti,

Wenderoth, & Mantini, 2018; Siems, Pape, Hipp, & Siegel, 2016;

Tewarie et al., 2016; Wens et al., 2014; Zhang et al., 2009), see also

Figures 1 and 2b. This rsFC index also has the critical advantage of
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being more robust on a test–retest basis than phase-based measures

(Colclough et al., 2016).

Although scarcely done with phase-based rsFC (Tewarie

et al., 2013), possible MS-related reorganizations of electrophysiologi-

cal RSNs estimated with envelope correlation, and their relationship

with individual cognitive and clinical parameters, have not been

assessed per se. Such investigation might prove crucial to achieve a

better understanding of the brain-behavior relationship in MS as it

might involve specific alterations of within- and cross-RSN interac-

tions. This MEG study therefore investigates the impact of MS on

human brain RSNs and its relationship with various factors

(e.g., motor disability, disease duration, CIs, and fatigue) in a large pop-

ulation of patients with MS. For that purpose, we designed a compre-

hensive, prior-free analysis of rsFC based on a functional parcellation

of the human brain into major RSNs extended with investigations of

both within- and cross-frequency couplings as developed by Brookes

et al. (2016). We hypothesized that MS would lead to definite alter-

ations of rsFC within and between specific RSNs compared with mat-

ched healthy subjects, and that those changes would be associated

with disability, CIs and fatigue.

2 | METHODS

2.1 | Participants

One hundred patients with MS (69 females, 31 males; age:

47.8 ± 9.8 years (mean ± SD) were recruited from the National MS Cen-

ter Melsbroek with the following inclusion criteria: (i) diagnosis of MS

according to the revised 2011 McDonald criteria (Polman et al., 2011),

(ii) age between 18 and 60 years, (iii) disability score (Expanded Disabil-

ity Status Scale; EDSS; Kurzke (1983)) ≤6.5, and (iv) no relapse or treat-

ment with corticosteroids within the 6 weeks preceding participation to

the study. Eighty-five patients had relapsing–remitting MS, while

15 patients had progressive MS. We also recruited fifty-four healthy

subjects (33 females, 21 males; age: 47.5 ± 11.7 years) matched in terms

of gender and age. For both groups, participants were excluded if they

took recreational psychoactive drugs, had any implanted ferromagnetic

materials and if they had any prior neurologic or psychiatric disorder

(except MS in the patients' group). Twenty patients took benzodiaze-

pines (such as alprazolam, clonazepam, flurazepam, lorazepam, or

Triazolam) at the time of the study.

Data from 7 healthy controls and 1 patient were not included in

the final analyses due to quality issues with the MRI (1 patient with

MS, 1 healthy subject), MEG data (4 healthy subjects) and due to

being severe outliers across the cognitive tests (2 healthy subjects).

Therefore, ninety-nine patients and forty-seven healthy participants

were included in the final analyses. Demographic and clinical details

of the final included participants are presented in Table 1.

The study was approved by the ethics committees of the Univer-

sitair Ziekenhuis Brussel (Commissie Medische Ethiek UZ Brussel,

B.U.N. 143201423263, 2015/11) and the National MS Center

Melsbroek (February 12, 2015). All participants gave their express writ-

ten consent to participate in the study prior to their inclusion. Partici-

pants' consent was obtained according to the Declaration of Helsinki.

2.2 | Neuropsychological and neurological
evaluation

All participants underwent a neuropsychological evaluation performed

by a trained test administrator immediately prior to the MEG acquisi-

tion. They were tested on information processing speed (The Signal

Digit Modalities Test; SDMT; Smith, 1982), episodic memory (The Cal-

ifornia Verbal Learning Tests; CVLT; Delis, Kramer, Kaplan, &

Ober, 2000), visuospatial memory (Brief Visuospatial Memory Test-

Revised; BVMT-R; Benedict, 1997), verbal fluency (Controlled Oral

Word Association Test; COWAT; Mitrushina, Boone, & D'Elia, 1998),

motor (motor part of the Fatigue Scale for Motor and Cognitive Func-

tions; FSMC; Penner et al., 2009), and cognitive fatigue (cognitive part

of FSMC), as well as on upper extremity function (9-Hole Peg Test;

9-HPT; Mathiowetz et al., 1985). This led to a total of seven

F IGURE 1 Illustration of envelope and phase coupling. Each column shows two signals both separately (orange and blue; top and middle
rows) and superimposed (bottom row). Envelope correlation (a,b): The two oscillations have correlated envelopes (black dotted curves). This can
occur both when their carrying frequencies (f1, f2) are equal (within-frequency coupling, a) or different (cross-frequency coupling, b), and
independently of any phase coupling. Phase locking (c,d): The two equal-frequency oscillations exhibit a phase relationship (illustrated by vertical
dotted lines). This can occur when their phases (φ1, φ2) are equal (c) or maintain a constant difference (d)
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neuropsychological scores. Depressive symptoms were evaluated

using the Beck Depression Inventory (BDI; Beck, Steer, &

Brown, 1996). Additionally, experienced neurologists performed a

standard EDSS test in patients with MS.

2.3 | Data acquisition

Forty-five participants (30 patients, 15 healthy subjects) were scanned

on an Elekta Neuromag Vectorview™ neuromagnetometer (Elekta Oy,

Helsinki, Finland), while the remaining 101 participants (69 patients,

32 healthy subjects) were scanned using a Triux™ system (MEGIN,

Croton Healthcare, Helsinki, Finland) due to an upgrade of the MEG

system. Both were placed in a light-weight magnetically shielded room

with a single mu-metal/aluminum shell and active interference cancel-

ation (Maxshield™, Elekta Oy, Helsinki, Finland; see De Tiège

et al., 2008, for more details). Both systems featured the same whole-

scalp-covering 306-channel layout consisting of 102 sensor triplets,

each composed of two orthogonal planar gradiometers and one mag-

netometer. There was no difference in acquisition parameters or MEG

F IGURE 2 Illustration of the
functional connectivity pipeline.
(a). Overview of the locations and
labels of the 32 nodes included in
the connectome, color-coded
according to the network they
belong to (see legend at the bottom).
(b). Schematic illustration of the
power envelope correlation used as

rsFC measure. The envelope (red
curve) of the neural oscillations at
each node is used for the correlation
analyses. (c). Matrix representation
of all rsFC estimates across all node
pairs (left) and all pairs of frequency
bands, leading to the “multi-layer”
rsFC matrix as described in Brookes
et al. (2016) (right). (d). As in Panel c,
but here reporting the mean
network rsFC within each network
(diagonal entries) or across each
network pair (offdiagonal entries).
DAN, dorsal attention network;
DMN, default-mode network; LAN,
language network; rsFC, resting-
state functional connectivity, RSN,
resting-state network; SMN,
sensorimotor network; VAN, ventral
attention network; VIN, visual
network
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data processing between the two scanners. Of note, previous works

that mixed Vectorview and Triux MEG recordings did not reveal any

significant change in data quality, including for rsFC relying on power

envelope correlation (Coquelet et al., 2020; Naeije et al., 2019).

Recordings took place at the CUB Hôpital Erasme (Brussels, Belgium).

Participants' anatomical fiducials (nasion and left and right preauricular

areas) as well as about 400 head shape points were digitized using an

electromagnetic tracker (Fastrak, Polhemus, Colchester, VT). They

were equipped with four head tracking coils for continuous registra-

tion of head position while inside the MEG helmet. Neuromagnetic

activity was recorded using active interference cancelation during

5 min of rest (eyes open, fixation cross, seated position, 0.1–330 Hz

band-pass filter, 1 kHz sampling rate).

All participants underwent a whole-brain high-resolution 3D

T1-weighted imaging (3T Achieva scanner, Philips Medical Systems,

Best, The Netherlands) at a different hospital (Universitair Ziekenhuis

Brussel, Brussels, Belgium) with the following acquisition parameters:

repetition time (TR): 4.939 ms, echo time (TE): 316 ms, flip angle: 8�,

field of view (FOV): 230 × 230 mm2, 310 sagittal slices resolution:

0.53 × 0.53 × 0.5 mm3. To estimate structural markers of neu-

rodegeneration typically used in MS, a T2-weighted imaging FLAIR

sequence was also acquired (TR: 4800 ms, TE: 316 ms, inversion time:

1650 ms, FOV: 288 × 288 mm2, 321 slices, 1.12 mm slice thickness,

resolution: 0.6 × 0.6 × 1.12 mm3). The median delay between the

MRI and MEG sessions was 5 days.

2.4 | MEG data preprocessing

The signal space separation algorithm (Taulu, Simola, & Kajola, 2005), as

implemented in the proprietary software Maxfilter™ (MEGIN, Croton

Healthcare, Helsinki, Finland, version 2.1 with default parameters), was

used to subtract external magnetic interferences and correct for head

movement. Note that total head displacement (i.e., total positional

change of the head between start and end of acquisition) was not

significantly different between patients and healthy participants

(t144 = 0.5, p = .58). Signal components representing physiological noise

artifacts (i.e., eye movements and blinks, cardiac artifacts) were

removed by an independent component analysis (Vigário, Särelä,

Jousmäki, Hämäläinen, & Oja, 2000) of downsampled (250 Hz) and

band-pass filtered (0.1–45 Hz) MEG data, and identified by inspection

of their spatial topography, time course and frequency spectrum. The

number of removed components was not significantly different

between MS patients and healthy participants (mean: 4, range: 2–6 and

3–7, respectively, t144 = 0.32, p = .75). Downsampling, filtering, and ICA

were all done using the OHBA Software Library (OSL, https://github.

com/OHBA-analysis). The cleaned MEG data were finally filtered into

five frequency bands: delta (δ, 1–4 Hz), theta (θ, 4–8 Hz), alpha (α,
8–12 Hz), low beta (βL, 12–21 Hz), and high beta (βH, 21–30 Hz).

2.5 | Source reconstruction

The MEG forward model was computed for each participant based on

their MRI, which was anatomically segmented using FreeSurfer

(Fischl, 2012). MEG and MRI coordinate systems were manually cor-

egistered within the proprietary software MRIlab™ (MEGIN, Croton

Healthcare, Helsinki, Finland) based on the acquired anatomical fidu-

cials and head-surface points. A common source space (5-mm rectan-

gular grid) was defined in the Montreal Neurological Institute (MNI)

brain volume and deformed onto the participants' MRIs using a

nonlinear spatial normalization scheme (Ashburner & Friston, 1999) as

implemented in SPM8 (Friston, 2006). Subject-specific forward

models were then computed using the single-layer boundary element

method implemented in MNE-C (Gramfort et al., 2014).

Source projection of band-specific MEG signals over a grid of the

whole brain volume relied on minimum norm estimation (MNE, Dale &

Sereno, 1993) based on the implementation detailed in Wens

et al. (2015). The noise covariance was estimated from 5 min of empty

room recordings and the regularization parameter was adapted to the

TABLE 1 Participants' demographic
and clinical characteristics

MS patients Healthy subjects p

Gender (f/m) 68/31 29/18 .501

MS subtype RRMS PPMS SPMS

85 7 7

Mean/median SD Range Mean SD Range

Age (y, mean) 47.7 9.7 26–72 47.8 11.9 26–68 .94

Education (y, mean) 13.9 2.6 8–21 15.1 2.1 12/21 .003

Duration (y, mean) 16.1 9.4 1–54

EDSS (median) 3 1–6.5

Lesion load (ml, mean) 9.4 7.8 0.8–34.7

Note: Mean, standard deviation (SD), and range (min–max) are given where appropriate (and just count

for Gender), as well as a p value for the comparison between the two groups (age, education: unpaired

Welch's t tests, gender: two-sided χ2 test for two proportions). Education: total number of years in school

since start of primary school. EDSS: Extended Disability Status Scale. Duration: disease duration, that is,

number of years since initial diagnosis. RR/PP/SPMS: relapsing–remitting/primary progressive/secondary

progressive multiple sclerosis.
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MEG signal-to-noise ratio via the prior consistency condition derived

in Wens et al. (2015). The reconstructed source time series were fur-

ther projected onto their direction of maximum variance (Brookes

et al., 2011; Wens et al., 2014).

2.6 | Connectivity analysis

Our pipeline for intrinsic rsFC analysis is illustrated in Figure 2. For each

participant, we constructed an all-to-all rsFC connectome comprising

32 nodes (Figure 2a) distributed across six canonical resting-state net-

works defined a priori based on a meta-analysis of fMRI rsFC and used

in de Pasquale et al. (2012): the dorsal attention (DAN), the ventral

attention (VAN), the default-mode (DMN), the visual (VIN), the sensori-

motor (SMN) and the language (LAN) networks. The 32-node

connectome was adapted from one used in de Pasquale et al. (2012),

which comprised 42 nodes (the VIN, originally composed of 10 closely

packed nodes in striate and extrastriate visual cortices, was reduced to

two nodes in right and left primary visual cortices, while one subcortical

node in each of the left and right putamen were removed as we only

used cortical sources for our analysis). We then computed the slow

envelope (i.e., Hilbert envelope low-pass filtered to 1 Hz) correlation

between the band-specific source time courses of each node pair

(which will be referred to as nodewise rsFC in the results; Figure 2b).

Spatial leakage was reduced prior to rsFC computation using pairwise

static orthogonalization (Brookes, Woolrich, & Barnes, 2012). We did

not need to use multivariate symmetrical orthogonalization (Colclough,

Brookes, Smith, & Woolrich, 2015) here because spatial leakage is

inherently symmetrical with MNE source reconstruction (Hauk &

Stenroos, 2014). To investigate both within- and cross-frequency cou-

pling, we used a “multi-layer” network design (Brookes et al., 2016) by

allowing the band of each node signal to be the same or different from

each other (Figure 2c). To control for possible power-induced effects in

our rsFC, we also estimated source signal absolute power (i.e., their

temporal variance) at each node with noise standardization to correct

for the depth bias (Pascual-Marqui, 2002). We focused here on abso-

lute power to ensure that rsFC changes are not merely due to modula-

tions in signal-to-noise ratio (Muthukumaraswamy & Singh, 2011), but

it is noteworthy that relative power changes associated to peak fre-

quency shifts have been reported in patients with MS (Schoonheim

et al., 2019; Van der Meer et al., 2013).

Taking advantage of the nodes' classification into networks, we

also estimated mean within- and cross-network coupling by averaging

rsFC values over appropriate node pairs (see, for example, de Pasquale

et al., 2012), again both within and across frequency bands (mean net-

work rsFC; Figure 2d). In this context, power estimates were also aver-

aged within each network.

2.7 | Statistical analyses

Neuropsychological and clinical test scores were compared between

patients with MS and healthy subjects using two-tailed unpaired

t tests. Because of our unbalanced design (99 patients vs. 47 healthy

subjects), we used the Welch's version of the t statistic throughout

this work, as it is more resilient to population heterogeneity

(Ruxton, 2006). The possible confounding effects of age, sex and edu-

cational level were regressed out beforehand within each group, as

well as benzodiazepine status for patients. The significance level was

set to p = .05 Bonferroni corrected for the number of tests, that is,

8. As the MS group consisted of patients with relapsing–remitting MS

and patients with progressive MS, we also performed a control test to

check whether there were significant differences between those two

subgroups of patients with MS.

The difference in nodewise rsFC or mean network rsFC between

patients and healthy subjects was assessed by a mass-univariate sta-

tistical contrast of the two corresponding “multi-layer” matrices. Spe-

cifically, we considered for each matrix entry (i.e., two nodes or

networks in their respective frequency band) Welch's t statistic com-

paring the 99 rsFC values in patients and the 47 values in healthy sub-

jects, from which the effect of several confounding factors was

regressed out beforehand (7 regressors for patients and 6 for healthy

subjects): power estimates of the two corresponding nodes or within-

network averages, age, sex, educational level, and MEG system type

(Vectorview vs. Triux) for both groups of participants, and additionally

benzodiazepine status for patients to mitigate the effect of this psy-

chotropic drug on brain activity (see, for example, Van Schependom

et al., 2019). Regressing out power avoids power-induced rsFC

changes (Muthukumaraswamy & Singh, 2011), and regressing out sys-

tem type eliminates any possible effect related to the MEG system

upgrade (notwithstanding the absence of important data quality

changes, see Naeije et al., 2019; Coquelet et al., 2020). To perform

maximum statistic testing (see below), the unpaired permutation dis-

tribution of t matrices was generated by randomly shuffling patients'

and healthy subjects' nodewise/mean network rsFC matrices (after

regression of the respective confounding factors).

Within each group, we also analyzed the correlation between

nodewise/mean network rsFC and clinical or neuropsychological

scores (patients: disease duration, as measured from first clinical diag-

nosis, and 9 behavioral scores (listed in Section 2.2); healthy subjects:

8 behavioral scores (the same as for patients except EDSS)). We esti-

mated a multiple regression model of nodewise/mean network rsFC

values with the score of interest and the confounding factors as

regressors and extracted the regression coefficient β corresponding to

the relevant score. The permutation distribution of the resulting β

matrices was generated by randomly shuffling the participants' order

(within each group) against their respective scores before the regres-

sion analysis.

Significance levels were established using two-tailed maximum

statistic testing (Nichols & Hayasaka, 2003) to simultaneously correct

for the multiple comparisons across all pairs of nodes/networks and

frequency band interactions. The null distribution of the maximum

absolute value over all matrix entries was estimated from the permu-

tation schemes described above (number of permutations: 105), and a

significance threshold at significance level p was defined as the (1–p)th

percentile of this permutation distribution. We set p = .05 Bonferroni
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corrected for the total number of tests, that is, 38 (1 contrast, 10 cor-

relations for patients, and 8 correlations for healthy subjects = 19

tests, performed for both nodewise and mean network rsFC). All

supra-threshold values were deemed to exhibit a significant effect

(Nichols & Hayasaka, 2003). The p value of each maximum statistic,

that is, the null probability of exceeding the observed maximum abso-

lute value, was also estimated with its permutation distribution.

We also performed posthoc analyses to further check our results.

To confirm the absence of power differences that could drive rsFC

contrasts, we applied an analogous statistical t contrast on power esti-

mates (now within frequency only and without power regression).

Additionally, to see whether correlations within the patients' and

healthy subjects' groups themselves were significantly different, we

examined the group contrast of the corresponding β coefficients.

Their permutation distribution was obtained by shuffling participants

(i.e., patients vs. healthy subjects) before regression, as for the

t contrasts. These β contrasts were only investigated for clinical or

neuropsychological scores exhibiting significant correlations. These

extra analyses were performed at the same significance level as above

(i.e., p = .05/38).

2.8 | Structural versus functional modeling of CI

An important question brought by the analysis of MS-related rsFC

changes and their correlation to cognitive scores, is whether electro-

physiological rsFC provides an added value to describe MS-related CI

compared to structural markers that are often used (e.g., brain atro-

phy, cortical lesions, see e.g., Van Schependom & Nagels, 2017). To

address this issue, we focused on cognitive scores that were signifi-

cantly altered in patients with MS, and we first built for each of them

a purely structural regression model with two well-established

markers of neurostructural damage as dependent variables, that is,

global lesion load and normalized thalamic volume (see

e.g., Barkhof, 2002; Tewarie et al., 2013). They were obtained individ-

ually from 3D T1-weighted imaging and FLAIR MRIs using lesion

detection and tissue segmentation implemented in the icobrain soft-

ware (version 3.1; for details, see Jain et al., 2015). We then consid-

ered similar regression models that further included functional

electrophysiolgical markers, and assessed whether this led to a signifi-

cant increase in the amount R2 of explained variance. Specifically, we

added as dependent variables all mean network connectivity values

(across RSNs and frequency bands, see Figure 2d) exhibiting a signifi-

cant MS-related contrast. Given that structural and functional param-

eters are related (Tewarie et al., 2013; Van Schependom &

Nagels, 2017), these rsFC variables were orthogonalized with respect

to the structural parameters before being used in the regression. This

merely amounts to a reparametrization that emphasizes the indepen-

dent information brought by rsFC but leaves the R2 statistic

unchanged.

By design, the structuro-functional regression model is biased

toward a larger R2 than the purely structural model as it contains more

dependent variables. To assess whether rsFC actually increases the R2

beyond this bias, we performed nonparametric statistical model com-

parisons. The permutation distribution of R2 was generated under the

null hypothesis that rsFC does not bring more information about

patients' cognition than what is already entailed by structural markers,

that is, that its orthogonal part is statistically independent of cognitive

scores. Specifically, 104 null samples of R2 were obtained by randomly

shuffling the patients' order in the orthogonalized rsFC parameters

before estimating the regression model and its R2 value. Importantly,

this permutation approach avoids the aforementioned bias and pre-

serves orthogonality with the structural parameters. The p value on

the R2 statistic was derived as the fraction of null samples exceeding

the R2 value of the original structuro-functional regression model.

3 | RESULTS

We investigated the differences in electrophysiological power enve-

lope rsFC among six major RSNs within and across five frequency

bands (i.e., δ, θ, α, βL, and βH) in patients with MS and matched healthy

subjects, both at node and mean network levels. Correlations

between clinical/neuropsychological test scores and both nodewise

and mean network rsFC were also performed in the two cohorts of

participants. For all the results henceforth described (Figures 3–8), sig-

nificance was determined through a maximum-statistic permutation

approach after controlling for signal power, age, gender, education

level, and MEG system type as well as benzodiazepine status for

patients, with additional correction for the total number of tests that

F IGURE 3 Significant nodewise rsFC changes between multiple
sclerosis patients and healthy subjects. All are lower in patients. The
bands in which significant differences were detected are indicated on
the left. Only nodes with significant connections are shown (node
color corresponds to their network, see Figure 2a), and their labels are
superimposed
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were performed. Importantly, only the significant results will be

henceforth reported, that is, all other tests were nonsignificant.

Among these, notably, no significant power differences were found in

the contrast between patients with MS and healthy subjects (jtj < 1.2,

permutation p value > .3) in any of the frequency bands.

3.1 | Comparison of clinical and
neuropsychological scores

The neuropsychological test scores revealed that verbal fluency was

significantly lower (COWAT, t = −2.9, p = .0044), while both cognitive

and physical fatigues were significantly higher (cognitive and motor

part of FSMC, t = 6.9, p = 9.2 × 10−11 and t = 5.4, p = 6.5 × 10−9,

respectively) in patients with MS compared to healthy subjects. Of

note, there was no correlation between verbal fluency and cognitive

or physical fatigue in neither patients nor healthy subjects (Pearson

correlation test; r = .16, p = .13 and r = .12, p = .32, respectively),

while cognitive and physical fatigue were similarly and strongly corre-

lated in both groups (r = .78, p = 2.06 × 10−10 and r = .76,

p = 1.7 × 10−8). None of the other scores were significantly different

between groups after correction for the number of tests, including

depression as assessed by the BDI.

Further, there was no significant difference between patients

with relapsing–remitting MS and patients with progressive MS in any

of the scores (jtj < 1.2, p > .35). On this basis, we focused our subse-

quent analyses on the whole group of patients with MS, indepen-

dently of the disorder subtype.

3.2 | Comparison of rsFC

Significantly lower interhemispheric βL- and βH-band rsFC among

nodes of the SMN was observed in patients with MS compared with

healthy subjects (Figure 3; permutation p value = 5.45 × 10−5). Sig-

nificant decrease in interhemispheric βH-band rsFC was also found

between secondary somatosensory cortex (S2) and contralateral

frontal eye-fields (FEFs), which were also interpreted as within-

SMN dysconnection rather than true cross-network (i.e., SMN-

DAN) rsFC alterations. The effect was bilateral and most pro-

nounced in the βH band, where all significant connections were

between each S2 and the contralateral central sulcus (CS), supple-

mentary motor area (SMA), and frontal eye fields (FEF) as well as

ipsilateral CS and SMA.

F IGURE 4 Significant mean network rsFC changes. Negative
values indicate lower mean network rsFC in multiple sclerosis patients
than in healthy subjects. Significant differences are indicated by
asterisks (p < .05 corrected). We only show frequency bands
exhibiting significant differences. DAN, dorsal attention network;
DMN, default-mode network; LAN, language network; SMN,
sensorimotor network; VAN, ventral attention network; VIN, visual
network

F IGURE 5 Connections significantly correlated with EDSS in
multiple sclerosis patients (all correlations are negative). The band in
which significant correlations were detected is indicated on the left.
Only nodes with significant connections are shown (node color
corresponds to their network, see Figure 2a), and their labels are
superimposed

F IGURE 6 Connections disclosing significant correlation between
rsFC and disease duration in patients with multiple sclerosis (all
correlations are negative). The corresponding frequency bands are
indicated on the left. Only nodes with significant connections are
shown (node color corresponds to their network, see Figure 2a), and
their labels are superimposed
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A similar analysis at the level of mean network rsFC confirmed

the reduction of within-SMN rsFC in the βH band in patients com-

pared with healthy subjects. It also revealed significantly lower α-band
rsFC within the DMN and between the DMN and two other RSNs,

that is, the SMN and the LAN (Figure 4) in patients compared with

healthy subjects (permutation p = 6.74 × 10−5). The fact that the

nodewise rsFC contrast analysis (Figure 3) was not sensitive enough

to detect reductions of DMN-based rsFC suggests that the latter

reflect genuinely network-level effects. This hypothesis was further

supported by the fact that α-band DMN rsFC exhibited a larger effect

size at the mean network level compared with nodewise connectivity.

Indeed, the ratio of the effect size of mean network rsFC (i.e., group

mean divided by SD), over the effect size of single connections aver-

aged within or across each network, was well above one for intra-

DMN (7.8), cross DMN-LAN (3.8), and cross DMN-SMN (3.1) mean

network rsFC in the α band but close to one (range: 0.9–1.25) for all

other interactions and bands.

3.3 | Correlation between rsFC and EDSS score in
multiple sclerosis patients

The multiple regression between nodewise rsFC data in patients with

MS and their EDSS score (Figure 5) highlighted a significant correla-

tion for a subset of the band-specific connections that were observed

in the contrast analysis detailed in Section 3.2 (Figure 3), i.e., a

significant correlation in the βH band with nodes of the SMN (S2 and

contralateral CS and FEF bilaterally) (permutation p = 3.12 × 10−5). All

these significant correlations were negative, that is, lower rsFC was

associated with higher disability status. Accordingly, the EDSS score

was also significantly negatively correlated with mean network SMN

rsFC in the βH band as well in the βL band.

3.4 | Correlation between rsFC and disease
duration in multiple sclerosis patients

Disease duration was negatively correlated with nodewise LAN rsFC

within the βH and across the βL and βH frequency bands (Figure 6;

permutation p = 3.35 × 10−4). The significant correlations identified

(i) connections within the frontal part of the LAN, that is, among three

left frontal nodes (F3OPD: pars opercularis, LDIFG: left dorsal IFG,

and F3TV: pars triangularis), and (ii) fronto-temporal connections of

the LAN between these three frontal nodes and two left temporal

nodes (T1a/p: anterior/posterior superior temporal gyrus, LITG: left

inferior temporal gyrus). Of note, the LITG was initially attributed to

the DMN in de Pasquale et al. (2012), but considering its additional

contribution to the verbal language network (Hickok &

Poeppel, 2007), it was interpreted here as a within-LAN connection

rather than DMN-LAN cross-network interaction. Disease duration

was also significantly negatively correlated with mean network LAN

rsFC within and between βL and βH bands.

F IGURE 7 Connections disclosing significant correlation (all positive) between rsFC and verbal fluency for both multiple sclerosis patients
(left) and healthy subjects (right). The corresponding bands are indicated in the middle. Only nodes with significant connections are shown (node
color corresponds to their network, see Figure 2a), and their labels are superimposed
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3.5 | Correlations between rsFC and
neuropsychological scores

Regression analyses of rsFC in patients with MS and healthy subjects

disclosed significant correlations only with verbal fluency (COWAT

score) and cognitive fatigue (cognitive part of the FSMC score) in both

groups.

3.5.1 | Correlations between rsFC and verbal
fluency

In patients, significant positive correlations of nodewise rsFC with the

COWAT score identified connections between the LITG node and

nodes of the LAN both within the α band (T1p and F3TV) and across

the α and βL bands (F3TV and T1p), and of the SMN (left CS, left S2)

and DAN (left FEF) across the α and βL bands (Figure 7, left column;

permutation p = 1.33 × 10−4).

In healthy subjects, positive correlations with the COWAT score

were also observed but involved different rsFC patterns, only within

the α band, and all involving the posterior cingulate cortex (PCC) node

of the DMN. COWAT scores correlated positively with connections

between the PCC and nodes of the LAN (T1a, T1p, STS: superior tem-

poral sulcus), the VAN (RMFG: right middle frontal gyrus, RSMG: right

supramarginal gyrus), the DAN (LFEF) and the SMN (LCS) (Figure 7,

right column; permutation p = 2.25 × 10−4).

Of note, these results appear to identify a topological reorganiza-

tion of the brain-behavior relation with verbal fluency associated with

MS. This was confirmed by the statistical contrast between correla-

tion matrices obtained in patients and healthy subjects, which demon-

strated that correlations were significantly higher in patients

compared with healthy subjects for the exact same connections as in

Figure 7 (left), and significantly lower for the exact same connections

than in Figure 7 (right) (permutation p = 8.74 × 10−5).

This relationship between rsFC and verbal fluency also allowed to

characterize verbal fluency impairment as observed in MS patients

(see Section 3.1) better than solely based on structural markers.

Indeed, usage of the four mean network connectivity values that sig-

nificantly discriminated between MS patients and healthy subjects

(i.e., α-band intra-DMN, DMN-LAN, and DMN-SMN, and βH-band

F IGURE 8 Connections disclosing significant correlation (all negatives) between rsFC and the cognitive fatigue score for both multiple
sclerosis patients (left) and healthy subjects (right). The corresponding bands are indicated in the middle. Only nodes with significant connections
are shown (node color corresponds to their network, see Figure 2a), and their labels are superimposed
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intra-SMN; see Section 3.2) in a regression model of verbal fluency

significantly increased the explained variance compared to a purely

structural regression (see Table 2).

3.5.2 | Correlations between rsFC and cognitive
fatigue

In patients, negative correlations between nodewise rsFC and the

cognitive part of the FSMC score were disclosed in the δ-βH cross-

frequency couplings between nodes of the LAN (F3TV, F3OPD) and

nodes of the LAN (F3OPD, T1a, STS), the DMN (RMPFC: right medial

prefrontal cortex, LITG, LAG: left angular gyrus) and the VAN (RVFC:

right ventral frontal cortex, RMFG; Figure 8, left column; permutation

p = 4.35 × 10−4).

In healthy subjects, negative correlations with the cognitive part

of the FSMC score were also observed but involved different connec-

tions and frequency bands. Indeed, negative correlations were

observed between α-band posterior nodes of the DMN (PCC, LAG,

RAG: right angular gyrus) and α- or βH-band nodes of the DAN

(L/RpIPS: left/right posterior intraparietal sulcus, L/RMT: left/right

middle temporal gyrus), the VAN (RSTG: right superior temporal

gyrus), the LAN (STS) and the SMN (L/RSMA), as well as the LITG

(Figure 8, right column; permutation p = 3.7 × 10−4).

As for verbal fluency (Section 3.5.1), the apparent topological

reorganization of brain-behavior relation associated with MS was con-

firmed by considering correlation contrasts. This analysis demon-

strated that correlations were significantly lower in patients compared

with healthy subjects for the exact same connections than in Figure 8

(left), and significantly higher for the exact same connections than in

Figure 8 (right) (permutation p = 1.03 × 10−5). Accordingly, regression

modeling of cognitive fatigue based on neurostructural markers of MS

was significantly improved by the inclusion of rsFC markers of MS

(Table 2).

4 | DISCUSSION

This MEG study involving a large population of patients with MS

relied on a comprehensive analysis of functional connectivity at rest

to characterize disease-related changes in within- and cross-

frequency rsFC within and between major RSNs. Main original

findings are that: (i) MS is characterized by reduced nodewise and

mean network β-band functional connectivity in the SMN, which is

related to the level of disability, (ii) MS is associated with a reduced

within- and cross-network mean DMN rsFC in the α frequency band

(cross-network interactions involving the SMN and the LAN),

(iii) disease duration is associated with reduced functional connectivity

within the LAN in the β band, (iv) the DMN-specific brain-behavior

correlates with verbal fluency and cognitive fatigue observed with

multiple within- or cross-frequency connections in healthy subjects is

reorganized in patients with MS, and (v) the introduction of electro-

physiological rsFC in a regression model of verbal fluency and cogni-

tive fatigue in MS patients significantly increases the explained

variance compared to a regression limited to structural MRI markers.

Critically, all significant results were obtained after stringent correc-

tions for multiple comparisons and after regressing out possible con-

founding effects of multiple variables (e.g., power of oscillatory brain

activity, age, sex, educational level, MEG system type, and benzodiaz-

epine status). These data therefore demonstrate that MS is associated

with changes in RSNs that mainly involve within- and cross-network

interactions of the SMN, the LAN and the DMN. These changes rep-

resent robust neural correlates of specific behavioral and CIs observed

in patients with MS.

4.1 | Reduced sensorimotor network functional
connectivity related to motor disability

In addition to a reduction in mean intra-SMN β-band functional con-

nectivity, this study demonstrated lower functional connectivity in the

lower and upper β frequency bands among nodes of the SMN in

patients with MS compared to healthy subjects. The altered connec-

tions involved bilateral S2 with contralateral CS, SMA, and FEF. Cru-

cially, a subset of the exact same node pair connections was

(negatively) correlated with physical disability in patients as indexed

by the EDSS. These findings therefore highly suggest that the

observed difference in rsFC between patients and healthy subjects is

driven by the sensorimotor disability classically observed in this

disorder.

Importantly, none of the included patients had an EDSS score ≥ 6

(i.e., intermittent or unilateral constant assistance [cane, crutch or

brace] required to walk 100 m with or without resting) and most were

within the range of 2–5. This indicates that almost all included

TABLE 2 Key values from structuro-functional model comparison

R2 (structural) R2 (structural, adjusted) R2 (structuro-functional) Model comparison p value

Verbal fluency 5.3% 9.5% 29.9% 3.5 10−4

Cognitive fatigue 3.4% 8.9% 24.5% 6.2 10−4

Note: Model parameter R2 represents the percentage of explained variance of cognitive outcomes (Verbal fluency and Cognitive fatigue). R2 (structural):

Model with structural regressors only. R2 (structural, adjusted): Structural model R2 corrected for the number of additional dependent (functional) variables.

Obtained as the mean of the null distribution generated by permutation of functional (but not structural) variables. R2 (structuro-functional): Full model

including both structural and functional dependent variables. Model comparison p value: Null probability that R2 values generated by permutation exceeds

the observed structuro-functional R2.
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patients were able to walk unaided, and none were wheelchair-bound.

It therefore suggests that the observed reduction in SMN functional

connectivity is not merely a consequence of sedentary living imposed

by the disease. Still, we lack a specific measure of the patients' daily

activity to confirm this hypothesis.

These results are in line with those of previous rs-fMRI studies

that have shown reduced rsFC between sensorimotor areas in MS

(Eijlers et al., 2017; Filippi, Preziosa, & Rocca, 2019; Janssen

et al., 2013; Richiardi et al., 2012; Rocca et al., 2012; Sbardella

et al., 2015), which in some studies was correlated with disability

severity (Janssen et al., 2013). Still, other studies have found either no

difference (Dogonowski et al., 2014; Liu et al., 2011; Roosendaal

et al., 2010) or even increased rsFC (Faivre et al., 2012; Roosendaal

et al., 2010). Critically, studies showing increased rsFC involved

patients with clinically isolated syndrome (Roosendaal et al., 2010) or

weak physical disability (EDSS <1) (Faivre et al., 2012), which suggests

that this finding is mainly observed at the early stages of the disease.

A positive correlation between global β-band MEG-derived phase

rsFC and MS-related disability has also been reported (Tewarie

et al., 2013), further suggesting that it represents an underlying elec-

trophysiological correlate of the MS-related sensorimotor disability.

The resting-state electrophysiological SMN is known to be mainly

driven by the β-band power envelope correlation (Brookes

et al., 2011; Hipp et al., 2012; Wens et al., 2014). Furthermore, syn-

chronous β-band oscillations in the sensorimotor cortices are impor-

tant for active and ongoing control of coordinated movement and

posture (Farmer, 1998; Rosanova et al., 2009). Considering the ana-

tomical locations of the disconnected node pairs (i.e., S2, CS, SMA,

and FEF), it might be hypothesized that such dysconnection could

lead to impaired somatosensory-motor integration (Forss &

Jousmäki, 1998; Lin & Forss, 2002) in MS contributing to disability

and altered motor performance (Arpin, Gehringer, Wilson, &

Kurz, 2018; Cabib, Llufriu, Casanova-Molla, Saiz, & Valls-Solé, 2015).

This hypothesis is in line with data showing that rehabilitation strate-

gies specifically improving central integration of afferent propriocep-

tive inputs are more effective in improving balance disorders than

conventional training in patients with MS with similar EDSS scores as

those included in the present study (Gandolfi et al., 2015). These data

suggest that electrophysiological rsFC could be a reliable method, free

of performance bias, to properly assess the effects of therapeutic or

rehabilitation strategies in MS.

4.2 | Network-level reduction of functional
connectivity of the default-mode network

Mean network functional connectivity corresponded to the average

of the correlation strengths between node pairs belonging to a given

RSN (i.e., mean within-network rsFC) or between all nodes of one

RSN and those of another RSN (i.e., mean cross-network rsFC). It thus

gave an estimate of the global rsFC level within or between the con-

sidered RSNs. This approach was used to reveal rsFC changes associ-

ated with MS that were subtle at the nodewise connectivity level but

consistent across connections within or between RSNs. This was con-

firmed by the analysis comparing nodewise and mean network effect

sizes, which showed a dramatic increase of the latter compared to the

former especially for intra-DMN, cross DMN-SMN, and cross DMN-

LAN α-band rsFC.

Significant decrease of α-band mean network rsFC was found

within the DMN, and between the DMN and the SMN/LAN in

patients with MS compared to healthy subjects.

This MEG study therefore provides novel findings that comple-

ment previous fMRI studies (see Introduction for a summary) using an

electrophysiological method that gives direct information about neural

activity and is therefore free of any neurovascular coupling bias. Con-

sidering the clinical characteristics of our patients' cohort, it supports

rs-fMRI papers showing reduced DMN rsFC in patients with rather

advanced multiple sclerosis. Indeed, it demonstrates that the disease-

related alterations in within- and cross-network DMN rsFC actually

involve a rather global disruption of within- and of some specific

cross-network (i.e., with the SMN and the LAN) DMN connections

that is not detectable at the nodewise connectivity level. This concurs

with the recognized role of the DMN as a core region for the func-

tional integration with other RSNs (de Pasquale et al., 2012). It also

demonstrates that these mean network rsFC alterations are specifi-

cally observed in the α frequency band, which is perfectly in line with

the main carrying frequency of electrophysiological DMN rsFC previ-

ously reported (Brookes et al., 2011; Sjøgård et al., 2019; Vidaurre

et al., 2018; Wens et al., 2014). These findings might also explain the

more random (i.e., less structured and hierarchical) organization of

functional brain networks that has been previously reported in α-band
phase-based rsFC in patients with MS (Tewarie et al., 2013, 2014).

Finally, the reduction in mean within- and cross-network DMN

rsFC might be associated with the reorganization of the neural net-

works subtending verbal fluency and cognitive fatigue scores in

patients with MS (see Section 4.4).

4.3 | Disease duration is correlated with reduced
language network functional connectivity

A strong association between disease duration and intrinsic functional

connectivity within the LAN was observed in patients with MS in the β
frequency band in the form of a negative correlation (i.e., the longer the

disease duration, the lower the rsFC within the LAN). This was the case

for both mean within-LAN rsFC and for specific nodewise connections.

The occurrence and severity of language impairments in MS are

actually poorly defined (for a review, see Renauld, Mohamed-Saïd, &

Macoir, 2016). Various verbal language impairments (picture naming,

reading comprehension) as well as phonemic and semantic verbal flu-

ency have been repeatedly reported in patients with MS (for a review,

see Henry & Beatty, 2006). However, the heterogeneity of the

methods used renders the elaboration of definite conclusions difficult

(Renauld et al., 2016). Still, given the sensorimotor and various cogni-

tive deficits characterizing MS, verbal language functions should be

substantially affected (Renauld et al., 2016).
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The strong negative correlation between disease duration and

LAN rsFC found in this study might represent a neural correlate of the

verbal language dysfunctions observed with the evolution of the dis-

ease. Unfortunately, no proper verbal language assessment was per-

formed in our patients' cohort. Still, verbal fluency scores were

significantly lower in patients than in healthy subjects and correlated

with some language-related network connections in patients.

Although verbal fluency does not specifically assess verbal language

function, some studies suggested that language processing is a critical

component for this task (Whiteside et al., 2016). This finding there-

fore suggests that verbal language function might indeed be impaired

in our patients' cohort. Still, disease duration did not significantly cor-

relate with verbal fluency in our patient group (r = −.056, p = .163),

which agrees with the fact that verbal fluency mainly assesses other

cognitive (i.e., working memory, executive, and semantic memory)

functions than verbal language. These correlation results stress the

importance of behaviorally investigating verbal language function in

MS. Such investigations will ultimately confirm whether the observed

correlation is indeed actually driven by a progressive deterioration of

verbal language along the course of the disease.

4.4 | Reorganization of resting-state networks
correlated with verbal fluency and cognitive fatigue

Correlations between rsFC and cognitive/behavioral measures dis-

closed significant correlations only with verbal fluency (positive corre-

lation) and cognitive fatigue (negative correlation) scores in both

patients with MS and healthy subjects. Furthermore, these two scores

were two of only three scores (i.e., decreased verbal fluency;

increased cognitive fatigue; increased motor fatigue) showing signifi-

cant difference between patients and healthy subjects. Strikingly, for

both verbal fluency and cognitive fatigue, but not for motor fatigue,

significant correlation patterns with rsFC were significantly different

in healthy subjects compared with patients. In healthy subjects, corre-

lation patterns mainly involved within- (cognitive fatigue) and cross-

network (cognitive fatigue and verbal fluency) DMN interactions. By

contrast, in patients with MS, they mainly involved within- and cross-

network LAN interactions (if we consider the LITG a LAN node, as

supported by Hickok & Poeppel, 2007).

As discussed in Section 4.3., verbal fluency is not a language-

specific cognitive measure but rather reflects the integrity of various

high-level cognitive functions such as working memory, executive

functions and semantic cognition (Ralph, Jefferies, Patterson, &

Rogers, 2017; Whiteside et al., 2016). In healthy subjects, we found a

positive correlation between verbal fluency scores and the strength of

PCC interactions with widespread nodes of the LAN, the SMN, the

DAN, and the VAN. This result is in line with fMRI studies that dis-

closed a key role of the postero-medial nodes of the DMN in verbal

fluency (see, for example, Gauthier, Duyme, Zanca, & Capron, 2009;

Shapira-Lichter, Oren, Jacob, Gruberger, & Hendler, 2013; Dacosta-

Aguayo et al., 2015; Yin, Zhu, He, Li, & Li, 2015). By contrast, the cor-

relation between verbal fluency and rsFC observed in patients with

MS showed a significantly different correlation profile, which suggests

the occurrence of disease-related functional reorganization to sustain

verbal fluency with recruitment of different network components

than those observed in healthy subjects. These RSN configurations

partly involved brain connections that can be attributed to lexico-

semantic processing/cognition (LITG-F3TV, LITG-T1P, for reviews,

see for example, Hickok & Poeppel, 2007 or Ralph et al., 2017) at the

detriment of the PCC involvement.

Cognitive fatigue is defined as the decrease in cognitive resources

developing over time on sustained cognitive demands independently

of sleepiness (Borragán, Slama, Destrebecqz, & Peigneux, 2016;

Linnhoff et al., 2019). Cognitive fatigue will therefore impact the per-

formance in several cognitive domains such as cognitive control, high-

level information processing, or sustained attention (Borragán

et al., 2016). In healthy subjects, we found cognitive fatigue scores to

be negatively correlated with the strength of within- and cross-

network posterior DMN interactions involving the DAN, VAN, LAN,

and SMN, mostly centered around posterior regions of the DMN. As

for verbal fluency, the correlation between cognitive fatigue and rsFC

observed in patients showed a significantly different correlation pro-

file that mainly involved connections between the left inferior frontal

gyrus and nodes of the LAN, the DMN and the VAN. This finding

demonstrates that the maintenance of cognitive resources in patients

with MS rely on other network configurations than in healthy subjects

with a reduced implication of within and cross-network DMN

interactions.

MS is often referred to as a structural disease (Compston &

Coles, 2008; Mandolesi et al., 2015). For functional measures like

MEG rsFC to be of additional utility as markers for MS-related CI,

they should add some information not already explained by the avail-

able structural measures. This study showed that, in fact, including

functional connectivity in a regression model significantly added

explanatory power over purely structural measures. Previous studies

have shown a correlation between MEG rsFC and overall cognition

(Tewarie et al., 2013), and we here show that it can independently

explain a significant amount of variation in specific MS-related CIs

as well.

4.5 | Methodological considerations and
limitations

This study is the first to investigate rsFC in MS using band-limited

power envelope correlation, and as such, lacks direct comparability to

the existing literature. All previous MEG/EEG studies of MS used

phase-based rsFC, which measures different aspects of electrophysio-

logical brain interactions (Engel, Gerloff, Hilgetag, & Nolte, 2013). So,

relating our results to the available electrophysiological literature is

not straightforward. Still, there is a growing literature on the relation-

ship between phase- and amplitude-based coupling measures. They

have been shown to be moderately to strongly correlated (Colclough

et al., 2016; Siems & Siegel, 2020; Sjøgård et al., 2020) while still

providing complementary, nonredundant information (Siems &
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Siegel, 2020). Furthermore, both of them have been shown to be

related to fMRI rsFC in some ways (e.g., Tewarie et al., 2014, 2016).

There is also evidence that, as rsFC based on power envelope correla-

tion, phase coupling also displays some intrinsic (i.e., task indepen-

dent) properties, although to a lesser degree than envelope

correlation (Sjøgård et al., 2020). However, MEG power envelope cor-

relation is closely related to rs-fMRI functional connectivity, which is

why we have split out discussion between the fMRI literature and the

(phase-based) MEG literature. That said, the fact that the neuro-

vascular coupling seems to be altered in MS (Marshall et al., 2014)

may also limit the validity of the comparison to fMRI. To mitigate this

lack of comparability, we used here a large cohort of patients, a com-

prehensive analysis of a large-scale multifrequency connectome, and a

stringent control of confounding factors and false positives (as further

discussed below).

It is noteworthy that, on general grounds, the interpretation of

MS-related rsFC increases or decreases is not straightforward. Both

directions of change have been reported with fMRI rsFC and could

either represent beneficial or maladaptive processes (Schoonheim,

Meijer, & Geurts, 2015). Additionally, pathological white matter dam-

age may lead to both increases and decreases in rsFC (Tewarie

et al., 2018). That said, our MEG data consistently identified rsFC

decreases only in patients with MS, and these decreases were related

to worse clinical and cognitive scores.

Another limitation is that we only considered static rsFC esti-

mates, which encapsulates the time-averaged, temporally stable brain

interactions over the course of minutes. This excludes dynamic fea-

tures of rsFC (Baker et al., 2014; de Pasquale et al., 2012; Núñez

et al., 2019; O'Neill et al., 2015; Seedat et al., 2020; Tewarie

et al., 2019; Vidaurre et al., 2018; Wens et al., 2019). MS may also

alter these dynamics, which might provide further insight into its

physiopathology, as was shown in a comparison between static and

dynamic rsFC in neurodevelopment (Hunt et al., 2018), although inter-

preting time-dependent rsFC remains challenging (Hutchison

et al., 2013). Results from our group in a similar participants' popula-

tion demonstrated that transient brain dynamics is slightly altered in

MS with a less dynamic frontal DMN in males with MS and a reduced

activation of the same network in females with MS (Van Schependom

et al., 2019). On the other hand, our current results are statistically

robust (see discussion below).

It is also worth cautioning about a possible interpretational pitfall

regarding the cross-frequency approach (Brookes et al., 2016) due to

our use of conventional frequency bands, which may not reflect the

data at play in the rsFC changes reported here (although Vidaurre

et al., 2018 showed that MEG data-driven bands converge with the

conventional ones). Cross-frequency coupling identified across adja-

cent frequency bands could therefore merely reflect a broadband

process overlapping the two bands and be artifactually coined as

cross-frequency. The βL-βH (Figure 6) and α-βL couplings (Figure 7)

disclosed in our brain-behavior correlations may be of that type. On

the other hand, it is more likely that couplings across nonadjacent fre-

quency bands such as the δ-βH and α-βH couplings disclosed in

Figure 8 reflect genuinely cross-frequency interactions. On a similar

note, our rsFC analyses focused on the frequency bands typically con-

sidered to carry the electrophysiological RSNs, so we did not include

gamma-band rsFC (see, for example, Hipp et al., 2012). This means

that some disease-related rsFC changes might have been missed,

either within the gamma band or between the lower frequency bands

and the gamma band.

Last, and critically, the results obtained in this study generally err

on the conservative side and may thus be fraught with false negatives.

First, the low-density, 32-node brain parcellation used here was limited

to nodes of well-known RSNs (based on a meta-analysis of fMRI rsFC,

as in de Pasquale et al., 2012). Although the spatial smoothness inher-

ent to MEG partially mitigates this coarseness, some brain areas were

poorly sampled at best in our connectome analysis (see Figure 2a) and

functional connections outside these RSN regions were not considered

here. Further, a connectome design based on fMRI may not be optimal

to investigate the multi-spectral signatures of rsFC, to which fMRI is

insensitive. Given the close anatomical correspondence between

electrophysiological and fMRI RSNs (see, for example, Brookes

et al., 2011), using this type of design is well justified in the context of

within-frequency rsFC but it may have a more limited value for cross-

frequency couplings. These two limitations mean that our analyses

might miss MS-related alterations in network configurations outside

these RSNs. Second, our statistical design included stringent control

for several confounding factors, and also for the large number of com-

parisons (496 connections for nodewise rsFC or 15 for mean network

rsFC estimates, 10 pairs of frequency bands, 38 tests) so as to ensure

a family-wise false positive rate below 5%. The price to pay is a less-

ened sensitivity to true differences and correlations. This was presum-

ably mitigated by our inclusion of a large number of participants, and

the negative impact of our unbalanced design in contrasts was further

alleviated by the use of Welch's t statistic. Still, given the lack of com-

parable works, we chose to focus on conservative statistics, without

overinterpreting nonsignificance as a lack of genuine effect. The

results reported here thus represent the most robust effects of MS on

electrophysiological RSNs and its brain-behavior correlates.

4.6 | Conclusion

This MEG study demonstrates that MS entails several robust

frequency-specific network-level and regional changes within and

between RSNs (mainly the SMN, DMN, and LAN) that are related to

motor disability, disease duration and specific CIs. It also shows that

MEG rsFC relying on power envelope correlation brings significant

independent information in specific MS-related CIs outside structural

brain abnormalities. This shows that frequency-specific RSN changes

may be suitable candidates for electrophysiological markers of both

clinical and cognitive aspects of the disease with the remarkable

advantages of being totally noninvasive, free of performance bias and

free of any neurovascular issue. The ability of EEG to uncover similar

RSNs as MEG (Coquelet et al., 2020; Liu et al., 2017; Siems

et al., 2016; Sockeel et al., 2016) should facilitate the dissemination of

the proposed approach in MS and other brain disorders.
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