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Acquisition of complex skills is a universal feature of human behavior that has been con-
ceptualized as a process that starts with intense resource dependency, requires effortful
cognitive control, and ends in relative automaticity on the multi-faceted task. The present
study examined the effects of different theoretically based training strategies on cortical
recruitment during acquisition of complex video game skills. Seventy-five participants were
recruited and assigned to one of three training groups: (1) Fixed EmphasisTraining (FET), in
which participants practiced the game, (2) Hybrid Variable-Priority Training (HVT), in which
participants practiced using a combination of part-task training and variable priority training,
or (3) a Control group that received limited game play. After 30 h of training, game data indi-
cated a significant advantage for the two training groups relative to the control group. The
HVT group demonstrated enhanced benefits of training, as indexed by an improvement in
overall game score and a reduction in cortical recruitment post-training. Specifically, while
both groups demonstrated a significant reduction of activation in attentional control areas,
namely the right middle frontal gyrus, right superior frontal gyrus, and the ventral medial
prefrontal cortex, participants in the control group continued to engage these areas post-
training, suggesting a sustained reliance on attentional regions during challenging task
demands. The HVT group showed a further reduction in neural resources post-training
compared to the FET group in these cognitive control regions, along with reduced acti-
vation in the motor and sensory cortices and the posteromedial cortex. Findings suggest
that training, specifically one that emphasizes cognitive flexibility can reduce the atten-
tional demands of a complex cognitive task, along with reduced reliance on the motor
network.
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INTRODUCTION
The ability of humans to acquire both simple and complex skills
is a universal feature of human behavior, one that starts early in
life (Piaget, 1954) and enables the development of a repertoire of
cognitive, motor, and perceptual processes essential for success-
ful human functioning. The study of skill acquisition has been
the focus of research for many decades now, with many theo-
rists proposing that skill acquisition involves an ordered series of
stages, with earlier stages focused on effortful, controlled process-
ing, characterized by greater cognitive and executive control, and
later stages resulting in automaticity of behavior, depending on
fewer resources and little effort (Fitts and Posner, 1967; Schneider
and Shiffrin, 1977; Ackerman, 1988). An important variable in the
learning of complex skills is the differential influence of training
strategies on learning rate, with more efficient training regimes
characterized both by a faster acquisition of the skill involved, and
by a resourceful utilization of the various skill dimensions, result-
ing in efficient performance. The Learning Strategies Initiative
(Donchin et al., 1989) outlined a series of training strategies that

were examined for their ability to enhance complex skill acquisi-
tion, as implemented in a multi-faceted videogame, Space Fortress
(SF). Training strategies included repeated practice on the entire
task (Fixed Emphasis Training, FET), which has been the predom-
inant mode of training and cognitive rehabilitation across various
clinical populations (e.g., Chiaravalloti et al., 2005; Erickson et al.,
2007), part-task training, involving principled decomposition of
the complex videogame into skill and knowledge components and
training individuals on the sub-parts rather than on the integrated
game (Frederiksen and White, 1989), and whole-task training
with variable priority (Variable Priority Training, VPT), involving
training on the integrated complex task, with changing emphasis
on the sub-components of the game throughout training (Gopher
et al., 1989; see Fabiani et al., 1989, for a comparison of these
training regimes).

The recent resurgence of interest in cognitive training to
enhance cognitive vitality and neural plasticity (Boot et al., 2011;
Slagter et al., 2011) has led to a re-examination of the prophylaxis
offered by various training strategies for the faster acquisition of
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complex skills (Basak et al., 2008; Boot et al., 2010; Lee et al., 2012),
cortical reorganization as evidenced by altered brain activity and
connectivity (Kantak et al., 2010; Maclin et al., 2011; Voss et al.,
2011), and transfer to novel tasks (Boot et al., 2010; Stern et al.,
2011; Lee et al., 2012). Prioritizing different aspects of a com-
plex task, while performing the integrated task (VPT), has been
found to be beneficial for dual-task performance (Kramer et al.,
1995, 1999; Bherer et al., 2008), faster learning and higher level
of mastery on the videogame SF (Fabiani et al., 1989; Boot et al.,
2010), and better working memory performance in older adults
(Stern et al., 2011).

Adding to the behavioral literature have been recent investi-
gations of the neural correlates of variable priority versus FET
(Kantak et al., 2010; Voss et al., 2011). Employing repetitive
transcranial magnetic stimulation (rTMS), Kantak et al. (2010)
provided evidence for the dependence of the two practice regimes
on separable cortical areas for motor memory consolidation.
While application of rTMS on the dorsolateral prefrontal cor-
tex post-variable practice resulted in attenuation of motor skill
retention, it was interference with the primary motor cortices fol-
lowing constant practice that attenuated motor retention, thus
providing evidence for the use of different cortical regions in con-
solidation based on the strategy implemented. Similarly, Voss et al.
(2011) suggested the differential interaction of the declarative and
procedural learning systems with higher-order attentional net-
works as a function of training strategies. After 20 h of training,
the basal ganglia, associated with the learning system related to
FET, and the medial temporal lobes (MTL) associated with the
learning system related to VPT, both showed enhanced interac-
tion with the fronto-parietal system. The interaction between the
MTL and the fronto-parietal system in the VPT group is impli-
cated in the increased capacity of working memory and attention
(Craik et al., 1996; Olesen et al., 2004). Therefore, VPT trainees
may be more efficiently utilizing their attentional network, sug-
gesting that this training strategy involves more flexible attentional
control. In addition, unique to FET, Voss et al. (2011) observed
enhanced interactions between the MTL and the fronto-executive
system. Given the increased interaction of the basal ganglia with
the fronto-parietal system and the MTL with the fronto-executive
system in the FET group, it appears that FET participants were
concurrently utilizing two different cognitive control systems. The
authors postulated this enhanced functional connectivity in the
two attention systems to be indicative of a higher cognitive load
for FET, which in turn, leads to a reliance on basal ganglia and
procedural motor sequences to accomplish game performance.
This unique pattern of functional connectivity in the attentional
network of the FET group was thus indicative of increased engage-
ment of attentional resources during game-play, which, relative
to VPT, suggested an inefficient modulation of neural activity in
attentional areas.

Research studies investigating the neurophysiological indices
of skill acquisition as a function of training strategy also provide
evidence for a greater increase in alpha frequency in the part-
task training groups relative to the whole-task training group,
providing evidence of attenuation of cognitive effort and atten-
tional demands with an efficient training strategy (Smith et al.,
1999). Recently, Maclin et al. (2011) also reported a decrease in P3

amplitude following training on the SF game for some components
of the game. The investigators interpreted these results as provid-
ing evidence of greater allocation of attention to a secondary task
post-training. Thus, evidence from behavioral, and neuroimag-
ing studies provide consistent data on the superiority of training
regimes that focus either on training different components of the
task independently, or training that prioritizes selective aspects
of a complex task within the context of the whole task during
skill acquisition. In the present study, capitalizing on the benefits
of part-task training and emphasis change training approaches,
we examined the efficacy of a Hybrid Variable-Priority Training
(HVT) approach to produce greater skill mastery (Gopher et al.,
1994; Lee et al., 2012).

By combining both part-task training, which enables the
breakdown of a complex task into small sub-component tasks
which can then be individually mastered, and VPT, which enables
participants to explore and learn new strategies and transfer sub-
components skills learned during part-task training to the inte-
grated whole task, HVT exploits the benefits of both approaches,
thus resulting in superior behavioral performance as compared to
variable priority alone (Gopher et al., 1994). Seventy-five partici-
pants were recruited for the current study and randomized to one
of three groups: (1) FET, in which participants practiced the game,
(2) HVT, in which participants practiced using a combination of
part-task training and VPT, or (3) a Control group that received
limited game play. All participants played the videogame inside an
MRI scanner pre- and post-training, and neural recruitment dur-
ing game performance was compared across groups as a function
of training.

We hypothesized that both training groups would achieve a
greater level of skill mastery than the control group, as demon-
strated by a greater behavioral improvement in game performance,
along with a reduction in the recruitment of the lateral prefrontal
regions known to subserve cognitive control operations (Miller
and Cohen, 2001). We reasoned that repeated practice on a task
for 30 h would involve a transition from the effortful, resource-
intensive earlier stages of skill acquisition to a stage of relative
automaticity, characterized by a reduction in the need to exert
top-down control, along with a concomitant decrease in the activ-
ity of the prefrontal cortices (Poldrack et al., 2005). In order to
examine the effects of practice on the videogame on behavioral
performance and neural recruitment, we merged data from the
two training groups to evaluate first the effect of practice on the
SF game, relative to a limited-contact control group. In our second
set of analyses, we compared the two training groups directly to
investigate the differential effect of strategy on behavior and cor-
tical recruitment. A comparison of the two training strategies, we
hypothesized, would show significantly greater skill mastery for
the HVT group relative to the FET group, along with continued
recruitment of the regions of the prefrontal cortices in the FET
group, relative to the HVT group, demonstrating a greater need
to exert top-down control in the face of sub-optimal strategies
acquired due to simple practice on the complex task. In addi-
tion, we hypothesized that game play in FET participants would
depend upon the motor network, involving the primary motor
cortices and the supplementary motor areas, reflecting learning
based on routine behavior and fixed skills (Myers et al., 2003).
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MATERIALS AND METHODS
PARTICIPANTS
Seventy-five young adults were recruited for the current
study from the Champaign-Urbana community via flyers and
announcements posted throughout the University of Illinois cam-
pus. Interested participants were asked to fill out a survey collecting
basic demographics, and measuring videogame play during the last
12 months (available at http://spacefortress.blogspot.com). Partic-
ipants were excluded from the study if they indicated videogame
play of more than 4 h per week, presence of any psychiatric or
neurological condition, and left-handedness as assessed by the
Edinburgh Handedness Inventory. Participants meeting eligibil-
ity criteria were initially randomly divided across three groups:
(1) FET, (2) HVT, or (3) a no-contact control group. Halfway
through the recruitment process, the basic demographics of the
three groups were checked to ensure that no systematic differences
existed across groups in age or gender. All participants were paid
$15 an hour for their participation. The University of Illinois Insti-
tutional Review Board approved the study and all participants gave
informed consent. Participant demographics for each of the three
groups are displayed in Table 1. The groups did not differ on any
of the demographic variables.

Of these 75 participants, 72 completed the MRI session pre-
and post-training. Two participants were excluded because of

Table 1 | Descriptive characteristics of participants in the three training

groups (FET, HVT, and control) based on all 75 participants and on the

sample of 66 participants used for the analyses reported in this paper.

Fixed Emphasis Hybrid Control group

Training (FET) Variable-priority

Training (HVT)

75 Participants

N 25 25 25

Age 21.91 (2.78) 20.88 (2.07) 21.44 (2.52)

Proportion male 0.36 0.40 0.44

Self-rated health 5 5 5

Year of education 15.52 (2.20) 14.68 (1.85) 15.28 (2.25)

Baseline score −844.45 −1034.78 −988.39

(2086.82) (1907.15) (1916.30)

66 Participants

N 23 22 21

Age 22 (2.90) 20.86 (2.19) 21.48 (2.71)

Proportion male 0.34 0.41 0.47

Self-rated health 5 5 5

Year of education 15.61 (2.27) 14.68 (1.97) 15.24 (2.37)

Baseline score −857.51 −1102.02 −860.40

(1925.31) (1909.59) (1926.95)

Standard deviations are within parentheses. No significant differences were found
between the full sample and the subset of 66 participants on demographics or
behavioral performance atTime 1 andTime 2.Total game score improvement was
also not significantly different between the two groups. For self-related health,
the scale was ranging from 1 for poor to 5 for excellent.

problems in data acquisition. Four out of the remaining 70 partici-
pants were excluded from the current analyses because of excessive
motion (greater than one functional voxel) in more than 10 func-
tional T2* images in all three runs of the fMRI data. All analyses
were conducted with the remaining 66 participants, whose demo-
graphics are also presented in Table 1. There were no statistically
significant differences in age, gender, or education between the
full sample and the subset that was analyzed for the current study.
Please note that the behavioral data presented here have been pre-
viously reported in Lee et al. (2012), and that the current study
focuses exclusively on the functional MRI data.

STUDY PROCEDURES
The present study employed a randomized controlled trial to
examine the effects of training and training strategies on behav-
ioral and neural functioning. All recruited participants were
oriented to the game via a 20-min instructional video that detailed
the requirements of the game (video also available at http://
spacefortress.blogspot.com), followed by another 5-min sum-
mary video that reviewed the important rules. Following the
video demonstration, all participants completed a pop-up quiz
inquiring about instructions, and after ensuring that they had
successfully understood the rules of the games and the opera-
tions involved, participants played six 3-min games. Following the
game orientation session, all participants underwent a detailed
cognitive assessment session (the results of which are reported in
Lee et al., 2012), an event-related brain potential (ERP) session
(which is not the focus of this manuscript), and a functional MRI
session.

Participants successfully undergoing the assessment sessions
were divided into three groups, two of which were training groups
(FET and HVT) where participants completed fifteen 2-h sessions,
resulting in 30 h of training on the videogame, SF. The third, con-
trol group received contact with the game at pre-training, after
the training groups completed 10 h of training, and then again
at post-training. Below we describe in brief the SF videogame,
which was used as a platform in the current study to imple-
ment the different strategies and examine changes in cortical
recruitment.

Space Fortress
The SF videogame was originally developed in a cognitive psy-
chophysiology laboratory (Mané and Donchin, 1989) to provide a
platform for the study of complex skill acquisition in an environ-
ment that was visually engaging, and modeled the complexities
and multi-dimensionality of real-life tasks. As such, the SF game
taps into perceptual, motor, executive and attentional skills, and
thus lends itself as an ideal stage for the training of these var-
ious cognitive abilities, either through repeated practice on the
whole game or training on different components to master the
varied cognitive operations involved. This particular videogame
has been used extensively in research studies (see Fabiani et al.,
1989; Gopher et al., 1989; Mané and Donchin, 1989; Rabbitt et al.,
1989; Boot et al., 2010; Maclin et al., 2011; Voss et al., 2011; Lee
et al., 2012), and thus here we briefly discuss the game and out-
line the main components. A depiction of the SF game screen is
presented in Figure 1A.
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FIGURE 1 | Schematic representation of Space Fortress (A), along with a graphical description of the SF MRI task design with blocks of active play and passive
viewing interspersed with fixation periods (B).

Players are awarded a total score for each game, which is the
sum of four sub-scores (Control, Velocity, Speed, Points). The
main task in the SF game is for the player, represented by a ship,
to destroy a SF, which is located in the center of the screen within
two hexagons, using missiles allotted to them. The ship flies in this
environment with no brakes, so the player must exercise slight,
precise movements of the joystick, keeping the ship in the large
hexagon, and a failure to do so results in a reduction of Control
scores. Successfully destroying the SF contributes to the Point sub-
score. Players are penalized if they improperly execute the series of
missile launches required to destroy the fortress and if the fortress’
missiles hit the ship.

In addition, throughout the game, participants also have to
deal with mines and acquire bonus points and missiles. Diamond-
shaped foe or friend mines appear on the screen, with a cor-
responding letter that is displayed on the bottom of the screen
indicating the friend or foe status of the mine. Correctly recogniz-
ing the mines and taking appropriate action contributes toward the
Speed sub-score. However, if a mine is misidentified, the damage
that the mine endures transfers to the ship and the player receives
a deduction in the Speed sub-score.

Participants are also given opportunity to earn bonus missiles
or bonus points, by constantly monitoring the appearance of a

dollar sign in their field of play. To earn the bonus, participants
are asked to stay vigilant of the appearance of a pair of dollar signs,
and clicking the mouse buttons at the second, not the first dollar
sign earns them bonus missiles or bonus points.

Training groups
The training groups employed in this study were modeled after the
groups used in the Gopher et al.’s (1994) study to capitalize on the
benefits of both part-task training and variable priority whole-task
training to achieve accelerated skill acquisition. Our first training
group, the FET group received no formal strategy training and
were simply instructed to concentrate on obtaining as high a total
score as possible, while focusing on the different components of SF
equally. All participants in this group played thirty 3-min games
of SF each session for 15 sessions.

The second training group, referred to as the HVT group com-
bined both part-task training and VPT. A combination of part-task
and VPT (combined sessions) was employed in the first five ses-
sions, while exclusive VPT was used in the last 10 sessions. During
the first hour and 10 min of the combined sessions, part-task
training was employed, in which players practiced a specific com-
ponent of SF that was presented separately from the rest of the
game. For example, in a given game during part-task training,
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participants might be presented with the task of just navigating the
ship or just aiming and firing. During the remaining 50 min of the
combined session, participants in the HVT group were instructed
to employ VPT. Participants played SF in its entirety with the goal
of focusing on the specific skill that was previously learned in the
part-task training and scoring as high a total score as possible on
that particular component. The details of the part-task training
are described in Table 2. In the last 10 sessions employing the
VP strategy, participants were asked to emphasize different com-
ponents of the game sequentially. In these sessions, participants
completed five practice blocks of six trials emphasizing the four
sub-scores.

Both training groups, at the start and end of every session,
played three test games where total score was emphasized, and
these data were used as behavioral data for pre- and post-game
scores and used in all behavioral analyses and brain–behavior
correlations.

BEHAVIORAL ANALYSES
To analyze the effects of videogame training on improvement on
SF game performance, quantified by total score across all four
components, we conducted two repeated-measures ANOVAs with

Table 2 | Details of the part tasks implemented in the first five

sessions.

Part-training details

1. Destroy Fortress by shooting

2. Slow down a ship

3. Aiming

4. Aiming and firing

5. Navigating a ship in trajectory 1

6. Navigating a ship in trajectory 2

7. Navigating a ship in trajectory 3

8. Navigating a ship in big hexagon

9. Navigating a ship in small hexagon

10. Navigating a ship in hexagon and aiming

11. Navigating a ship in hexagon, aiming, and firing

12. Navigating a ship in hexagon, aiming, and firing on the shooting

fortress

13. Ship control only

14. Full game without bonus and mine

15. Mine control only

16. Bonus control only

17. Mine and bonus control

18. Mine and ship control

19. Bonus and ship control

20. Full game without bonus control

21. Full game without mine control

The first two part tasks were implemented only in the first two sessions, while
the remaining part-tasks were implemented in all five part-task training sessions.

time (pre-training, post-training) as the within-subjects factor
and group as the between-subjects factor1. Gender was included
as a covariate in the ANOVAs, as previous research had shown
that gender differences exist in videogame performance (Terlecki
and Newcombe, 2005; Feng et al., 2007). In the first ANOVA,
to examine the influence of training on game performance, we
merged the two training groups into one and tested whether
training on the SF game was associated with improvements in
total game score, relative to the control group. This ANOVA
included time (pre-training, post-training) as a within-subjects
factor and group (Control, Training) as a between-subjects
factor.

In order to examine the influence of training strategy on game
improvement, we conducted a second repeated-measures ANOVA
with time (pre-training, post-training) as a within-subjects factor
and training strategy as a between-subjects factor (HVT, FET). All
behavioral data were analyzed using SPSS 17.0 for Mac.

fMRI DATA ACQUISITION AND TASK PARAMETERS
Participants were scanned in a 3-Tesla Siemens Allegra head-only
scanner at the Beckman Institute for Advanced Science and Tech-
nology at University of Illinois. Structural T1-weighted images
were acquired using a 3-D magnetization prepared rapid gradi-
ent echo imaging (MPRAGE) protocol with 144 contiguous axial
slices, collected in ascending order, echo time (TE) = 3.87 ms,
repetition time (TR) = 1800 ms, field of view (FOV) = 256 mm,
acquisition matrix 160 mm × 192 mm, slice thickness = 1.3 mm,
and flip angle = 8◦.

Functional T2* weighted images were acquired using a
fast echo-planar imaging (EPI) sequence with blood oxy-
genation level-dependent (BOLD) contrast (64 × 64 matrix,
3.4 mm × 3.4 mm × 4.0 mm voxel size, TR = 2000 ms,
TE = 25 ms, and flip angle = 80◦, number of slices = 28).
Using a MRI-compatible joystick, all participants completed three
full runs of the SF game during MRI scanning at pre- and post-
assessment. Presentation of SF during the MRI session was based
on a block design consisting of two 30-s blocks of active game-
play and two 30-s blocks of passive viewing, interspersed with
10-s fixation periods and 4-s of instructions. During blocks of
active game-play, participants were instructed to play the game
like they would play it in the laboratory, and during passive
view, participants watched a video of an expert playing the
videogame. A total of 115 volumes were collected for each func-
tional run. A depiction of the SF MRI task design is presented in
Figure 1B.

1Two separate ANOVAs were conducted to examine separately the effects of practice
and training strategy on game score improvement. Given that the VP and FP groups
both practiced the game for 30 h, we examined if practice on the game would
result in overall improvement in game performance and thus for the first ANOVA
data from the two groups were merged to examine this hypothesis. However, to
examine if unequal differences in sample size between the practice groups (FP
and VP combined) and the control group could result in significant effects on the
ANOVA, we also conducted a repeated-measures ANOVA with all three groups in
the model (Control, HVT, FET), with time as the within-Ss factor and gender as
the covariate to examine the effects on a time × group interaction. With the three
groups as the between Ss factor, we find a main effect of time [F(1,62) = 21.19,
p < 0.001], group [F(2,62) = 6.54, p < 0.005], and a significant time × group effect
[F(2,62) = 23.03, p < 0.001].
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fMRI ANALYSES
Neuroimaging data were analyzed using FSL 4.1 and FEAT (fMRI
Expert Analysis Tool). Images were corrected for motion using a
rigid-body algorithm in MCFLIRT, and smoothed with a Gaus-
sian high-pass filter of 100 s. Structural T1-weighted images were
skull-stripped using a robust deformable brain extraction tech-
nique (BET). The skull-stripped images for each participant were
transformed to a standard Montreal Neurological Institute (MNI)
space and then spatially registered to each participant’s high-
resolution scan. All participants, as mentioned above, played three
full runs of the SF game. Given that participants were required
to play the videogame with a MRI-compatible joystick inside the
fMRI scanner, we noticed significant motion for many partic-
ipants across different runs of the game. For each participant,
we decided to exclude one run with the lowest signal-to-noise
ratio (SNR) and motion greater than 1 functional voxel space
(3.475 mm) in 10 or more volumes. Final analyses were conducted
with two runs of the SF game for each participant at pre- and
post-training.

Following pre-processing, the functional data collected during
the presentation of the SF game were convolved with a double-
gamma function to model the response for each condition (active
game playing and passive viewing). This first-level analysis, done
separately for each participant for the two functional runs, resulted
in voxel-wise parameter estimate maps for the entire brain for each
condition (active, passive), and for the direct comparison between
the conditions (Active > Passive). These parameter estimate maps
and variance maps from the two functional runs were then aggre-
gated within subject (across the two functional runs) for greater
statistical power, using ordinary least squares (OLS) in FSL’s FEAT
tool. This was done separately for Time 1 and Time 2 to examine
recruitment of cortical regions during active game play before and
after the intervention for each individual participant.

Finally, the mean individual-level statistical maps from the
two time-points were forwarded to a third-level fixed effects,
individual-level longitudinal analysis to examine the influence of
training on neural recruitment during active game playing and
passive viewing separately for each individual participant. This
was done using OLS in FSL’s FEAT tool. This third-level anal-
ysis resulted in statistical maps representing activation during
active game playing and passive viewing at pre-training, post-
training and the contrast between the two time-point for each
individual participant. These parameter estimates were forwarded
to two separate fourth-level, mixed-effects analyses, paralleling
the behavioral analyses that considered between-subject variation.
Both these analyses were conducted using FLAME (fMRIB’s Local
Analysis of Mixed Effects). All statistical maps were thresholded at
a voxel-wise z-score of 2.33 (p < 0.01) and a cluster-wise thresh-
old of p < 0.05, with a minimum cluster size of five hundred and
twenty-two 2 mm3 voxels.

The first higher-level analysis was conducted to locate regions
of cortex that showed an influence of training on cortical recruit-
ment during active game play. For this, we examined the contrast
of Active > Passive game play for the three groups. Here,
we were primarily interested in changes in neural recruitment
following post-training in the control group relative to the train-
ing groups. We examined changes at post-training relative to

pre-training (T2 > T1) in the contrasts of Control > Training
and Training > Control. Regions of interest (ROIs) from this
whole-brain analysis comparing the control group to the training
groups were identified to examine associations with behavioral
improvement in the SF game. Specifically, statistical peaks in
separable anatomical regions as demarcated by the Harvard-
Oxford cortical atlas, packaged with the FSL software package
(FSL 4.1.4, FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl)
in the contrast of Control > Training from T2 > T1 were
taken to examine brain–behavior relationships. We then created a
14-mm sphere around each of these statistical peaks and extracted
percent signal change for the contrast of Active > Passive for
both pre- and post-training, to examine associations with game
improvement.

In addition, we were also interested in examining how corti-
cal recruitment in these regions differed as a function of training
strategy. We extracted percent signal change from these regions at
pre- and post-training and conducted an independent samples
t-test comparing differences in change in cortical recruitment
from pre- to post-training between the two training groups.

The second higher-level analysis was conducted to directly
compare cortical recruitment for the two training strategies to bet-
ter understand the neural correlates involved with accelerated skill
acquisition in the HVT group relative to the FET group. The above
ROI analysis represented a focused examination of the changes in
cortical activation in the two training groups in functional regions
that showed continued activation in the control group, relative to
the training groups. In this whole-brain analysis, independent of
the control group, we examined differential cortical recruitment in
the two training groups at post-training, relative to pre-training.
Statistical peaks in this contrast were also taken to create ROIs for
examining brain–behavior associations.

RESULTS
BEHAVIORAL RESULTS
The effect of training on behavioral performance was examined
using a repeated-measures ANOVA with time (pre-training, post-
training) as a within-subjects factor and group (control, training)
as a between-subjects factor. We found a main effect of time
[F(1,63) = 15.4, p < 0.01], indicating that all groups had sig-
nificant improvement in total game score from Time 1 to Time 2,
along with a significant Time × Group interaction [F(1,63) = 40.0,
p < 0.01], suggesting that training across both strategies was ben-
eficial for behavioral performance in the SF game, relative to the
control group (Figure 2).

To examine whether HVT as a training strategy was related
to greater levels of game mastery in comparison to FET, we
contrasted HVT and FET using a repeated-measures ANOVA,
using the average total score from SF at Time 1 and Time 2 as
a within-subjects factor and group as a between-subjects factor.
We found a main effect of time [F(1,42) = 18.8, p < 0.01] as
well as a significant Group × Time interaction [F(1,42) = 4.72,
p < 0.05], which indicated a greater benefit on SF game per-
formance for the HVT group relative to the FET group. This
suggests that a training strategy combining part-training with vari-
able priority is more beneficial than practice alone on the SF game
(Figure 2).
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FIGURE 2 | Space Fortress behavioral data for the three groups at pre-

and post-training.

NEUROIMAGING RESULTS
Practice-related differences in cortical recruitment and
associations with behavioral performance
In order to examine the effects of practice on neural recruitment
during active game play, we conducted a whole-brain analysis con-
trasting brain activation during the Active > Passive condition at
Time 2 > Time 1, separately comparing the control group to the
training groups. A contrast of the control group and the train-
ing groups (Control > Training) showed decreased activation of
the right middle frontal gyrus (rt. MFG), right superior frontal
gyrus (rt. SFG), and ventral medial prefrontal cortex (vmPFC),
for the training groups relative to the control group (Figure 3).
Table 3 provides the max z-stat values in MNI space for the
peak voxels in this contrast. In line with our hypothesis, these
results demonstrate that videogame training, in comparison to the
control condition, results in a reduced need for activation of atten-
tional areas during game-play (Figure 3). Statistical peaks in this
contrast were taken to create ROIs, which were then examined for
associations with behavioral performance. For this, we conducted
partial correlations, controlling for the effects of gender between
game improvement from pre- to post-training and percent signal
change in regions identified in the contrast of Control > Training.
We found a negative relationship between game improvement and
increase in activation in the right MFG (r = −0.31, p < 0.01) and
a trend for a negative association for the right SFG (r = −0.22,
p = 0.08), such that individuals showing a greater increase
in activation of these regions from pre- to post-training also
demonstrated the lowest gains in game improvement.

FIGURE 3 | Cortical areas recruited by the controls relative to the two

training groups at post-training, when compared to pre-training. All
axial slices are presented in radiological orientation.

Table 3 | Statistical peaks of cortical regions recruited during the

Active > Passive condition atTime 2 >Time 1 contrasting the control

group with the training groups (Control >Training).

Anatomical region Label Max MNI coordinates

z-stat

X Y Z

Right middle frontal gyrus Rt. MFG 3.39 44 0 56

Right superior frontal gyrus Rt. SFG 3.57 34 62 70

Ventral medial prefrontal cortex vmPFC 2.68 22 −2 68

Training strategy-related differences in cortical recruitment and
associations with behavioral performance
The above identified functional ROIs from the contrast of Con-
trol > Training were also examined for differences as a function
of training strategy. As seen in Figure 4, the FET group showed
greater increase in activation than the HVT group at Time 2 relative
to Time 1 for all ROIs; however, significant increases in activa-
tion were noted for the right MFG and right SFG (p < 0.05) in
comparison to HVT after training. This finding suggests that indi-
viduals in the FET group required continued activation of the
prefrontal cortices in order to meet the demands of the SF game,
whereas individuals in the HVT group showed reduced recruit-
ment of these prefrontal regions as a function of the training
strategy.

While the above discussed ROI analysis represented a focused
examination of the effects of training strategy on the recruit-
ment of cortical areas that showed a reduction in the contrast
of Control > Training, we also conducted a whole-brain analysis
comparing the two strategies to examine cortical and sub-cortical
structures that were differentially recruited by the two groups at
post-assessment. We found greater recruitment of the bilateral
primary motor cortices, somatosensory cortices, supplemen-
tary motor area, and the posteromedial cortex, including the
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FIGURE 4 | Change in percent signal change from pre- to post-training

in the cortical areas found in the contrast of Control >Training for all

three groups.

precuneus, and the retrosplenial cortex (see Figure 5 and Table 4)
in FET participants post-training, relative to the HVT partici-
pants. The contrast of HVT > FET did not result in any significant
clusters of activation.

Statistical peaks in these regions were taken to examine asso-
ciations with behavioral performance across participants, while
controlling for the effects of gender. We found a trend for nega-
tive associations between game score improvement and increase in
activation in the right and the left motor cortices across all partici-
pants (r = −0.22, p = 0.08, and r = −0.23, p = 0.06 respectively),
again suggesting that greater recruitment of the motor cortices
with training was associated with poor behavioral improvements
on the SF game.

DISCUSSION
The present study, employing the SF videogame as a context to
study multi-tasking and skill acquisition in a complex task, inves-
tigated the effects of two types of training strategies in enhancing
performance and neural recruitment during videogame play. In
line with our hypotheses, we found that videogame training
enhanced behavioral performance on a complex task and con-
currently reduced the neural demands of SF in areas associated
with greater attentional control. In addition, comparing the two
training strategies, we found greater training-related improve-
ments associated with HVT relative to FET, along with a reduced
need to recruit cortical circuitry subserving executive control and
motor performance. Based on these results, HVT is proposed as
an effective strategy for accelerating skill acquisition and achieving
mastery.

Extensive research supports the utility of repeated practice to
enhance behavioral performance (Fabiani et al., 1989; Gopher
et al., 1994; Boot et al., 2010). Corroborating these findings, our
study reports that repeated exposure to SF leads to higher levels
of game mastery in novice videogame players. Across all three
groups, participants showed improvement in behavioral perfor-
mance from pre- to post-training, indicating a beneficial effect of

FIGURE 5 | Cortical areas recruited by the FET participants relative to

the HVT participants at post-training, when compared to pre-training.

All axial slices are presented in radiological orientation.

Table 4 | Statistical peaks of cortical regions recruited during the

Active > Passive condition atTime 2 >Time 1 contrasting the FET

group with the HVT group (FET > HVT).

Anatomical region Label Max MNI coordinates

z-stat

X Y Z

Right primary motor cortex rt. M1 2.72 42 −8 56

Left primary motor cortex lt. M1 2.7 −44 −12 56

Right postcentral gyrus Rt. postcentral 3.56 60 −14 40

gyrus

Left postcentral gyrus Lt. postcentral 3.14 −58 −18 40

gyrus

Supplementary motor area SMA 2.86 −2 −4 54

Posteromedial cortex PMC 2.73 2 −56 38

basic practice on a complex task (Newell and Rosenbloom, 1981).
In addition, we found evidence for superior behavioral perfor-
mance with a strategy that involved a combination of part-task
training, and variable whole-task training, thus adding to the exist-
ing literature favoring flexible strategies in acquisition of complex
skills relative to constant, repeated practice on the task (Boot et al.,
2010; Voss et al., 2011).

To investigate the neural mechanisms associated with
videogame training, we also examined the influence of training
on functional brain activity. Given that training on the SF game
was expected to reduce the attentional demands associated with
game-play, we predicted an attenuation of neural activity in areas
of the prefrontal and parietal cortices as a result of training. Con-
firming this hypothesis, we found reduced activation in cortical
regions involved in attentional control for the training groups
relative to the control group, and also for HVT relative to FET.
Specifically, the control group exhibited continued activation in
regions of the frontal cortices, including the middle frontal gyrus,
and the superior frontal gyrus. These lateral prefrontal regions
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are traditionally known to be involved in processes of top-down
control (Miller and Cohen, 2001; Erickson et al., 2009), showing
enhanced activation with increasing task demands (Braver et al.,
1997; Prakash et al., 2009) and a reduction in activity with relative
automaticity of the task (Poldrack et al., 2005). This suggests that
the poorer performance of the control group relative to the train-
ing groups may, therefore, be related to ineffective control of the
joystick during game-play, greater effort in multi-tasking between
the different components of the game, and a general enduring
need for cortical recruitment in support of task-focused perfor-
mance. In comparison, the reduced activation of such regions
observed in the training groups relative to the control group at
post-training represents training-related optimization of neural
recruitment during game-play.

An important concept in the acquisition of a complex skill,
proposed by Gopher et al. (1989) is the development of higher-
order schemas as learners progress through the various stages of
skill acquisition and attain mastery of the task. Schemas can be
conceptualized as organized series of responses, usually formed
after repeated and optimal practice with a task, resulting in efficient
performance on the task with minimal resources. The vmPFC
is known to be selectively involved in the effortful retrieval of
consolidated memory traces that are consistent with pre-existing
schemas (van Kesteren et al., 2010), such that greater activation is
seen in this region for recall of remote memories, similar to that
seen in the hippocampus for recall of recent memories (Frankland
and Bontempi, 2005; Takashima et al., 2006). One explanation
for the greater activation of the medial prefrontal regions during
remote memory recall is the greater effort required to retrieve a
degraded and weak schema (Frankland and Bontempi, 2006; Rudy
et al., 2006). In our study, we found control participants to show
greater activation in the vmPFC than training participants at post-
intervention, thus, possibly suggesting a failure to form a well-
organized series of responses for the SF game in the control group,
resulting in greater neural effort. Training strategies that involve
repeated exposure to the game possibly result in the building of
higher-order schemas that represent well-organized sequences of
responses (Gopher et al., 1989; Kantak et al., 2010). For the control
group, due to limited exposure to the SF game, well-organized
schemas representing connections between the different elements
of the game may not have been built, and thus, we see greater
effort being exerted to retrieve a weak memory trace. In contrast,
the two training groups did not differ in activation of the medial
prefrontal cortices, suggesting that exposure to the game for 30 h
results in the development of higher-order schemas, which can be
efficiently retrieved at the time of need.

Thus, whereas game performance on SF led to a persistent tax-
ing of the attentional network, specifically the prefrontal cortices
in control participants, individuals in the training groups demon-
strated successful performance on a complex task using minimal
allocation of attentional resources. In addition, we found con-
tinued activation of attentional areas for FET at post-training,
which might reflect the inefficient use of two different cogni-
tive control networks in this group (Voss et al., 2011) and their
enduring reliance on attentional resources to meet the demands
of SF. Our study shows that the attentional costs of multi-tasking,
exemplified in lower scores on SF and continual activation of

the prefrontal cortices after training (Dove et al., 2000; Gazzaley
et al., 2005), are more pronounced for FET than HVT, a finding
which predicates the employment of the HVT cognitive training
strategy (uniquely involving variable emphasis on different task
components combined with basic part-task practice) as a useful
approach to improving cognitive functioning. Based on a mod-
est association between game score improvement and decreased
activation of the right MFG, we also suggest that such reduc-
tions in cortical recruitment, observed in the HVT group, could
indeed be related to improved performance on SF. Since decreased
recruitment of the cortical regions comprising the attentional
network can have implications for behavioral performance, an
effective cognitive training tool is one that concurrently hones
behavioral skills and optimizes the neural circuitry of attentional
control.

Differences in cortical recruitment between the two groups
were also seen in the primary motor cortices, the sensory cortices,
and the supplementary motor area, with the FET group show-
ing continuing reliance on these areas post-training relative to the
HVT group. The involvement of the motor network during the
SF game is not surprising given that the control of the ship in the
frictionless environment is arguably the most challenging compo-
nent of this complex task. In fact, greater phasic activity in the
right motor cortex during baseline SF play has been found to be
beneficial to game performance (Anderson et al., 2011), suggest-
ing that activity in this region is important for learning the game.
In fact, both positron-emission tomography (PET) studies (Jenk-
ins et al., 1994; Schlaug et al., 1994) and lesion studies (Pavlides
et al., 1993) provide evidence for the involvement of the motor
network including the primary motor cortices, the sensorimotor
cortices, and the somatosensory cortices in initial acquisition of
motor skills, with significant attenuation of activity within the
motor network with consolidation of the motor skill as a uni-
tary motor plan (Pascual-Leone et al., 1994). Thus, the continued
engagement of the motor network in participants trained under
constant practice (FET) suggests the reliance of this strategy on the
procedural system, guided by fixed rules and learning. Given that
interference with these regions attenuates retention of motor skills
following FET (Kantak et al., 2010), suggests the critical involve-
ment of these regions with this practice structure that focuses
exclusively on repeated practice of the task, rather than flexi-
ble development of strategies and skills that will aid in efficient
performance. Indeed, greater recruitment of the primary motor
cortices from pre- to post-training was associated with lower gains
on the SF task, thus suggesting that individuals demonstrating the
greatest improvements in performance as a function of training,
also showed a significant decline in their reliance on the motor
network.

The addition of neuroimaging techniques provides insight into
the influence of videogame training on changes in neural activity
during a complex task. Another particular strength of this study is
the inclusion of a no-contact control group and a non-VPT group,
which previous SF studies have not considered. This is particularly
useful because it serves to clarify the confounds present in previous
studies between the behavioral and neural characteristics of VPT-
based training (HVT) and simple practice effects (FET). For future
research it would be important to directly compare the effects of
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the HVT group to that of the variable training, fixed emphasis,
and a no-contact control group to truly parse out the effects of the
hybrid approach relative to the variable training approach and the
fixed emphasis approach. An important limitation of the current
study was the collection of neural data after 30 h of training, as
opposed to assessing changes in neural functioning after a shorter
period of training. Since differences in behavioral performance
between HVT and FET were predominant after 10 h of training
(reported in Lee et al., 2012), we suspect that 30 h of videogame
training may have not entirely captured neural differences between
the two training groups when performance differences were at
their maximum. Although a comparison of the training groups in
this study indicates a significant advantage for participants in the
HVT group, this advantage could potentially be more evident if
measured earlier in training. Therefore, future studies examining
changes in neural recruitment earlier in training would be critical
to understanding the dose–response relationship between training
and neural recruitment.

Previous studies of attentional and executive control have estab-
lished that cortical recruitment of the regions comprising the
attentional network is responsive to task demands (Banich et al.,
2000; Dove et al., 2000). However, the role of this additional neu-
ral activation has been disputed, with some studies suggesting
that activation may serve a compensatory function (Davis et al.,
2008), while others argue that excessive attentional network acti-
vation is related to diminished performance on a cognitive task
(Gazzaley et al., 2005; Prakash et al., 2009). The aging literature,
for example, has associated extensive cortical recruitment in older
adults with poorer performance on a cognitive task (Prakash et al.,
2009; see also Schneider-Garces et al., 2010). Thus, the imple-
mentation of a randomized controlled trial similar to the one
used in the present study could shed light on the neural correlates

associated with improved executive function in older adults and
represents a potentially interesting and valuable study for future
investigations.

In summary, the present study provides evidence for the ability
of videogame training to enhance performance on a complex task
and correspondingly decrease cortical recruitment of attentional
resources. Based on behavioral and neuroimaging evidence, we
conclude that HVT, relative to FET, may facilitate greater mas-
tery of a complex task and neural efficiency in response to task
difficulty. In general, videogame training signifies a novel and
promising avenue to improving cognition and maximizing effi-
ciency in neural recruitment, thereby making it a plausible tool
for use with clinical populations in the future.
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